Secondary School Certificate Examination

March 2017
 Marking Scheme — Mathematics 30/2/1, 30/2/2, 30/2/3 (Foreign)

General Instructions:

1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the meaning, such answers should be given full weightage
2. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration - Marking Scheme should be strictly adhered to and religiously followed.
3. Alternative methods are accepted. Proportional marks are to be awarded.
4. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
5. A full scale of marks - 0 to 90 has to be used. Please do not hesitate to award full marks if the answer deserves it.
6. Separate Marking Scheme for all the three sets has been given.
7. As per orders of the Hon'ble Supreme Court. The candidates would now be permitted to obtain photocopy of the Answer book on request on payment of the prescribed fee. All examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

QUESTION PAPER CODE 30/2/1 EXPECTED ANSWER/VALUE POINTS
 SECTION A

1. $6 x^{2}-x-k=0$

$$
\begin{aligned}
& 6\left(\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)-\mathrm{k}=0 \\
& \mathrm{k}=2
\end{aligned}
$$

2.

$$
\begin{array}{ll}
\cos 60^{\circ}=\frac{\mathrm{h}}{15} & \frac{1}{2} \\
\mathrm{~h}=7.5 \mathrm{~m} & \frac{1}{2}
\end{array}
$$

3. No. of cubes $=\frac{9 \times 8 \times 2}{2 \times 2 \times 2}$

$$
=18
$$

4.

$$
\begin{aligned}
& \angle \mathrm{POR}=\angle \mathrm{OQP}+\angle \mathrm{OPQ} \\
& \begin{aligned}
\angle \mathrm{OPQ} & =120^{\circ}-90^{\circ} \\
& =30^{\circ}
\end{aligned}
\end{aligned}
$$

SECTION B

5. $\sqrt{3} x^{2}+10 x-8 \sqrt{3}=0$

$$
\begin{aligned}
& \sqrt{3} x^{2}+12 x-2 x-8 \sqrt{3}=0 \\
& \sqrt{3} x(x+4 \sqrt{3})-2(x+4 \sqrt{3})=0 \\
& (\sqrt{3} x-2)(x+4 \sqrt{3})=0 \\
& x=\frac{2}{\sqrt{3}},-4 \sqrt{3}
\end{aligned}
$$

6. $7 \mathrm{a}_{7}=11 \mathrm{a}_{11}$

$$
7(a+6 d)=11(a+10 d)
$$

$7 a-11 a+12 d-110 d=0$

$$
-4 a-68 d=0
$$

$$
a+17 d=0
$$

$$
a_{18}=0
$$

7. Total number of outcomes $=36$
$\mathrm{P}($ Product appears is less than 18$)=\frac{26}{36}=\frac{13}{18}$
8.

Let other two coordinates are

$$
\begin{aligned}
& (x, y) \text { and }\left(x^{\prime}, y^{\prime}\right) \\
& 2=\frac{x+3}{2} \\
& \Rightarrow x=1
\end{aligned}
$$

and, $-5=\frac{2+\mathrm{y}}{2}$
$y=-12$
Again, $\frac{-1+\mathrm{x}^{\prime}}{2}=2$

$$
x^{\prime}=5
$$

and $\frac{0+\mathrm{y}^{\prime}}{2}=-5$
$y^{\prime}=-10$
Hence co-ordinates are $(1,-12)$ and $(5,-10)$
9. $\mathrm{AB}=\mathrm{AC}$ (Given)
$\mathrm{AD}=\mathrm{AF}$ (tangents from external point)
On subtracting,
$\mathrm{BD}=\mathrm{CF}$
$\mathrm{BD}=\mathrm{BE}$ (tangents from external point)
and $\mathrm{CF}=\mathrm{EC}$
$\Rightarrow \mathrm{BE}=\mathrm{EC}$
10. In leap year $=52$ weeks +2 days

Two days may be, (M, Tu), (Tu, W), (W, Th), (Th, F), (F, Sat)
(Sat, Sun), (Sun, M)
Required probability $=\frac{2}{7}$

SECTION C

11. For equal roots
$\mathrm{D}=0$
$(b-c)^{2}-4(a-b)(c-a)=0$
$\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc}-4 \mathrm{ac}+4 \mathrm{a}^{2}+4 \mathrm{bc}-4 \mathrm{ab}=0$
$(b+c-2 a)^{2}=0$
$\Rightarrow 2 \mathrm{a}=\mathrm{b}+\mathrm{c}$
12. The series can be rewritten as,

$$
\begin{aligned}
& (5+9+13+\ldots+81)+(-41+(-39)+(-39)+\ldots+(-5)+(-3)) \\
& \text { for } 5+9+13+\ldots 81 \\
& a=5 \\
& d=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { an }=81 \\
& 5+(\mathrm{n}-1) 4=81 \\
& \Rightarrow \mathrm{n}=20 \\
& \mathrm{~S}_{\mathrm{n}}=\frac{20}{2}(5+81)=860
\end{aligned}
$$

$$
\text { for }(-41)+(-39)+(-37) \ldots+(-5)+(-3)
$$

$$
a=-41
$$

$$
d=2
$$

$$
a_{n}=-3
$$

$$
-41+(n-1) 2=-3
$$

$$
\mathrm{n}=20
$$

$$
\mathrm{S}_{\mathrm{n}}=\frac{20}{2}(-41-3)=-440
$$

Sum of series $=860-440$
$=420$
13.

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{h}{x} \\
& h=\sqrt{3} x \\
& \tan \theta=\frac{h}{3 x} \\
& \tan \theta=\frac{\sqrt{3} x}{3 x} \\
& \tan \theta=\frac{1}{\sqrt{3}} \\
& \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

14.

Let the co-ordinates be (x, y) and ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$)

$$
\begin{aligned}
& x=\frac{1(-3)+2(3)}{1+2}=1 \\
& y=\frac{1(-4)+2(-2)}{1+2}=\frac{-8}{3} \\
& x^{\prime}=\frac{2(-3)+1(3)}{1+2}=-1 \\
& y^{\prime}=\frac{2(-4)+1(-2)}{1+2}=\frac{-10}{3}
\end{aligned}
$$

15. $\mathrm{PA}=\mathrm{PB}=4 \mathrm{~cm}$ (tangents from external point)

$$
\begin{aligned}
& \angle \mathrm{PAB}=180^{\circ}-135^{\circ} \\
& =45^{\circ}
\end{aligned}
$$

$$
\angle \mathrm{APB}=180^{\circ}-45^{\circ}-45^{\circ}
$$

$$
=90^{\circ}
$$

$\Rightarrow \triangle \mathrm{ABP}$ is a isosceles right angled triangle
$\Rightarrow \mathrm{AB}^{2}=2 \mathrm{AP}^{2}$
$=2(4)^{2}=32$
$\mathrm{AB}=4 \sqrt{2} \mathrm{~cm}$
16.

$$
\begin{aligned}
& \Delta \mathrm{AOS} \cong \triangle \mathrm{AOP} \\
& \Rightarrow \angle 1=\angle 2
\end{aligned}
$$

Similarly $\angle 4=\angle 3$
$\angle 5=\angle 6$
$\angle 8=\angle 7$
$\Rightarrow(\angle 1+\angle 8)+(\angle 4+\angle 5)=(\angle 2+\angle 3)+(\angle 6+\angle 7)=180^{\circ} \quad 1$
$\Rightarrow \angle \mathrm{AOD}+\angle \mathrm{BOC}=180^{\circ}$
and $\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
17. 3 marks be given to every attempt
18. $\mathrm{r}: \mathrm{h}=5: 12$

Let $r=5 x$
$h=12 x$
Volume $=\frac{1}{3} \pi r^{2} h$
$314=\frac{1}{3} \times 3.14(5 \mathrm{x})^{2} \times 12 \mathrm{x}$
$\Rightarrow \mathrm{x}=1$
$\mathrm{r}=5 \mathrm{~cm}$
$\mathrm{h}=12 \mathrm{~cm}$
$l=\sqrt{(12)^{2}+(5)^{2}}=13 \mathrm{~cm}$
$\mathrm{TSA}=\pi \mathrm{r}(l+\mathrm{r})=3.14 \times 5(13+5)$

$$
=282.6 \mathrm{~cm}^{2}
$$

19. Co-ordinates of B are $(5,0)$

Let co-ordinates of C be (x, y)
$\mathrm{AC}^{2}=\mathrm{BC}^{2}$
$(x-2)^{2}+(y-0)^{2}=(x-5)^{2}+(y-0)^{2}$
$x^{2}+4-4 x+y^{2}=x^{2}+25-10 x+y^{2}$
$6 x=21$
$\mathrm{x}=\frac{7}{2}$
$(x-2)^{2}+(y-0)^{2}=9$
$\left(\frac{7^{2}}{2}-2\right)+y^{2}=9$
$y^{2}=9-\frac{9}{4}$
$y^{2}=\frac{27}{4}$
$\mathrm{y}=\frac{3 \sqrt{3}}{2}(+\mathrm{ve}$ sign to be taken $)$, Co-ordinate of $\mathrm{C}\left(\frac{7}{2}, \frac{3 \sqrt{3}}{2}\right)$
20. $\mathrm{AB}=\sqrt{(-2+0)^{2}+(0-2)^{2}}=2 \sqrt{2}$ units

$$
\mathrm{BC}=\sqrt{(0-2)^{2}+(2-2)^{2}}=2 \sqrt{2} \text { units }
$$

$\mathrm{CA}=\sqrt{(2+2)^{2}+(0-0)^{2}}=4$ units
$\mathrm{DE}=\sqrt{(-4+0)^{2}+(0-4)^{2}}=4 \sqrt{2}$ units
$\mathrm{EF}=\sqrt{(0-4)^{2}+(4-0)^{2}}=4 \sqrt{2}$ units
$\mathrm{DF}=\sqrt{(-4-4)^{2}+(0-2)^{2}}=8$ units
$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{1}{2}$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

SECTION D

21.

Let radii of circles be $x, y(x>y)$
$x-y=6$
and $\pi x^{2}+\pi y^{2}=116 \pi$
$x^{2}+y^{2}=116$
$x^{2}+(x-6)^{2}=116$
$\Rightarrow \mathrm{x}^{2}+\mathrm{x}^{2}+36-12 \mathrm{x}=116$
$\Rightarrow \mathrm{x}^{2}-6 \mathrm{x}-40=0$
$(x-10)(x+4)=0$
$\Rightarrow \mathrm{x}=10 \mathrm{~cm}$ (rejecting -ve value)
and $\mathrm{y}=4 \mathrm{~cm}$
22. $1+4+7+10+\ldots+x=287$

$$
\begin{aligned}
& \mathrm{Sn}=287 \\
& \frac{\mathrm{n}}{2}(2+(\mathrm{n}-1) 3)=287 \\
& \Rightarrow 3 \mathrm{n}^{2}-\mathrm{n}-574=0 \\
& \Rightarrow 3 \mathrm{n}^{2}-42 \mathrm{n}+41 \mathrm{n}-574=0 \\
& \Rightarrow(3 \mathrm{n}+41)(\mathrm{n}-14)=0 \\
& \Rightarrow \mathrm{n}=14 \\
& \mathrm{x}=\mathrm{a}+13 \mathrm{~d}=40
\end{aligned}
$$

23. For constructing correct concentric circle

For constructing correct pair of tangents
24.

Correct Figure

$$
\begin{aligned}
& \tan 45^{\circ}=\frac{7}{x} \\
& x=7 \\
& \tan 60^{\circ}=\frac{\mathrm{h}-7}{\mathrm{x}} \\
& 7 \sqrt{3}=\mathrm{h}-7 \\
& \mathrm{~h}=7(\sqrt{3}+1) \\
& =7(1.732+1) \\
& =19.124 \mathrm{~m}
\end{aligned}
$$

25. (i) $\mathrm{P}($ bears two digit number $)=\frac{81}{90}$ or $\frac{9}{10}$
(ii) $\mathrm{P}($ a number divisible by 5$)=\frac{18}{90}$ or $\frac{1}{5}$
26. Let height of embankment be hmts
$17(1.5) 2 \times 14=\pi\left[(6.5)^{2}-(1.5)^{2}\right] \times 2$
$2.25 \times 14=5 \times 8 \times h$
$\Rightarrow \mathrm{h}=0.7875 \mathrm{~m}$
27. For correct given, To prove, construction, figure
28.

$$
\left.\begin{array}{l}
\text { Let width of grass strip be } \mathrm{x} \text { mts. } \\
\text { area of park }- \text { area of pond }=1184 \\
(50 \times 40)-(50-2 x)(40-2 x)=1184 \\
2000-2000+180 x-4 x^{2}=1184 \\
x^{2}-45 x+296=0 \\
x^{2}-37 x-8 x+296=0 \\
x=8,37 \text { (rejected) } \\
\text { Length of pond }=50-16=34 m \\
\text { Breadth of pond }=40-16=24 m
\end{array}\right]
$$

area of path $=\pi(4.2)^{2}-\pi(3.5)^{2}$
$=\pi[(7.7) \times 0.7]$
$=\frac{22}{7} \times 7.7 \times 0.7$
$=16.94 \mathrm{~m}^{2}$

Cost of cementing the path $=16.94 \times 110$
$=₹ 1863.40$
30.

$$
\tan 30^{\circ}=\frac{\mathrm{r}_{1}}{10}
$$

$$
\begin{aligned}
& \mathrm{r}_{1}=\frac{10}{\sqrt{3}} \\
& \tan 30^{\circ}=\frac{\mathrm{r}_{2}}{20} \\
& \mathrm{r}_{2}=\frac{20}{\sqrt{3}} \\
& \frac{1}{3} \not t \times 10\left(\left(\frac{10}{\sqrt{3}}\right)^{2}+\left(\frac{20}{\sqrt{3}}\right)^{2}+\frac{200}{3}\right)=\not t\left(\frac{1}{32}\right)^{2} \times \mathrm{h} \\
& \frac{1}{3} \times 10 \times \frac{700}{3} \times 32 \times 32=\mathrm{h} \\
& \Rightarrow \mathrm{~h}=796444.4 \mathrm{~cm}
\end{aligned}
$$

or
7964.44 m

Views on the habit of saving
The series $5+10+20+\ldots$
$\mathrm{S}_{\mathrm{n}}=950$
$\frac{\mathrm{n}}{2}(2(5)+(\mathrm{n}-1) 5)=950$
$\mathrm{n}(2+(\mathrm{n}-1))=380$
$\mathrm{n}^{2}+\mathrm{n}-380=0$
$\mathrm{n}^{2}+20 \mathrm{n}-19 \mathrm{n}-380=0$
$\mathrm{n}=19$

QUESTION PAPER CODE 30/2/2 EXPECTED ANSWER/VALUE POINTS

SECTION A
1.

$$
\begin{aligned}
& \angle \mathrm{POR}=\angle \mathrm{OQP}+\angle \mathrm{OPQ} \\
& \begin{aligned}
\angle \mathrm{OPQ} & =120^{\circ}-90^{\circ} \\
& =30^{\circ}
\end{aligned}
\end{aligned}
$$

2. No. of cubes $=\frac{9 \times 8 \times 2}{2 \times 2 \times 2}$

$$
=18
$$

3. $6 x^{2}-x-k=0$

$$
\begin{array}{ll}
6\left(\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)-\mathrm{k}=0 & \frac{1}{2} \\
\mathrm{k}=2 & \frac{1}{2}
\end{array}
$$

4.

SECTION B

5. $\mathrm{AB}=\mathrm{AC}$ (Given)
$\mathrm{AD}=\mathrm{AF}$ (tangents from external point)
On subtracting,
$\mathrm{BD}=\mathrm{CF}$
$\mathrm{BD}=\mathrm{BE}$ (tangents from external point)
and $\mathrm{CF}=\mathrm{EC}$
$\Rightarrow \mathrm{BE}=\mathrm{EC}$
6. In leap year $=52$ weeks +2 days

Two days may be, (M, Tu), (Tu, W), (W, Th), (Th, F), (F, Sat)
(Sat, Sun), (Sun, M)
Required probability $=\frac{2}{7}$
7.

Let other two coordinates are

$$
\begin{aligned}
& (x, y) \text { and }\left(x^{\prime}, y^{\prime}\right) \\
& 2=\frac{x+3}{2} \\
& \Rightarrow x=1
\end{aligned}
$$

and, $-5=\frac{2+\mathrm{y}}{2}$
$y=-12$
Again, $\frac{-1+\mathrm{x}^{\prime}}{2}=2$
$\mathrm{x}^{\prime}=5$
and $\frac{0+\mathrm{y}^{\prime}}{2}=-5$
$y^{\prime}=-10$
Hence co-ordinates are $(1,-12)$ and $(5,-10)$
8. $7 \mathrm{a}_{7}=11 \mathrm{a}_{11}$

$$
7(a+6 d)=11(a+10 d)
$$

$$
7 a-11 a+12 d-110 d=0
$$

$$
-4 a-68 d=0
$$

$$
a+17 d=0
$$

$$
a_{18}=0
$$

9. Total number of outcomes $=36$
$\mathrm{P}($ Product appears is less than 18$)=\frac{26}{36}=\frac{13}{18}$
10. $\sqrt{3} x^{2}+10 x+7 \sqrt{3}=0$

$$
\begin{aligned}
& \sqrt{3} x^{2}+7 x+3 x+7 \sqrt{3}=0 \\
& (\sqrt{3} x+7)(x+\sqrt{3})=0 \\
& x=\frac{-7}{\sqrt{3}},-\sqrt{3}
\end{aligned}
$$

SECTION C

11. Co-ordinates of B are $(5,0)$

Let co-ordinates of C be (x, y)

$$
\mathrm{AC}^{2}=\mathrm{BC}^{2}
$$

$$
(x-2)^{2}+(y-0)^{2}=(x-5)^{2}+(y-0)^{2}
$$

$$
x^{2}+4-4 x+y^{2}=x^{2}+25-10 x+y^{2}
$$

$$
6 x=21
$$

$$
x=\frac{7}{2}
$$

$$
(x-2)^{2}+(y-0)^{2}=9
$$

$$
\left(\frac{7^{2}}{2}-2\right)+y^{2}=9
$$

$$
y^{2}=9-\frac{9}{4}
$$

$$
\mathrm{y}^{2}=\frac{27}{4}
$$

$$
\mathrm{y}=\frac{3 \sqrt{3}}{2}(+\mathrm{ve} \text { sign to be taken }), \text { Co-ordinate of } \mathrm{C}\left(\frac{7}{2}, \frac{3 \sqrt{3}}{2}\right)
$$

12. $\mathrm{AB}=\sqrt{(-2+0)^{2}+(0-2)^{2}}=2 \sqrt{2}$ units

$$
\begin{aligned}
& \mathrm{BC}=\sqrt{(0-2)^{2}+(2-2)^{2}}=2 \sqrt{2} \text { units } \\
& \mathrm{CA}=\sqrt{(2+2)^{2}+(0-0)^{2}}=4 \text { units } \\
& \mathrm{DE}=\sqrt{(-4+0)^{2}+(0-4)^{2}}=4 \sqrt{2} \text { units } \\
& \mathrm{EF}=\sqrt{(0-4)^{2}+(4-0)^{2}}=4 \sqrt{2} \text { units } \\
& \mathrm{DF}=\sqrt{(-4-4)^{2}+(0-2)^{2}}=8 \text { units }
\end{aligned}
$$

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{1}{2}
$$

$$
\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}
$$

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{h}{x} \\
& h=\sqrt{3} x \\
& \tan \theta=\frac{h}{3 x}
\end{aligned}
$$

$$
\tan \theta=\frac{\sqrt{3} x}{3 x}
$$

$$
\tan \theta=\frac{1}{\sqrt{3}}
$$

$$
\Rightarrow \theta=30^{\circ}
$$

14. 3 marks be given to every attempt
15.

$$
\begin{align*}
& \Delta \mathrm{AOS} \cong \triangle \mathrm{AOP} \\
& \Rightarrow \angle 1=\angle 2 \tag{1}
\end{align*}
$$

Similarly $\angle 4=\angle 3$

$$
\begin{aligned}
& \angle 5=\angle 6 \\
& \angle 8=\angle 7
\end{aligned}
$$

$$
\Rightarrow(\angle 1+\angle 8)+(\angle 4+\angle 5)=(\angle 2+\angle 3)+(\angle 6+\angle 7)=180^{\circ} \quad 1
$$

$$
\Rightarrow \angle \mathrm{AOD}+\angle \mathrm{BOC}=180^{\circ}
$$

$$
\text { and } \angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}
$$

16.

Let the co-ordinates be (x, y) and ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$)

$$
x=\frac{1(-3)+2(3)}{1+2}=1
$$

$$
y=\frac{1(-4)+2(-2)}{1+2}=\frac{-8}{3}
$$

$$
x^{\prime}=\frac{2(-3)+1(3)}{1+2}=-1
$$

$$
\mathrm{y}^{\prime}=\frac{2(-4)+1(-2)}{1+2}=\frac{-10}{3}
$$

17. $\mathrm{PA}=\mathrm{PB}=4 \mathrm{~cm}$ (tangents from external point)

$$
\begin{aligned}
& \angle \mathrm{PAB}=180^{\circ}-135^{\circ} \\
& =45^{\circ}
\end{aligned}
$$

$$
\angle \mathrm{APB}=180^{\circ}-45^{\circ}-45^{\circ}
$$

$$
=90^{\circ}
$$

$\Rightarrow \triangle \mathrm{ABP}$ is a isosceles right angled triangle
$\Rightarrow \mathrm{AB}^{2}=2 \mathrm{AP}^{2}$

$$
=2(4)^{2}=32
$$

$$
\mathrm{AB}=4 \sqrt{2} \mathrm{~cm}
$$

18. $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$

$$
\Rightarrow 3 \mathrm{x}^{2}-2(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{x}+\mathrm{ab}+\mathrm{bc}+\mathrm{ca}=0
$$

for equal roots
$4(a+b+c)^{2}-12(a b+b c+c a)=0$
$2\left[2 \mathrm{a}^{2}+2 \mathrm{~b}^{2}+2 \mathrm{c}^{2}-2 \mathrm{ab}-2 \mathrm{bc}-2 \mathrm{ca}\right]=0$
$\Rightarrow \mathrm{a}-\mathrm{b}=0, \mathrm{~b}-\mathrm{c}=0, \mathrm{c}-\mathrm{a}=0$
$\Rightarrow \mathrm{a}=\mathrm{b}, \mathrm{b}=\mathrm{c}, \mathrm{c}=\mathrm{a}$
19. $\mathrm{S}_{7}=\frac{7}{2}(2 \mathrm{a}+6 \mathrm{~d})=49 \Rightarrow \mathrm{a}+3 \mathrm{~d}=7$
$S_{17}=\frac{17}{2}(2 a+16 d)=289 \Rightarrow a+8 d=17$
On solving,
$\mathrm{a}=1, \mathrm{~d}=2$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(2(1)+(\mathrm{n}-1) 2)=\mathrm{n}^{2}$
20. \quad CSA of cylinder $=2 \pi(5) \times 12$
$=120 \pi$
Let length of wire $=\mathrm{hcm}$
radius of wire $=\frac{3}{20} \mathrm{~cm}$
$2 \pi\left(\frac{3}{20}\right) \mathrm{h}=120 \pi$
$\Rightarrow \mathrm{h}=400 \mathrm{~cm}$

SECTION D

21. Total saving $=190 \times 5=₹ 950$

The series $5+10+20+\ldots$.

$$
\mathrm{S}_{\mathrm{n}}=950
$$

$\frac{\mathrm{n}}{2}(2(5)+(\mathrm{n}-1) 5)=950$
$n(2+(n-1))=380$
$\mathrm{n}^{2}+\mathrm{n}-380=0$
$n^{2}+20 n-19 n-380=0$
$\mathrm{n}=19$
Views on the habit of saving
22.

Let width of grass strip $=x$ mts.
area of park - area of pond $=1184$
$(50 \times 40)-(50-2 \mathrm{x})(40-2 \mathrm{x})=1184$
$2000-2000+180 x-4 x^{2}=1184$
$x^{2}-45 x+296=0$
$x^{2}-37 x-8 x+296=0$
$x=8,37$ (rejected)
$\left.\begin{array}{l}\text { Length of pond }=50-16=34 \mathrm{~m} \\ \text { Breadth of pond }=40-16=24 \mathrm{~m}\end{array}\right]$
23. For correct given, To prove, construction, figure
24.

$$
\begin{array}{lr}
\mathrm{r}_{1}=3.5 \mathrm{~m}, \mathrm{r}_{2}=4.2 \mathrm{~m} & \frac{1}{2} \\
\text { area of path }=\pi(4.2)^{2}-\pi(3.5)^{2} & 1 \\
=\pi[(7.7) \times 0.7] & \\
=\frac{22}{7} \times 7.7 \times 0.7 & 1 \frac{1}{2}
\end{array}
$$

Cost of cementing the path $=16.94 \times 110$
$=₹ 1863.40$
Let radii of circles be $x, y(x>y)$
$x-y=6 \quad \ldots(1)$
and $\pi x^{2}+\pi y^{2}=116 \pi$

$$
x^{2}+y^{2}=116
$$

$\Rightarrow \mathrm{x}=10 \mathrm{~cm}$ (rejecting -ve value)
and $\mathrm{y}=4 \mathrm{~cm}$

$$
x^{2}+(x-6)^{2}=116
$$

$$
\Rightarrow x^{2}+x^{2}+36-12 x=116
$$

$$
\Rightarrow x^{2}-6 x-40=0
$$

$$
(x-10)(x+4)=0
$$

26. Let height of embankment be hmts

$$
17(1.5) 2 \times 14=\pi\left[(6.5)^{2}-(1.5)^{2}\right] \times 2
$$

$2.25 \times 14=5 \times 8 \times h$
$\Rightarrow \mathrm{h}=0.7875 \mathrm{~m}$
27. (i) P (bears two digit number) $=\frac{81}{90}$ or $\frac{9}{10}$
(ii) $\mathrm{P}($ a number divisible by 5$)=\frac{18}{90}$ or $\frac{1}{5}$
28. $\frac{1}{a+b+x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}$

$$
\begin{aligned}
& \frac{-(a+b)}{x^{2}+(a+b) x}=\frac{b+a}{a b} \\
& \Rightarrow x^{2}+(a+b) x+a b=0 \\
& (x+a)(x+b)=0 \\
& x=-a,-b
\end{aligned}
$$

29. Constructing correct circles

Constructing correct tangents to each circle

For correct figure

$$
\begin{aligned}
& \tan 45^{\circ}=\frac{7500}{y} \\
& y=7500
\end{aligned}
$$

30.

$\tan 45^{\circ}=\frac{7500}{y}$
$y=7500$
$\tan 30^{\circ}=\frac{7500}{x+y}$
$x+7500=7500 \sqrt{3}$
$x=7500(\sqrt{3}-1) m$
$=7500 \times 0.73=5475 \mathrm{~m}$

$$
\tan 30^{\circ}=\frac{7500}{x+y}
$$

$$
x+7500=7500 \sqrt{3}
$$

$$
x=7500(\sqrt{3}-1) m
$$

$$
=7500 \times 0.73=5475 \mathrm{~m}
$$

31.

$$
\begin{aligned}
& \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=\frac{l_{1}}{l_{2}} \\
& \pi \mathrm{r}_{2} l_{2}-\pi \mathrm{r}_{1} l_{1}=\frac{8}{9} \pi \mathrm{r}_{2} l_{2} \\
& \frac{1}{9} \mathrm{r}_{2} l_{2}=\mathrm{r}_{1} l_{1} \\
& \frac{1}{9}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} \times \frac{l_{1}}{l_{2}} \\
& \Rightarrow\left(\frac{\mathrm{~h}_{1}}{\mathrm{~h}_{2}}\right)^{2}=\frac{1}{9} \\
& \frac{\mathrm{~h}_{1}}{\mathrm{~h}_{2}}=\frac{1}{3}
\end{aligned}
$$

$$
\text { height of small cone }=\frac{1}{3} \mathrm{~h}_{2}
$$

$$
\text { height of frustum }=\frac{2}{3} h_{2}
$$

$$
\text { Required Ratio }=\frac{1 / 3}{2 / 3}=\frac{1}{2}
$$

QUESTION PAPER CODE 30/2/3 EXPECTED ANSWER/VALUE POINTS
 SECTION A

1. No. of cubes $=\frac{9 \times 8 \times 2}{2 \times 2 \times 2}$

$$
=18
$$

2.

$$
\begin{aligned}
& \angle \mathrm{POR}=\angle \mathrm{OQP}+\angle \mathrm{OPQ} \\
& \begin{aligned}
\angle \mathrm{OPQ} & =120^{\circ}-90^{\circ} \\
& =30^{\circ}
\end{aligned}
\end{aligned}
$$

3.

$\cos 60^{\circ}=\frac{\mathrm{h}}{15}$
$\mathrm{h}=7.5 \mathrm{~m}$

4. $6 \mathrm{x}^{2}-\mathrm{x}-\mathrm{k}=0$

$$
\begin{aligned}
& 6\left(\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)-\mathrm{k}=0 \\
& \mathrm{k}=2
\end{aligned}
$$

SECTION B

5.

Let other two coordinates are

$$
\begin{aligned}
& (x, y) \text { and }\left(x^{\prime}, y^{\prime}\right) \\
& 2=\frac{x+3}{2} \\
& \Rightarrow x=1
\end{aligned}
$$

and, $-5=\frac{2+\mathrm{y}}{2}$
$y=-12$

$$
\begin{aligned}
& \text { Again, } \frac{-1+x^{\prime}}{2}=2 \\
& x^{\prime}=5 \\
& \text { and } \frac{0+y^{\prime}}{2}=-5 \\
& y^{\prime}=-10
\end{aligned}
$$

Hence co-ordinates are $(1,-12)$ and $(5,-10)$
6. $\mathrm{AB}=\mathrm{AC}$ (Given)
$\mathrm{AD}=\mathrm{AF}$ (tangents from external point)
On subtracting,
$\mathrm{BD}=\mathrm{CF}$
$\mathrm{BD}=\mathrm{BE}$ (tangents from external point)
and $\mathrm{CF}=\mathrm{EC}$
$\Rightarrow \mathrm{BE}=\mathrm{EC}$
7. In leap year $=52$ weeks +2 days

Two days may be, (M, Tu), (Tu, W), (W, Th), (Th, F), (F, Sat)
(Sat, Sun), (Sun, M)
Required probability $=\frac{2}{7}$
8. $7 \mathrm{a}_{7}=11 \mathrm{a}_{11}$
$7(a+6 d)=11(a+10 d)$
$7 a-11 a+12 d-110 d=0$
$-4 a-68 d=0$
$a+17 d=0$
$\mathrm{a}_{18}=0$
9. Total number of outcomes $=36$
$\mathrm{P}($ Product appears is less than 18$)=\frac{26}{36}=\frac{13}{18}$
10. $\sqrt{3} x^{2}-2 x-8 \sqrt{3}=0$

$$
\begin{aligned}
& \sqrt{3} x^{2}-6 x+4 x-8 \sqrt{3}=0 \\
& \sqrt{3} x(x-2 \sqrt{3})+4(x-2 \sqrt{3})=0 \\
& x=\frac{-4}{\sqrt{3}}, 2 \sqrt{3}
\end{aligned}
$$

SECTION C

11. $\mathrm{AB}=\sqrt{(-2+0)^{2}+(0-2)^{2}}=2 \sqrt{2}$ units
$\mathrm{BC}=\sqrt{(0-2)^{2}+(2-2)^{2}}=2 \sqrt{2}$ units
$\mathrm{CA}=\sqrt{(2+2)^{2}+(0-0)^{2}}=4$ units
$\mathrm{DE}=\sqrt{(-4+0)^{2}+(0-4)^{2}}=4 \sqrt{2}$ units
$E F=\sqrt{(0-4)^{2}+(4-0)^{2}}=4 \sqrt{2}$ units
$\mathrm{DF}=\sqrt{(-4-4)^{2}+(0-2)^{2}}=8$ units
$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{1}{2}$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
12. Co-ordinates of B are $(5,0)$

Let co-ordinates of C be (x, y)
$\mathrm{AC}^{2}=\mathrm{BC}^{2}$
$(x-2)^{2}+(y-0)^{2}=(x-5)^{2}+(y-0)^{2}$
$x^{2}+4-4 x+y^{2}=x^{2}+25-10 x+y^{2}$
$6 x=21$
$\mathrm{x}=\frac{7}{2}$
$(x-2)^{2}+(y-0)^{2}=9$
$\left(\frac{7^{2}}{2}-2\right)+y^{2}=9$
$y^{2}=9-\frac{9}{4}$
$y^{2}=\frac{27}{4}$
$y=\frac{3 \sqrt{3}}{2}(+$ ve sign to be taken $)$, Co-ordinate of $C\left(\frac{7}{2}, \frac{3 \sqrt{3}}{2}\right)$
13. 3 marks be given to every attempt
14.

$$
\begin{aligned}
& \Delta \mathrm{AOS} \cong \triangle \mathrm{AOP} \\
& \Rightarrow \angle 1=\angle 2
\end{aligned}
$$

Similarly $\angle 4=\angle 3$
$\angle 5=\angle 6$
$\angle 8=\angle 7$
$\Rightarrow(\angle 1+\angle 8)+(\angle 4+\angle 5)=(\angle 2+\angle 3)+(\angle 6+\angle 7)=180^{\circ} \quad 1$
$\Rightarrow \angle \mathrm{AOD}+\angle \mathrm{BOC}=180^{\circ}$
and $\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
15.

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{h}{x} \\
& h=\sqrt{3 x} \\
& \tan \theta=\frac{h}{3 x} \\
& \tan \theta=\frac{\sqrt{3} x}{3 x} \\
& \tan \theta=\frac{1}{\sqrt{3}} \\
& \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

16. $\mathrm{PA}=\mathrm{PB}=4 \mathrm{~cm}$ (tangents from external point)
$\angle \mathrm{PAB}=180^{\circ}-135^{\circ}$
$=45^{\circ}$
$\angle \mathrm{APB}=180^{\circ}-45^{\circ}-45^{\circ}$
$=90^{\circ}$
$\Rightarrow \triangle \mathrm{ABP}$ is a isosceles right angled triangle
$\Rightarrow \mathrm{AB}^{2}=2 \mathrm{AP}^{2}$
$=2(4)^{2}=32$
$\mathrm{AB}=4 \sqrt{2} \mathrm{~cm}$
17.

Let the co-ordinates be (x, y) and ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$)

$$
x=\frac{1(-3)+2(3)}{1+2}=1
$$

$$
y=\frac{1(-4)+2(-2)}{1+2}=\frac{-8}{3}
$$

$$
x^{\prime}=\frac{2(-3)+1(3)}{1+2}=-1
$$

$$
\mathrm{y}^{\prime}=\frac{2(-4)+1(-2)}{1+2}=\frac{-10}{3}
$$

30/2/3

18. $\left(c^{2}-a b\right) x^{2}-2\left(a^{2}-b c\right) x+b^{2}-a c=0$

For equal roots

$$
\begin{aligned}
& 4\left(a^{2}-b c\right)^{2}-4\left(c^{2}-a b\right)\left(b^{2}-a c\right)=0 \\
& a^{4}+b^{2} c^{2}-2 a^{2} b c-c^{2} b^{2}+c^{2} a+a b^{3}-a^{2} b c=0 \\
& a\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=0
\end{aligned}
$$

Solving (1) and (2)
$\mathrm{a}=3, \mathrm{~b}=4$
$\therefore \mathrm{AP}$ is $3,7,11 \ldots$
20. Let the rise in level of water be hcm

$$
\frac{4}{3} \pi(3)^{3}=\pi(6)^{2} h
$$

Solving $\mathrm{h}=1$

SECTION D

21. For correct given, To prove, construction, figure
for correct proof
22. Total saving $=190 \times 5=₹ 950$

The series $5+10+20+\ldots$.
$S_{n}=950$
$\frac{\mathrm{n}}{2}(2(5)+(\mathrm{n}-1) 5)=950$
$n(2+(n-1))=380$
$\mathrm{n}^{2}+\mathrm{n}-380=0$
$n^{2}+20 n-19 n-380=0$
$\mathrm{n}=19$
Views on the habit of saving
23.

$$
\begin{array}{ll}
\mathrm{r}_{1}=3.5 \mathrm{~m}, \mathrm{r}_{2}=4.2 \mathrm{~m} & \frac{1}{2} \\
\text { area of path }=\pi(4.2)^{2}-\pi(3.5)^{2} & 1 \\
=\pi[(7.7) \times 0.7] & \\
=\frac{22}{7} \times 7.7 \times 0.7 & 1 \frac{1}{2}
\end{array}
$$

Cost of cementing the path $=16.94 \times 110$
24.

Let width of grass strip be x mts .
area of park - area of pond $=1184$
$(50 \times 40)-(50-2 x)(40-2 x)=1184$
$2000-2000+180 x-4 x^{2}=1184$
$x^{2}-45 x+296=0$
$x^{2}-37 x-8 x+296=0$
$x=8,37$ (rejected)
$\left.\begin{array}{l}\text { Length of pond }=50-16=34 \mathrm{~m} \\ \text { Breadth of pond }=40-16=24 \mathrm{~m}\end{array}\right]$
25.

Let radii of circles be $x, y(x>y)$

$$
\begin{equation*}
x-y=6 \tag{1}
\end{equation*}
$$

and $\pi x^{2}+\pi y^{2}=116 \pi$

$$
\begin{aligned}
& x^{2}+y^{2}=116 \\
& x^{2}+(x-6)^{2}=116 \\
& \Rightarrow x^{2}+x^{2}+36-12 x=116 \\
& \Rightarrow x^{2}-6 x-40=0 \\
& (x-10)(x+4)=0
\end{aligned}
$$

$$
\Rightarrow \mathrm{x}=10 \mathrm{~cm} \text { (rejecting -ve value) }
$$

and $\mathrm{y}=4 \mathrm{~cm}$
26. (i) $\mathrm{P}($ bears two digit number $)=\frac{81}{90}$ or $\frac{9}{10}$
(ii) $\mathrm{P}($ a number divisible by 5$)=\frac{18}{90}$ or $\frac{1}{5}$
27. Let height of embankment be h mts
$17(1.5) 2 \times 14=\pi\left[(6.5)^{2}-(1.5)^{2}\right] \times 2$
$2.25 \times 14=5 \times 8 \times h$
$\Rightarrow \mathrm{h}=0.7875 \mathrm{~m}$
28. $4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$

$$
\begin{aligned}
& D=16 b^{2}+16\left(a^{2}-b 2\right) \\
& =16 a^{2} \\
& x=\frac{-4 b \pm 4 a}{2 \times 4} \\
& x=\frac{-b-a}{2}, x=\frac{-b+a}{2}
\end{aligned}
$$

29. For constructing correct circle

For constructing correct pair of tangents

For correct figure
$\tan 45^{\circ}=\frac{\mathrm{h}}{\mathrm{x}}$
$\mathrm{x}=\mathrm{h}$
$\tan 30^{\circ}=\frac{h}{x+1000}$
$h+1000=\sqrt{3} h$
$h(\sqrt{3}-1)=1000$
$\mathrm{h}=\frac{1000}{\sqrt{3}-1}$ or $500(\sqrt{3}+1) \mathrm{m}$
31.

$$
\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\mathrm{h}}{2 \mathrm{~h}}
$$

$$
\begin{aligned}
& 2 r_{1}=r_{2} \\
& \frac{r_{1}}{r_{3}}=\frac{h}{3 h} \\
& 3 r_{1}=r_{3}
\end{aligned}
$$

$$
\frac{1}{2}
$$

$$
\text { Volume of cone } \mathrm{ABC}=\frac{1}{3} \pi \mathrm{r}_{1}^{2} \mathrm{~h}
$$

Volume of frustum BCED $=\frac{1}{3} \pi r_{2}^{2}(2 h)-\frac{1}{3} \pi r_{1}^{2} h$
$=\frac{1}{3} \pi\left(2 r_{1}\right)^{2} \times(2 h)-\frac{1}{3} \pi r_{1}^{2} h$

$$
=\frac{7}{3} \pi r_{1}^{2} h
$$

Volume of frustrm DEGF $=\frac{1}{3} \pi r_{3}^{2}(3 h)-\frac{1}{3} \pi\left(2 r_{2}\right)^{2} \times 2 h$
$=\frac{1}{3} \pi r_{1}^{2} \mathrm{~h}(27-8)$
$=\frac{19}{3} \pi r_{1}^{2} h$
Required Ratio $=\frac{1}{3} \pi r_{1}^{2} \mathrm{~h}: \frac{7}{8} \pi \mathrm{r}_{1}^{2} \mathrm{~h}: \frac{19}{3} \pi \mathrm{r}_{1}^{2} \mathrm{~h}$

$$
=1: 7: 19
$$

