Secondary School Certificate Examination

March 2016
 Marking Scheme — Mathematics 30/1/1, 30/1/2, 30/1/3

General Instructions:

1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the meaning, such answers should be given full weightage
2. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration - Marking Scheme should be strictly adhered to and religiously followed.
3. Alternative methods are accepted. Proportional marks are to be awarded.
4. In question (s) on differential equations, constant of integration has to be written.
5. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
6. A full scale of marks - 0 to 100 has to be used. Please do not hesitate to award full marks if the answer deserves it.
7. Separate Marking Scheme for all the three sets has been given.
8. As per orders of the Hon'ble Supreme Court. The candidates would now be permitted to obtain photocopy of the Answer book on request on payment of the prescribed fee. All examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

QUESTION PAPER CODE 30/1/1 EXPECTED ANSWER/VALUE POINTS SECTION A

1. $\angle \mathrm{APB}=80^{\circ}$

$$
\therefore \quad \angle \mathrm{AOB}=100^{\circ}
$$

2. $\mathrm{DB}=3.46 \mathrm{~m}$
$\therefore \quad \mathrm{DC}=4 \mathrm{~m}$
3. $l=185, \mathrm{~d}=-4$
$l_{9}=153$
4. Possible outcomes are $4,9,16,25,36,49$, i.e. 6 .
$\therefore \quad \mathrm{P}($ perfect square number $)=\frac{6}{48}$ or $\frac{1}{8}$

SECTION B

5. $\frac{-7}{\mathrm{a}}=\frac{2}{3}-3$
$\Rightarrow \quad \mathrm{a}=3$
and $\frac{\mathrm{b}}{\mathrm{a}}=\frac{2}{3} \times(-3)$
$\Rightarrow \quad \mathrm{b}=-6$
6. Let the point on y-axis be $(0, \mathrm{y})$ and $\mathrm{AP}: \mathrm{PB}=\mathrm{K}: 1$

Therefore $\frac{5-k}{k+1}=0$ gives $k=5$

Hence required ratio is $5: 1$.
$y=\frac{-4(5)-6}{6}=\frac{-13}{3}$
Hence point on y-axis is $\left(0, \frac{-13}{3}\right)$.
7. Let $\mathrm{AD}=\mathrm{AF}=\mathrm{x}$
$\therefore \quad \mathrm{DB}=\mathrm{BE}=12-\mathrm{x}$
and $\mathrm{CF}=\mathrm{CE}=10-\mathrm{x}$

$$
\begin{aligned}
& \mathrm{BC}=\mathrm{BE}+\mathrm{EC} \Rightarrow 8=12-\mathrm{x}+10-\mathrm{x} \\
\Rightarrow \quad & \mathrm{x}=7 \\
\therefore \quad & \mathrm{AD}=7 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm}, \mathrm{CF}=3 \mathrm{~cm}
\end{aligned}
$$

8. Let the point P be $(2 y, y)$
$P Q=P R \Rightarrow \sqrt{(2 y-2)^{2}+(y+5)^{2}}=\sqrt{(2 y+3)^{2}+(y-6)^{2}}$

Solving to get $\mathrm{y}=8$

Hence coordinates of point P are $(16,8)$.
9. Here $a=18, d=-2, S n=0$

Therefore $\frac{\mathrm{n}}{2}[36+(\mathrm{n}-1)(-2)]=0$
$\Rightarrow \quad \mathrm{n}=19$
10. $\mathrm{PA}=\mathrm{PB}$
$\Rightarrow \quad \angle \mathrm{PAB}=\angle \mathrm{PBA}=60^{\circ}$
$\therefore \quad \triangle \mathrm{PAB}$ is an equilateral triangle.

Hence $\mathrm{AB}=\mathrm{PA}=5 \mathrm{~cm}$.

SECTION C

11.

$$
\begin{array}{ll}
\text { Area of square }=196 \mathrm{~cm}^{2} & \frac{1}{2} \\
\text { Area of semicircles } \mathrm{AOB}+\mathrm{DOC}=\frac{22}{7} \times 49=154 \mathrm{~cm}^{2} & \frac{1}{2}
\end{array}
$$

Hence area of two shaded parts $(\mathrm{X}+\mathrm{Y})=196-154=42 \mathrm{~cm}^{2}$
Therefore area of four shaded parts $=84 \mathrm{~cm}^{2}$.
12. Surface area of block $=216-\frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}+2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}$

$$
=225.42 \mathrm{~cm}^{2}
$$

13. Using Mid Point formula
coordinates of point B are $(2,1)$
and coordinates of point C are $(0,3)$.

Area $\Delta \mathrm{ABC}=\frac{1}{2}[0+2(3+1)+0]=4 \mathrm{squ}$.
Coordinates of point F are $(1,2)$
Area of $\Delta \mathrm{DEF}=\frac{1}{2}|1(1-2)+0+1(0-1)|=1$ sq u.
14. $\angle \mathrm{POQ}=60^{\circ}$

Area of segment PAQM $=\left(\frac{100 \pi}{6}-\frac{100 \sqrt{3}}{4}\right) \mathrm{cm}^{2}$.
Area of semicircle $=\frac{25 \pi}{2} \mathrm{~cm}^{2}$
Area of shaded region $=\frac{25 \pi}{2}-\left(\frac{50 \pi}{3}-25 \sqrt{3}\right)$.

$$
=25\left(\sqrt{3}-\frac{\pi}{6}\right) \mathrm{cm}^{2}
$$

15. $S_{7}=49 \Rightarrow 2 a+6 d=14$
$S_{17}=289 \Rightarrow 2 a+16 d=34$
Solving equations to get $\mathrm{a}=1$ and $\mathrm{d}=2$
Hence $S n=\frac{n}{2}[2+(n-1) 2]=n^{2}$.
16. $2 x(2 x+3)+(x-3)+(3 x+9)=0$
$\Rightarrow \quad 2 \mathrm{x}^{2}+5 \mathrm{x}+3=0$
$\Rightarrow \quad(x+1)(2 x+3)=0$
$\Rightarrow \quad \mathrm{x}=-1, \mathrm{x}=-\frac{3}{2}$
17. Volume of earth dug out $=\pi \times 2 \times 2 \times 21=264 \mathrm{~m}^{3}$

Volume of embankment $=\pi(25-4) \times \mathrm{h}=66 \mathrm{hm}^{3}$
$\therefore \quad 66 h=264$
18. Here $\mathrm{r}+\mathrm{h}=37$ and $2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})=1628$

$$
\begin{aligned}
& \Rightarrow \quad 2 \pi r=\frac{1628}{37} \\
& \Rightarrow \quad r=7 \mathrm{~cm}
\end{aligned}
$$

and $\mathrm{h}=30 \mathrm{~cm}$.

Hence volume of cylinder $=\frac{22}{7} \times 7 \times 7 \times 30=4620 \mathrm{~cm}^{3}$
19.

Correct Figure

$$
\tan 45^{\circ}=\frac{\mathrm{h}-50}{\mathrm{x}} \Rightarrow \mathrm{x}=\mathrm{h}-50
$$

$$
\tan 60^{\circ}=\frac{\mathrm{h}}{\mathrm{x}} \Rightarrow \mathrm{x}=\frac{\mathrm{h}}{\sqrt{3}} \quad \frac{1}{2}
$$

$$
\text { Hence } h-50=\frac{h}{\sqrt{3}}
$$

$$
\Rightarrow \mathrm{h}=75+25 \sqrt{3}=118.25 \mathrm{~m}
$$

20. (i) Favourable outcomes are $(2,2)(2,3)(2,5)(3,2)(3,3)(3,5)(5,2)(5,3)(5,5)$ i.e. 9 outcomes.
$\mathrm{P}($ a prime number on each die $)=\frac{9}{36}$ or $\frac{1}{4}$
(ii) Favourable outcomes are $(3,6)(4,5)(5,4)(6,3)(5,6)(6,5)$
i.e. 6 outcomes
$P($ a total of 9 or 11$)=\frac{6}{36}$ or $\frac{1}{6}$

SECTION D

21. Let the usual speed of plane be $x \mathrm{~km} / \mathrm{h}$.

$$
\begin{aligned}
\therefore & \frac{1500}{x}-\frac{1500}{x+250}=\frac{1}{2} \\
\Rightarrow \quad & x^{2}+250 x-750000=0 \\
& (x+1000)(x-750)=0 \Rightarrow x=750
\end{aligned}
$$

Speed of plane $=750 \mathrm{~km} / \mathrm{h}$.
For writing value
22. For correct Given, To prove, construction and figure
23. Construction of tangent
24. $\mathrm{PT}=\sqrt{169-25}=12 \mathrm{~cm}$ and $\mathrm{TE}=8 \mathrm{~cm}$

Let $\mathrm{PA}=\mathrm{AE}=\mathrm{x}$

$$
\begin{aligned}
& \mathrm{ra}^{2}=\mathrm{TE}^{2}+\mathrm{EA}^{2} \\
\Rightarrow \quad & (12-\mathrm{x})^{2}=64+\mathrm{x}^{2} \\
\Rightarrow \quad & \mathrm{x}=3.3 \mathrm{~cm} .
\end{aligned}
$$

Thus $\mathrm{AB}=6.6 \mathrm{~cm}$.
25. $a(x-b)(x-c)+b(x-a)(x-c)=2 c(x-a)(x-b)$
$x^{2}(a+b-2 c)+x(-a b-a c-a b-b c+2 a c+2 b c)=0$
$x^{2}(a+b-2 c)+x(-2 a b+a c+b c)=0$
$x=\frac{a c+b c-2 a b}{a+b-2 c}$
26.

Correct Figure

$$
\tan 45^{\circ}=\frac{80}{y} \Rightarrow y=80
$$

Hence speed of bird $=\frac{58.4}{2}=29.2 \mathrm{~m} / \mathrm{s}$.

$$
\tan 30^{\circ}=\frac{80}{x+y} \Rightarrow x+y=80 \sqrt{3}
$$

$$
\therefore \quad \mathrm{x}=80(\sqrt{3}-1)=58.4 \mathrm{~m} .
$$

27. Let total time be n minutes

Total distance convered by thief $=(100 \mathrm{n})$ metres

Total distance covered by policeman $=100+110+120+\ldots+(n-1)$ terms
$\therefore \quad 100 \mathrm{n}=\frac{\mathrm{n}-1}{2}[200+(\mathrm{n}-2) 10]$

$$
n^{2}-3 n-18=0
$$

$$
\begin{aligned}
& (\mathrm{n}-6)(\mathrm{n}+3)=0 \\
\Rightarrow \quad & \mathrm{n}=6
\end{aligned}
$$

Policeman took 5 minutes to catch the thief.
28. Area of the triangle $=\frac{1}{2}|t(t+2-t)+(t+2)(t-t+2)+(t+3)(t-2-t-2)|$

$$
\begin{aligned}
& =\frac{1}{2}[2 t+2 t+4-4 t-12] \\
& =4 \text { sq. units }
\end{aligned}
$$

which is independent of t.
29. (i) Favourable outcomes are 1, 3, 5, 7 i.e. 4 outcomes.
$\therefore \mathrm{P}($ an odd number $)=\frac{4}{8}$ or $\frac{1}{2}$
$\frac{1}{2}$
(ii) Favourable outcomes are 4, 5, 6, 7, 8 i.e. 5 outcomes
$\mathrm{P}(\mathrm{a}$ number greater than 3$)=\frac{5}{8}$
(iii) Favarouble outcomes are 1, 2, 3... 8

$$
\left.\mathrm{P}(\mathrm{a} \text { number less than } 9)=\frac{8}{8}=1\right\}
$$

$\therefore \widehat{\mathrm{ADB}}=\frac{2 \times 3.14 \times 5 \times 240}{360}=20.93 \mathrm{~cm}$
Hence length of elastic in contact $=20.93 \mathrm{~cm}$
Now, $\mathrm{AP}=5 \sqrt{3} \mathrm{~cm}$
Area $(\Delta \mathrm{OAP}+\Delta \mathrm{OBP})=25 \sqrt{3}=43.25 \mathrm{~cm}^{2} \quad \frac{1}{2}$
Area of sector $\mathrm{OACB}=\frac{25 \times 3.14 \times 120}{360}=26.16 \mathrm{~cm}^{2} \quad \frac{1}{2}$
Shaded Area $=43.25-26.16=17.09 \mathrm{~cm}^{2}$
31. Here $\mathrm{R}=20, \mathrm{r}=12, \mathrm{~V}=12308.8$

Therefore $12308.8=\frac{1}{3} \times 3.14(400+240+144) h$
$\Rightarrow \quad \mathrm{h}=15 \mathrm{~cm}$
$l=\sqrt{(20-12)^{2}+15^{2}}=17 \mathrm{~cm}$
Total area of metal sheet used $=$ CSA + base area

$$
\begin{array}{ll}
=\pi[(20+12) \times 17+12 \times 12] & 1 \\
=2160.32 \mathrm{~cm}^{2} & 1
\end{array}
$$

QUESTION PAPER CODE 30/1/2 EXPECTED ANSWER/VALUE POINTS SECTION A

1. Possible outcomes are $4,9,16,25,36,49$, i.e. 6 .
$\therefore \quad \mathrm{P}($ perfect square number $)=\frac{6}{48}$ or $\frac{1}{8}$
2. $\quad \mathrm{DB}=3.46 \mathrm{~m}$

$$
\therefore \quad \mathrm{DC}=4 \mathrm{~m}
$$

3. $l=185, \mathrm{~d}=-4$

$$
l_{9}=153
$$

4. $\angle \mathrm{APB}=80^{\circ}$

$$
\therefore \quad \angle \mathrm{AOB}=100^{\circ}
$$

SECTION B
5. Let the point P be $(2 \mathrm{y}, \mathrm{y})$
$P Q=P R \Rightarrow \sqrt{(2 y-2)^{2}+(y+5)^{2}}=\sqrt{(2 y+3)^{2}+(y-6)^{2}}$

Solving to get $\mathrm{y}=8$

Hence coordinates of point P are $(16,8)$.
6. Let $\mathrm{AD}=\mathrm{AF}=\mathrm{x}$
$\therefore \quad \mathrm{DB}=\mathrm{BE}=12-\mathrm{x}$
and $\mathrm{CF}=\mathrm{CE}=10-\mathrm{x}$ $\mathrm{BC}=\mathrm{BE}+\mathrm{EC} \Rightarrow 8=12-\mathrm{x}+10-\mathrm{x}$
$\Rightarrow \quad \mathrm{x}=7$
$\therefore \quad \mathrm{AD}=7 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm}, \mathrm{CF}=3 \mathrm{~cm}$
7. $\mathrm{PA}=\mathrm{PB}$
$\Rightarrow \quad \angle \mathrm{PAB}=\angle \mathrm{PBA}=60^{\circ}$
$\therefore \quad \triangle \mathrm{PAB}$ is an equilateral triangle.

Hence $\mathrm{AB}=\mathrm{PA}=5 \mathrm{~cm}$.
8. $\frac{-7}{\mathrm{a}}=\frac{2}{3}-3$

$$
\Rightarrow \quad a=3
$$

and $\frac{\mathrm{b}}{\mathrm{a}}=\frac{2}{3} \times(-3)$
$\Rightarrow \quad \mathrm{b}=-6$
9. Let the point on y-axis be $(0, \mathrm{y})$ and $\mathrm{AP}: \mathrm{PB}=\mathrm{K}: 1$

Therefore $\frac{5-\mathrm{k}}{\mathrm{k}+1}=0$ gives $\mathrm{k}=5$

Hence required ratio is $5: 1$.
$y=\frac{-4(5)-6}{6}=\frac{-13}{3}$
Hence point on y-axis is $\left(0, \frac{-13}{3}\right)$.
10. Here $\mathrm{a}=27, \mathrm{~d}=-3, \mathrm{Sn}=0$
$\therefore \quad 54+(\mathrm{n}-1)(-3)=0$
$\Rightarrow \quad \mathrm{n}=19$

SECTION C

11. $\mathrm{S}_{7}=49 \Rightarrow 2 \mathrm{a}+6 \mathrm{~d}=14$

$$
S_{17}=289 \Rightarrow 2 a+16 d=34
$$

Solving equations to get $\mathrm{a}=1$ and $\mathrm{d}=2$
Hence $\mathrm{Sn}=\frac{\mathrm{n}}{2}[2+(\mathrm{n}-1) 2]=\mathrm{n}^{2}$.
12. Volume of earth dug out $=\pi \times 2 \times 2 \times 21=264 \mathrm{~m}^{3}$

Volume of embankment $=\pi(25-4) \times \mathrm{h}=66 \mathrm{~h} \mathrm{~m}^{3}$
$\therefore \quad 66 \mathrm{~h}=264$
$\Rightarrow \quad \mathrm{h}=4 \mathrm{~m}$

Area of square $=196 \mathrm{~cm}^{2}$

Area of semicircles $\mathrm{AOB}+\mathrm{DOC}=\frac{22}{7} \times 49=154 \mathrm{~cm}^{2} \quad \frac{1}{2}$
Hence area of two shaded parts $(\mathrm{X}+\mathrm{Y})=196-154=42 \mathrm{~cm}^{2}$
Therefore area of four shaded parts $=84 \mathrm{~cm}^{2}$.
14. Surface area of block $=216-\frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}+2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}$

$$
=225.42 \mathrm{~cm}^{2} .
$$

15. Using Mid Point formula
coordinates of point B are $(2,1)$
and coordinates of point C are $(0,3)$.
Area $\triangle \mathrm{ABC}=\frac{1}{2}[0+2(3+1)+0]=4 \mathrm{squ}$.
Coordinates of point F are $(1,2)$
Area of $\Delta \mathrm{DEF}=\frac{1}{2}|1(1-2)+0+1(0-1)|=1$ squ.
16. $\angle \mathrm{POQ}=60^{\circ}$

Area of segment PAQM $=\left(\frac{100 \pi}{6}-\frac{100 \sqrt{3}}{4}\right) \mathrm{cm}^{2}$.
Area of semicircle $=\frac{25 \pi}{2} \mathrm{~cm}^{2}$
Area of shaded region $=\frac{25 \pi}{2}-\left(\frac{50 \pi}{3}-25 \sqrt{3}\right)$.

$$
=25\left(\sqrt{3}-\frac{\pi}{6}\right) \mathrm{cm}^{2}
$$

17.

Correct Figure
$\tan 45^{\circ}=\frac{\mathrm{h}-50}{\mathrm{x}} \Rightarrow \mathrm{x}=\mathrm{h}-50 \quad \frac{1}{2}$
$\tan 60^{\circ}=\frac{h}{x} \Rightarrow x=\frac{h}{\sqrt{3}}$
Hence $h-50=\frac{h}{\sqrt{3}}$
$\Rightarrow \mathrm{h}=75+25 \sqrt{3}=118.25 \mathrm{~m}$.
18. $\frac{x^{2}+3 x+2+x^{2}-3 x+2}{x^{2}+x-2}=\frac{4 x-8-2 x-3}{x-2}$

$$
\left(2 x^{2}+4\right)(x-2)=(2 x-11)\left(x^{2}+x-2\right)
$$

$$
\Rightarrow \quad 5 x^{2}+19 x-30=0
$$

$$
\Rightarrow \quad(5 x-6)(x+5)=0
$$

$$
\Rightarrow \quad x=-5,6 / 5
$$

19. (i) Favourable outcomes are $(4,5)(4,4)(4,6)(5,4)(5,5)(5,5)(5,6)(6,4)(6,5)(6,6)$ i.e., 9 outcomes
$\mathrm{P}(\mathrm{a}$ number >3 on each die $)=\frac{9}{36}$ or $\frac{1}{4}$
(ii) Favourable outcomes are $(1,5)(2,4)(3,3)(4,2)(5,1)(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)$
i.e. 11 outcomes
$\mathrm{P}($ a total of 6 to 7$)=\frac{11}{36}$
20. Here $\mathrm{r}=3, \pi \mathrm{rl}=47.1$

$$
\begin{aligned}
\therefore \quad & l=\frac{47.1}{3 \times 3.14}=5 \mathrm{~cm} \\
& \mathrm{~h}=\sqrt{5^{2}-3^{2}}=4 \mathrm{~cm}
\end{aligned}
$$

Volume of cone $=\frac{1}{3} \times 3.14 \times 3 \times 3 \times 4$

$$
=37.68 \mathrm{~cm}^{3}
$$

SECTION D

21. Let the usual speed of plane be $x \mathrm{~km} / \mathrm{h}$.

$$
\begin{aligned}
\therefore & \frac{1500}{x}-\frac{1500}{x+250}=\frac{1}{2} \\
\Rightarrow \quad & x^{2}+250 x-750000=0 \\
& (x+1000)(x-750)=0 \Rightarrow x=750
\end{aligned}
$$

For writing value
22. $\mathrm{PT}=\sqrt{169-25}=12 \mathrm{~cm}$ and $\mathrm{TE}=8 \mathrm{~cm}$

Let $\quad \mathrm{PA}=\mathrm{AE}=\mathrm{x}$

$$
\mathrm{TA}^{2}=\mathrm{TE}^{2}+\mathrm{EA}^{2}
$$

$\Rightarrow \quad(12-\mathrm{x})^{2}=64+\mathrm{x}^{2}$
$\Rightarrow \quad \mathrm{x}=3.3 \mathrm{~cm}$.
Thus $\mathrm{AB}=6.6 \mathrm{~cm}$.
23. For correct Given, To prove, construction and figure

Correct proof
24. Area of the triangle $=\frac{1}{2}|t(t+2-t)+(t+2)(t-t+2)+(t+3)(t-2-t-2)|$

$$
\begin{aligned}
& =\frac{1}{2}[2 t+2 t+4-4 t-12] \\
& =4 \text { sq. units }
\end{aligned}
$$

which is independent of t.
25. (i) Favourable outcomes are 1, 3, 5, 7 i.e. 4 outcomes.
$\therefore \mathrm{P}($ an odd number $)=\frac{4}{8}$ or $\frac{1}{2}$
(ii) Favourable outcomes are 4, 5, 6, 7, 8 i.e. 5 outcomes
$P($ a number greater than 3$)=\frac{5}{8}$
(iii) Favarouble outcomes are 1, 2, 3... 8

$$
\left.\mathrm{P}(\mathrm{a} \text { number less than } 9)=\frac{8}{8}=1\right\}
$$

$\therefore \widehat{\mathrm{ADB}}=\frac{2 \times 3.14 \times 5 \times 240}{360}=20.93 \mathrm{~cm}$
Hence length of elastic in contact $=20.93 \mathrm{~cm}$
Now, $A P=5 \sqrt{3} \mathrm{~cm}$
Area $(\triangle \mathrm{OAP}+\Delta \mathrm{OBP})=25 \sqrt{3}=43.25 \mathrm{~cm}^{2}$
Area of sector $\mathrm{OACB}=\frac{25 \times 3.14 \times 120}{360}=26.16 \mathrm{~cm}^{2}$
Shaded Area $=43.25-26.16=17.09 \mathrm{~cm}^{2}$
27. Here $\mathrm{R}=20, \mathrm{r}=12, \mathrm{~V}=12308.8$

Therefore $12308.8=\frac{1}{3} \times 3.14(400+240+144) h$
$\Rightarrow \quad \mathrm{h}=15 \mathrm{~cm}$

$$
l=\sqrt{(20-12)^{2}+15^{2}}=17 \mathrm{~cm}
$$

Total area of metal sheet used $=$ CSA + base area

$$
\begin{aligned}
& =\pi[(20+12) \times 17+12 \times 12] \\
& =2160.32 \mathrm{~cm}^{2}
\end{aligned}
$$

28. This question contains surplus data which does not lead to a unique solution.

Hence 4 marks should be given to every student.
29. Correct contruction
30.

Here $a+b+c=60, c=25$
$\therefore \quad \mathrm{a}+\mathrm{b}=35$
Using Pythagorus theorem

$$
a^{2}+b^{2}=625
$$

Using identity $(a+b)^{2}=a^{2}+b^{2}+2 a b$

$$
\begin{aligned}
& (35)^{2}=625+2 \mathrm{ab} \\
\Rightarrow & \mathrm{ab}=300
\end{aligned}
$$

$$
\text { Area of } \triangle \mathrm{ABC}=150 \mathrm{~cm}^{2}
$$

31. Let total time be n minutes

Total distance covered by thief $=(50 n)$ metres

Total distance covered by policeman $=60+65+70+\ldots+(n-2)$ terms

$$
\begin{array}{ll}
\therefore & 50 \mathrm{n}=\frac{\mathrm{n}-2}{2}[120+(\mathrm{n}-3) 5] \\
\Rightarrow & \mathrm{n}^{2}-\mathrm{n}-42=0 \\
& (\mathrm{n}-7)(\mathrm{n}+6)=0 \\
\therefore & \mathrm{n}=7
\end{array}
$$

$$
\begin{array}{lll}
& (\mathrm{n}-7)(\mathrm{n}+6)=0 & \frac{1}{2} \\
\therefore & \mathrm{n}=7 & \frac{1}{2}
\end{array}
$$

Policeman took 5 minutes to catch the thief.

QUESTION PAPER CODE 30/1/3

 EXPECTED ANSWER/VALUE POINTS SECTION A1. $l=185, \mathrm{~d}=-4$

$$
l_{9}=153
$$

2. Possible outcomes are $4,9,16,25,36,49$, i.e. 6 .
$\therefore \quad \mathrm{P}($ perfect square number $)=\frac{6}{48}$ or $\frac{1}{8}$
3. $\angle \mathrm{APB}=80^{\circ}$
$\therefore \quad \angle \mathrm{AOB}=100^{\circ}$
4. $\mathrm{DB}=3.46 \mathrm{~m}$

$$
\therefore \quad \mathrm{DC}=4 \mathrm{~m}
$$

SECTION B

5. Let the point on y-axis be $(0, y)$ and $\mathrm{AP}: \mathrm{PB}=\mathrm{K}: 1$

Therefore $\frac{5-\mathrm{k}}{\mathrm{k}+1}=0$ gives $\mathrm{k}=5$

Hence required ratio is $5: 1$.
$y=\frac{-4(5)-6}{6}=\frac{-13}{3}$
Hence point on y-axis is $\left(0, \frac{-13}{3}\right)$.
6. $\frac{-7}{\mathrm{a}}=\frac{2}{3}-3$
$\Rightarrow \quad \mathrm{a}=3$
7. Let the point P be $(2 y, y)$
$P Q=P R \Rightarrow \sqrt{(2 y-2)^{2}+(y+5)^{2}}=\sqrt{(2 y+3)^{2}+(y-6)^{2}}$

Solving to get $\mathrm{y}=8$

Hence coordinates of point P are $(16,8)$.
8. Let $A D=A F=x$
$\therefore \quad \mathrm{DB}=\mathrm{BE}=12-\mathrm{x}$
and $\mathrm{CF}=\mathrm{CE}=10-\mathrm{x}$

$$
\mathrm{BC}=\mathrm{BE}+\mathrm{EC} \Rightarrow 8=12-\mathrm{x}+10-\mathrm{x}
$$

$\Rightarrow \quad \mathrm{x}=7$
$\therefore \quad \mathrm{AD}=7 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm}, \mathrm{CF}=3 \mathrm{~cm}$
9. $\mathrm{PA}=\mathrm{PB}$
$\Rightarrow \quad \angle \mathrm{PAB}=\angle \mathrm{PBA}=60^{\circ}$
$\therefore \quad \triangle \mathrm{PAB}$ is an equilateral triangle.

Hence $\mathrm{AB}=\mathrm{PA}=5 \mathrm{~cm}$.
10. Here $\mathrm{a}=65, \mathrm{~d}=-5, \mathrm{Sn}=0$

$$
130+(n-1)(-5)=0
$$

$$
\Rightarrow \quad \mathrm{n}=27
$$

SECTION C

11. Volume of earth dug out $=\pi \times 2 \times 2 \times 21=264 \mathrm{~m}^{3}$

Volume of embankment $=\pi(25-4) \times \mathrm{h}=66 \mathrm{hm}^{3}$
$\therefore \quad 66 h=264$
$\Rightarrow \quad \mathrm{h}=4 \mathrm{~m}$
12. $S_{7}=49 \Rightarrow 2 a+6 d=14$

$$
S_{17}=289 \Rightarrow 2 a+16 d=34
$$

Solving equations to get $\mathrm{a}=1$ and $\mathrm{d}=2$
Hence $\mathrm{Sn}=\frac{\mathrm{n}}{2}[2+(\mathrm{n}-1) 2]=\mathrm{n}^{2}$.
13.

Correct Figure $\quad \frac{1}{2}$

$$
\tan 45^{\circ}=\frac{\mathrm{h}-50}{\mathrm{x}} \Rightarrow \mathrm{x}=\mathrm{h}-50
$$

$$
\tan 60^{\circ}=\frac{h}{x} \Rightarrow x=\frac{h}{\sqrt{3}}
$$

Hence $\mathrm{h}-50=\frac{\mathrm{h}}{\sqrt{3}} \quad \frac{1}{2}$
$\Rightarrow \mathrm{h}=75+25 \sqrt{3}=118.25 \mathrm{~m}$.

Area of square $=196 \mathrm{~cm}^{2}$
Area of semicircles AOB + DOC $=\frac{22}{7} \times 49=154 \mathrm{~cm}^{2} \quad \frac{1}{2}$
Hence area of two shaded parts $(X+Y)=196-154=42 \mathrm{~cm}^{2}$
Therefore area of four shaded parts $=84 \mathrm{~cm}^{2}$.

15. Surface area of block $=216-\frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}+2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}$ $1+\frac{1}{2}+\frac{1}{2}$

$$
=225.42 \mathrm{~cm}^{2}
$$

16. Using Mid Point formula coordinates of point B are $(2,1)$
and coordinates of point C are $(0,3)$.
Area $\Delta \mathrm{ABC}=\frac{1}{2}[0+2(3+1)+0]=4 \mathrm{squ}$.
Coordinates of point F are $(1,2)$
Area of $\Delta \mathrm{DEF}=\frac{1}{2}|1(1-2)+0+1(0-1)|=1$ sq u.
17. $\angle \mathrm{POQ}=60^{\circ}$

Area of segment $\mathrm{PAQM}=\left(\frac{100 \pi}{6}-\frac{100 \sqrt{3}}{4}\right) \mathrm{cm}^{2}$.
Area of semicircle $=\frac{25 \pi}{2} \mathrm{~cm}^{2}$
Area of shaded region $=\frac{25 \pi}{2}-\left(\frac{50 \pi}{3}-25 \sqrt{3}\right)$.

$$
\begin{equation*}
=25\left(\sqrt{3}-\frac{\pi}{6}\right) \mathrm{cm}^{2} \tag{1}
\end{equation*}
$$

18. (i) Number of good shirts $=88 \quad 1$
$\mathrm{P}($ Ramesh buys the shirt $)=\frac{88}{100}$ or $\frac{22}{25} \quad \frac{1}{2}$
(ii) Number of shirts without Major defect $=96 \quad 1$
$\mathrm{P}($ Kewal buys a shirt $)=\frac{96}{100}$ or $\frac{24}{25} \quad \frac{1}{2}$
19. $x^{2}+\frac{a}{a+b} x+\frac{a+b}{a} x+1=0$

$$
\begin{align*}
& x\left(x+\frac{a}{a+b}\right)+\frac{a+b}{a}\left(x+\frac{a}{a+b}\right)=0 \tag{1}\\
& \left(x+\frac{a}{a+b}\right)\left(x+\frac{a+b}{a}\right)=0 \tag{1}\\
& \Rightarrow x=\frac{-a}{a+b}, \frac{-(a+b)}{a}
\end{align*}
$$

20.

$$
\mathrm{h}=15.5-3.5=12 \mathrm{~cm}
$$

$\mathrm{TSA}=\pi \mathrm{r} l+2 \pi \mathrm{r}^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 3.5 \times 12.5+2 \times \frac{22}{7} \times 3.5 \times 3.5 \\
& =137.5+77 \\
& =214.5 \mathrm{~cm}^{2}
\end{aligned}
$$

SECTION D

21. Let the usual speed of plane be $x \mathrm{~km} / \mathrm{h}$.

$$
\begin{align*}
\therefore & \frac{1500}{x}-\frac{1500}{x+250}=\frac{1}{2} \tag{2}\\
\Rightarrow \quad & x^{2}+250 x-750000=0 \\
& (x+1000)(x-750)=0 \Rightarrow x=750
\end{align*}
$$

Speed of plane $=750 \mathrm{~km} / \mathrm{h}$.
For writing value
22. $\mathrm{PT}=\sqrt{169-25}=12 \mathrm{~cm}$ and $\mathrm{TE}=8 \mathrm{~cm}$

Let $\quad \mathrm{PA}=\mathrm{AE}=\mathrm{x}$

$$
\begin{align*}
& \mathrm{TA}^{2}=\mathrm{TE}^{2}+\mathrm{EA}^{2} \tag{1}\\
\Rightarrow \quad & (12-\mathrm{x})^{2}=64+\mathrm{x}^{2} \\
\Rightarrow \quad & \mathrm{x}=3.3 \mathrm{~cm} .
\end{align*}
$$

$$
\text { Thus } \mathrm{AB}=6.6 \mathrm{~cm} \text {. }
$$

23.

Correct Figure
$\tan 45^{\circ}=\frac{80}{y} \Rightarrow y=80 \quad \frac{1}{2}$
$\tan 30^{\circ}=\frac{80}{x+y} \Rightarrow x+y=80 \sqrt{3} \quad \frac{1}{2}$
$\therefore \mathrm{x}=80(\sqrt{3}-1)=58.4 \mathrm{~m}$.
Hence speed of bird $=\frac{58.4}{2}=29.2 \mathrm{~m} / \mathrm{s}$.
24. (i) Favourable outcomes are 1, 3, 5, 7 i.e. 4 outcomes.

$$
\therefore \mathrm{P}(\text { an odd number })=\frac{4}{8} \text { or } \frac{1}{2}
$$

(ii) Favourable outcomes are 4, 5, 6, 7, 8 i.e. 5 outcomes 1
$P($ a number greater than 3$)=\frac{5}{8} \quad \frac{1}{2}$
(iii) Favarouble outcomes are 1, 2, 3... 8

$$
\left.P(a \text { number less than } 9)=\frac{8}{8}=1\right\}
$$

25. Area of the triangle $=\frac{1}{2}|t(t+2-t)+(t+2)(t-t+2)+(t+3)(t-2-t-2)|$

$$
\begin{aligned}
& =\frac{1}{2}[2 t+2 t+4-4 t-12] \\
& =4 \text { sq. units }
\end{aligned}
$$

which is independent of t.
26. Here $\mathrm{R}=20, \mathrm{r}=12, \mathrm{~V}=12308.8$

Therefore $12308.8=\frac{1}{3} \times 3.14(400+240+144) h$
$\Rightarrow \quad \mathrm{h}=15 \mathrm{~cm}$
$l=\sqrt{(20-12)^{2}+15^{2}}=17 \mathrm{~cm}$
Total area of metal sheet used $=$ CSA + base area

$$
\begin{aligned}
& =\pi[(20+12) \times 17+12 \times 12] \\
& =2160.32 \mathrm{~cm}^{2}
\end{aligned}
$$

27.

$$
\begin{aligned}
& \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ} \\
& \text { Reflex } \angle \mathrm{AOB}=240^{\circ} \\
& \therefore \widehat{\mathrm{ADB}}=\frac{2 \times 3.14 \times 5 \times 240}{360}=20.93 \mathrm{~cm}
\end{aligned}
$$

Hence length of elastic in contact $=20.93 \mathrm{~cm}$
Now, $A P=5 \sqrt{3} \mathrm{~cm}$

$$
\begin{array}{ll}
\text { Area }(\triangle \mathrm{OAP}+\Delta \mathrm{OBP})=25 \sqrt{3}=43.25 \mathrm{~cm}^{2} & \frac{1}{2} \\
\text { Area of sector } \mathrm{OACB}=\frac{25 \times 3.14 \times 120}{360}=26.16 \mathrm{~cm}^{2} & \frac{1}{2} \\
\text { Shaded Area }=43.25-26.16=17.09 \mathrm{~cm}^{2} & 1
\end{array}
$$

28. Let the three numbers in A.P. be $\mathrm{a}-\mathrm{d}, \mathrm{a}, \mathrm{a}+\mathrm{d}$.

$$
\begin{aligned}
& \quad 3 \mathrm{a}=12 \Rightarrow \mathrm{a}=4 \\
& \text { Also }(4-\mathrm{d})^{3}+4^{3}+(4+\mathrm{d})^{3}=288 \\
& \Rightarrow \quad 64-48 \mathrm{~d}+12 \mathrm{~d}^{2}-\mathrm{d}^{3}+64+64+48 \mathrm{~d}+12 \mathrm{~d}^{2}+\mathrm{d}^{3}=288 \\
& \Rightarrow \quad 24 \mathrm{~d}^{2}+192=288 \\
& \Rightarrow \quad \mathrm{~d}^{2}=4 \\
& \\
& \quad \mathrm{~d}= \pm 2
\end{aligned}
$$1

The numbers are $2,4,6$, or $6,4,2$.
29. For correct Given, To prove, construction, figure

Correct Proof
30. Let the speed while going be $x \mathrm{~km} / \mathrm{h}$

Therefore $\frac{150}{x}-\frac{150}{x+10}=\frac{5}{2}$
$\Rightarrow \quad x^{2}+10 x-600=0$
$\Rightarrow \quad(\mathrm{x}+30)(\mathrm{x}-20)=0$
$\Rightarrow \quad \mathrm{x}=20$
$\therefore \quad$ Speed while going $=20 \mathrm{~km} / \mathrm{h}$
and speed while returning $=30 \mathrm{~km} / \mathrm{hr}$
31. Correct Construction

