Strictly Confidential (For Internal and Restricted Use only) Senior School Certificate Examination

Marking Scheme - Physics (Code 55/2/1, Code 55/2/2, Code 55/2/3)

- 1. The marking scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the marking scheme are suggested answers. The content is thus indicated. If a student has given any other answer, which is different from the one given in the marking scheme, but conveys the meaning correctly, such answers should be given full weightage.
- 2. In value based questions, any other individual response with suitable justification should also be accepted even if there is no reference to the text.
- 3. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration. Marking scheme should be adhered to and religiously followed.
- 4. If a question has parts, please award in the right hand side for each part. Marks awarded for different part of the question should then be totaled up and written in the left hand margin and circled.
- 5. If a question does not have any parts, marks are to be awarded in the left hand margin only.
- 6. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 7. No marks are to be deducted for the cumulative effect of an error. The student should be penalized only once.
- 8. Deduct ¹/₂ mark for writing wrong units, missing units, in the final answer to numerical problems.
- 9. Formula can be taken as implied from the calculations even if not explicitly written.
- 10. In short answer type question, asking for two features / characteristics / properties if a candidate writes three features, characteristics / properties or more, only the correct two should be evaluated.
- 11. Full marks should be awarded to a candidate if his / her answer in a numerical problem is close to the value given in the scheme.
- 12. In compliance to the judgement of the Hon'ble Supreme Court of India, Board has decided to provide photocopy of the answer book(s) to the candidates who will apply for it along with the requisite fee. Therefore, it is all the more important that the evaluation is done strictly as per the value points given in the marking scheme so that the Board could be in a position to defend the evaluation at any forum.
- 13. The Examiner shall also have to certify in the answer book that they have evaluated the answer book strictly in accordance with the value points given in the marking scheme and correct set of question paper.
- 14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title paper, correctly totaled and written in figures and words.
- 15. In the past it has been observed that the following are the common types of errors committed by the Examiners
 - Leaving answer or part thereof unassessed in an answer script.
 - Giving more marks for an answer than assigned to it or deviation from the marking scheme.
 - Wrong transference of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transference to marks from the answer book to award list.
 - Answer marked as correct ($\sqrt{}$) but marks not awarded.
 - Half or part of answer marked correct ($\sqrt{}$) and the rest as wrong (×) but no marks awarded.
- 16. Any unassessed portion, non carrying over of marks to the title page or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	SECTION A		IVIAI IS
Set1 Q1	i) $V_A > V_B$ ii) $V_A < V_B$	1/2 1/2	1
Set1 Q2	Formula 1		
	$c = \frac{1}{\sqrt{\mu\epsilon}}$ [Alternatively, $c = \frac{1}{\sqrt{\mu\epsilon\mu} - \epsilon_{0}\epsilon_{0}}$]	1	1
Set1 Q3	$\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}$ For writing yes $\frac{1}{2}$ Justification $\frac{1}{2}$		
	Yes Institution: $m \alpha \frac{1}{1}$	1/2	
	And focal length depends on colour/ μ .	1/2	1
Set1 Q4	Logic Symbol1/2Truth Table1/2		
	Input Output A B Y 0 0 0 0 1 1 1 0 1 1 1 1	1⁄2	
	(a) (b)	-72	1
Set1 Q5	Writing Yes1/2Reason1/2Yes		
	Reason - $v_{blue} > v_{red}$ [Alternatively: Energy of blue light photon is greater than energy of red light photon 1	1/2 1/2	
	GEOTION D		1
Set1 06	SECTION B		
5001 Q0	Conversion of phase difference to path difference $\frac{1}{2}$ Formula for Intensity $\frac{1}{2}$ Finding intensity values $(\frac{1}{2} + \frac{1}{2})$		

MARKING SCHEME

	Path difference $\frac{\lambda}{4} \Rightarrow$ phase	e difference $\pi/2$			
	Path difference $^{\lambda}/_{3} \Rightarrow$ phase	e difference $(2\pi/3)$		J , 2	
	$I=4I_0$	$\cos^2\left(\frac{\phi}{2}\right)$		1/2	
	i) $I_1 = 4I_0 X \frac{1}{2} = 2I_0$	lo		1/2	
	ii) $I_2 = 4I_0 X \frac{1}{4} = I_0$			1⁄2	2
Set1 Q7	Any two differences	(1+1)			
	Any two				
	Intrinsic	Extrinsic			
	i) Pure semiconductor	i) Doped or impure			2
	ii) $n_e = n_h$	ii) $n_e \neq n_h$		1+1	
	iii) Low conductivity at room temperature	iii)Higher conductivity at room temperature			
	iv)Conductivity depends on temperature	iv) Conductivity does not depend significantly on temperature.			
Set1 Q8	Distinguishing the two node One example of each	$\begin{array}{c} \text{S} & (\frac{1}{2} + \frac{1}{2}) \\ (\frac{1}{2} + \frac{1}{2}) \end{array}$			
	In point-to-point communica place over a link between a s receiver.	tion mode, communication tak ingle transmitter and a single	es	1⁄2	
	In the broadcast mode, there corresponding to a single tran	are a large number of receivers	5	1/2	
	Example: Point-to-point:	telephone (any other)		1/2	
	Broadcast: T	.V., Radio (any other)		1/2	2
Set1 Q9	Effect on brightness Explanation	1			
	Brightness decreases			1	
	Explanation:- Self inductance of the impedance of the circuit and (Even if student just writes self mark.)	f solenoid increases; this increase hence current decreases . inductance increases, award this	es 1	1	2

Set1 Q10	Formula 1/2		
	$\begin{array}{ll} \text{Formula} & 72\\ \text{Image distance for } u \leq f \perp v & 1/2 \\ \end{array}$		
	Image distance where $ x < f $ 1		
	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ (f is negative)	1/2	
	$U = -f \Longrightarrow \frac{1}{v} = 0 \Longrightarrow v = \infty$	1/2	
	$U = -2f \Longrightarrow \frac{1}{2} = \frac{-1}{2} \Longrightarrow v = -2f$	1/2	
	v = 2f Hence if $-2f < u < -f \rightarrow -2f < u < \infty$	1/2	2
	$\begin{bmatrix} \text{Alternatively} \end{bmatrix}$		
	2f > u > f		
	$-\frac{1}{2} > -\frac{1}{2} > -\frac{1}{2}$	1/2	
	2f u f 1 1 1 1 1 1		
	$\frac{1}{f} - \frac{1}{2f} > \frac{1}{f} - \frac{1}{u} > \frac{1}{f} - \frac{1}{f}$	1/2	
	$\frac{1}{2f} < \frac{1}{V} < 0$	1/2	
	$2f < V < \alpha$]	1/2	2
	OR		
	(a) Formula for magnification $\frac{1}{2}$		
	Conditions for large magnification $\frac{1}{2}$		
	(b) Any two reasons $\frac{1}{2} + \frac{1}{2}$		
	(a) $m = -\frac{f_0}{f_e}$	1/2	
	By increasing f_{0} / decreasing f	1/2	
	By more using f_0 / decreasing f_e		
	(b) Any two		
	(i) No chromatic aberration.		
	(11) No spherical aberration.		
	(iii) Mechanical advantage – low weight, easier to		
	(iv) Mirrors are easy to prepare	$\frac{1}{2} + \frac{1}{2}$	2
	(v) More economical		
	()		
0.1.011	SECTION C		
Set I QI I	a) Definition 1		
	Explanation ¹ / ₂		
	b) Determination of modulation index $\frac{1}{2}$		
	Side bands $(\frac{1}{2} + \frac{1}{2})$		
	a) $\mu = \frac{A_m}{A}$	1	
	$\mu \leq 1$ to avoid distortion of signal.	14	
		1/2	

	b) $\mu = \frac{10V}{10V} = 1$ $v_c - v_m = (1000 - 10)kHz = 990kHz$ $v_c + v_m = (1000 + 10)kHz = 1010kHz$	1/2 1/2 1/2	3
Set1 Q12	Bohr quantum condition1/2Expression for Time period21/2		
	$mvr = \frac{nh}{2\pi}$ Bohr postulate	1/2	
	Also, $\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$	1/2	
	$\Leftrightarrow mv^2r = \frac{e^2}{4\pi\epsilon_0}$	1/2	
	$\therefore v = \frac{e^2}{4\pi\epsilon_0} X \frac{2\pi}{nh} = \frac{e^2}{2\epsilon_0 nh}$	1/2	
	$T = \frac{2\pi r}{v} = \frac{2\pi m v r}{m v^2}$	1/2	
	$=\frac{2\pi\left(\frac{nh}{2\pi}\right)}{2\pi}$		
	$m\left(\frac{e^2}{2\epsilon_0 nh}\right)^2$		
	$4n^3h^3\epsilon_0^2$	1/2	3
	$= \frac{1}{me^4}$ (Also accept if the student calculates T by obtaining		
~	expressions for both v and r.)		
Set1 Q13	Expression for electric field 11/2		
	Expression for potential $\frac{1}{2}$ Plot of graph (E V r) $\frac{1}{2}$		
	Plot of graph (V V_s r) $\frac{1}{2}$		
	Surface charge Gaussian		
	Surface charge surface density σ		
	By Gauss theorem	1/2	
	$\oint \vec{E} \cdot d\vec{s} = \frac{q}{r_{e}}$	1/2	
	q = 0 in interval $0 < x < R$		
	$\Rightarrow E = 0$	$\frac{1}{2}$	
	$E = -\frac{dv}{dr}$	1/2	

In loop ACDFA $I = \frac{12-6}{2} = 2A$		
(1+2) 211	1	
$V_{AF} = V_{BE}$ $\implies 6 + 2 = 6 + V_c$	1/2	
$\Rightarrow V_c = 2V$ Charge Q=CV_c=5µF X 2V = 10µC	1/2 1	3
Set1 Q15 Set1 Q15 Gauss's theorm $\frac{1}{2}$ Diagram $\frac{1}{2}$ Electric field between the cylinders 1 Electric field outside the cylinders 1 As Gauss's Law states $\oint \vec{E} \cdot \vec{ds} = \frac{q}{\epsilon_0}$ $+\lambda_1 - \frac{\lambda_2}{\epsilon_0}$ Gaussian surface Gaussian surface	1 1/2 1/2	3
(i) $\oint \vec{E_1} \cdot \vec{ds} = \frac{\lambda_1 l}{\epsilon_0}$ $\Rightarrow \vec{E_1} = \frac{\lambda_1}{2\pi\epsilon_0 r_1} \hat{r_1}$	1⁄2 1⁄2	
$(ii)\oint \vec{E_2} \cdot \vec{ds} = \frac{(\lambda_1 - \lambda_2)l}{\epsilon_0}$ $\implies \vec{E_2} = \frac{(\lambda_1 - \lambda_2)}{2\pi\epsilon_0 r_2} \hat{r_2}$	1/2 1/2	3
Set1 Q16 Biot Savart's Law 1/2 mark Deduction of Expression 2 marks Direction of magnetic field 1/2 mark		

		1/2	
	$B_2 = \frac{\mu_0}{2} \frac{2(4I)}{2} = \frac{\mu_0}{2} \left(\frac{8I}{2}\right)$ out of the plane of the		
	$23 4\pi 3r 4\pi (3r)^{5}$ and $3r$ $4\pi (r)^{6}$	1/	
	$B_4 = B_2 - B_2$ into the paper	-/2	
	$-\mu_0 \begin{pmatrix} 10I \end{pmatrix}$ into the paper.	1/2	
	$-\frac{1}{4\pi}\left(\frac{1}{3r}\right)$ into the paper.(\otimes)		
	(ii) $F_{21} = \frac{\mu_0}{4\pi} \frac{2I(3I)}{r}$ away from wire1 (/towards 3)	1/2	3
	$F_{22} = \frac{\mu_0}{2} \frac{2(3I)(4I)}{2}$ away from wire 3 (towards 1)	/ =	C
	$F_{rat} = F_{22} - F_{21}$ towards wire1		
	$=\frac{\mu_0}{4\pi}\frac{6(I)^2}{r}$ towards wire 1		
Set1 Q17	Statement - 1		
	S.I Unit – ½		
	Formula-		
	Calculation of number of nuclei 1		
	(a) Statement : Rate of decay of a given radioactive sample is	1	
	directly proportional to the total number of undecayed	1	
	nuclei present in the sample. dN		
	[Alternatively: $-\frac{dN}{dt} \propto N$]		
	Unit- becquerel(Bq)	1⁄2	
	(b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$	1/2	
	$n = \frac{t}{T_{t,n}} = \frac{10}{20} = \frac{1}{2}$	1/2	
	$1_{1/2}$ 20 2	14	2
	$\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$	72	3
	$= 4 \times 10^6$ nuclei		
0.11.010			
Setl Q18	(a) Explanation of production of em waves $1\frac{1}{2}$ (b) Depiction of em waves $1\frac{1}{2}$		
	(a) An oscillating charge produces an oscillating electric field		
	in space, which produces an oscillating magnetic field, which		
	in turn, is a source of oscillating electric field and so on.		
	Thus, oscillating electric and magnetic fields generate each	117	
	other, they then propagate in space.	1 1⁄2	

	antiparallel to \vec{B} :: $\vec{F} = 0$.	1/2	
	[Alternatively,		
	If \vec{v} makes an angle of 0^0 or 180^0 with \vec{B} .]		
	(b) The radius of electron		
	$eV = \frac{1}{2}mv^2$	1/2	
	$\frac{mv^2}{r} = qvB$	1/2	
	$\therefore r = \frac{1}{B} \sqrt{\frac{2mV}{e}}$	1/2	
	$= \left[\sqrt{\frac{2 X 9.1 X 10^{-31} X 10^4}{1.6 X 10^{-19}}} X \frac{1}{0.04} \right] m$		
	$= 8.4 X 10^{-3} m$	1/2	3
Set1 Q22	Diagram1/2Path Difference1/2Condition for minima1/2Condition for maxima1/2Width of central maxima1/2Width of secondary maxima1/2		
	From S $M_1 \cdot \theta$ $M_1 \cdot \theta$ $M_2 \cdot \theta$ $M_2 \cdot M_2$ $M_2 \cdot M_2$ $M_2 \cdot M_2$	1⁄2	
	The path difference NP - LP = NQ $= a \sin \theta \simeq a\theta$	1/2	
	By dividing the slit into an appropriate number of parts, we find that points P for which i) $A = \frac{n\lambda}{2}$ are points of minima	1/2	
	i) $\theta = \left(n + \frac{1}{2}\right)\frac{\lambda}{a}$ are points of maxima	1/2	

	Angular width of central maxima, $\theta = \theta_1 - \theta_{-1}$ $= \frac{\lambda}{a} - \left(-\frac{\lambda}{a}\right)$ $\theta = \frac{2\lambda}{a}$ Angular width of secondary maxima = $\theta_2 - \theta_1$ $= \frac{2\lambda}{a} - \frac{\lambda}{a} = \frac{\lambda}{a}$ $= \frac{1}{2}$ X Angular width of central maxima	1⁄2 1⁄2	3
Set1 Q23	Values displayed 1 + 1 Usefulness of solar panels ½ Name of semiconductor device ½ Diagram of the device ½ Working of device ½ a) Value displayed by mother: Inquisitive / scientific temperament / wants to learn / any other. Value displayed by Sunil: Knowledgeable / helpful/ considerate b) Provide clean / green energy Reduces dependence on fossil fuels, Environment friendly energy source. c) Solar Cell Image: Constant of the state of t	1 1/2 1/2 1/2	4

0.1001			
Set1 Q24	a) (i) Principle of potentiometer 1		
	How to increase sensitivity $\frac{1}{2}$		
	(ii) Name of potentiometer $\frac{1}{2}$		
	Reason ^{1/2}		
	b) Formula 1/2		
	(i) Datio of drift valuations in series 1		
	(i) Ratio of drift velocities in perellel		
	(ii) Ratio of drift velocities in parallel 1		
	a) (i) The potential difference across any length of wire is		
	directly proportional to the length provided current and		
	area of cross section are constant i.e. $E(l) = dl$ where	1	
	ϕ is the potential drop per unit length	•	
	φ is the potential drop per unit length.		
	It can be made more sensitive by decreasing current in		
	the main circuit /decreasing_notential gradient /	1/2	
	increasing resistance put in series with the potentiometer	72	
	mereasing resistance put in series with the potentionneler		
	wiit.	14	
	I) Folentioniciel \mathbf{D}	72	
	Has smaller value of V/l (slope / potential gradient).	72	
		1/2	
	b) In series, the current remains the same.	72	
	P_1 I P_2		
	\longleftrightarrow		
	v 	1/2	
	$I = neA_1V_{d1} = neA_2V_{d2}$	/ =	
	$\frac{V_{d1}}{V_{d1}} - \frac{A_2}{V_2}$	1/2	
	$V_{d2} - A_1$	72	
	In parallel potential difference is same but currents are		
	different.		
	u i p i u i	14	
	$v = I_1 \kappa_1 = neA_1 V_{d1} \frac{1}{A_1} = ne\varrho V_{d1} \iota$	72	
	Similarly, $V = I_2 R_2 = ne \rho V_{d2} l$		
	$I_1 R_1 = I_2 R_2$	14	5
	V_{d1-1}	72	3
	$\frac{1}{V_{d2}}$		
	OR		
	(a) Definition of capacitance 1		
	Obtaining capacitance 2		
	(b) Ratio of capacitances 2		
	a) Consistence could the many its is of the share 1		
	a) Capacitance equals the magnitude of the charge on each	1	
	plate needed to raise the potential difference between	-	
	the plates by unity.		

- 4		
$C_{1} = K \frac{\epsilon_{0}A}{\left(\frac{3}{4}d\right)}$ $C_{2} = \frac{\epsilon_{0}A}{\left(\frac{1}{4}d\right)}$ $\therefore C = \frac{C_{1}C_{2}}{C_{1} + C_{2}} = \frac{\left(K \frac{\epsilon_{0}A}{\left(\frac{3}{4}d\right)}\right)\left(\frac{\epsilon_{0}A}{\left(\frac{1}{4}d\right)}\right)}{\epsilon_{0}A\left[4-\frac{1}{4}d\right]}$	1/2 1/2	
$= \frac{4}{(3+k)} \frac{\epsilon_0 A}{d} = \frac{4}{(3+k)} C_0$ $\frac{c}{c_0} = \frac{4}{k+3}]$	1/2 1/2	5
Set1 Q25a) Statement of Faraday's Law1b) Calculation of current2Graph of current1c) Lenz's Law1(a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. [Alternately: $e = -\frac{d\theta}{dt}$](b) Area= $\pi R^2 = \pi X \ 1.44 \ X \ 10^{-2} m^2$ $= 4.5 \ X \ 10^{-2} m^2$ For $0 < t < 2$ Emf $e_1 = \frac{d\theta_1}{dt} = -A \frac{dB}{dt}$ $=-4.5 \ X \ 10^{-2} X \ \frac{1}{2}$ $I_1 = -\frac{e_1}{R} = -\frac{2.25 \ X \ 10^{-2}}{8.5} = -2.7 \ mA$ For $2 < t < 4$ $I_2 = \frac{e_2}{R} = 0$ 	1 1/2 1/2 1/2 1/2	

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Q1	Writing Yes1/2Reason1/2		
	Yes Reason - $v_{blue} > v_{red}$ [Alternatively: Energy of blue light photon is greater than energy of red light photon.]	1/2 1/2	1
Q2	Logic Symbol1/2Truth Table1/2		
	Input Output A B Y O O O O 1 1 I 0 1 I 1 1	1/2 1/2	1
Q3	(a) (b) i) $V_A > V_B$ ii) $V_A < V_B$	1/2 1/2	1
Q4	Formula 1		
	$c = \frac{1}{\sqrt{\mu\epsilon}}$ [Alternatively, $c = \frac{1}{\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}}$]	1	1
Q5	For writing yes1/2Justification1/2		
	Yes Justification: $m \alpha \frac{1}{f_0 f_e}$ And focal length depends on colour/ μ .	1/2 1/2	1
Q6	Ratio of drift velocities in series1Ratio of drift velocities in parallel1In series, the current remains the same.		

MARKING SCHEME

	P_1 I P_2		
	$\bullet - \uparrow - \uparrow - \bullet$		
	\longleftrightarrow V		
	$I = neA_1V_{d1} = neA_2V_{d2}$	1/2	
	$\therefore \frac{V_{d1}}{V_{d2}} = \frac{A_2}{A_1}$ In parallel potential difference is same but currents are different.	1/2	
	$V = I_1 R_1 = neA_1 V_{d1} \frac{\varrho l}{A_1} = ne\varrho V_{d1} l$	1/2	
	Similarly, $V = I_2 R_2 = ne \varrho V_{d2} l$ $I_1 R_1 = I_2 R_2$ $\therefore \frac{V_{d1}}{V_{12}} = 1$	1/2	2
Q7	Va2Distinguishing the two nodes $(1/2 + 1/2)$ One example of each $(1/2 + 1/2)$		
	In point-to-point communication mode, communication takes place over a link between a single transmitter and a single receiver.	1/2	
	In the broadcast mode, there are a large number of receivers corresponding to a single transmitter.	1/2	
	Example: Point-to-point: telephone (any other)	1/2	
	Broadcast: T.V., Radio (any other)	1/2	2
Q8	Formula $\frac{1}{2}$ Image distance for $ u \le f + x $ $\frac{1}{2}$ Image distance where $ x \le f $ 1		
	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f} \qquad (f \text{ is negative})$	1⁄2	
	$U = -f \Longrightarrow \frac{1}{v} = 0 \Longrightarrow v = \infty$	1/2	
	$U = -2f \implies \frac{1}{v} = \frac{1}{2f} \implies v = -2f$ Hence if $-2f < u < -f \implies -2f < v < \infty$	$\frac{1/2}{1/2}$	2
	[<u>Alternatively</u>		
	2f > u > f $-\frac{1}{2c} > -\frac{1}{2c} > -\frac{1}{c}$	1/2	
	$\left \frac{1}{f} - \frac{1}{2f} > \frac{u}{f} - \frac{1}{u} > \frac{1}{f} - \frac{1}{u} \right = \frac{1}{f} - \frac{1}{f}$	1/2	
	$\left \frac{1}{2f} < \frac{1}{V} < 0\right $	1/2	2

	$2f < V < \propto$]	1	1/2	
	OR			
	(a) Formula for magnification	1/2		
	Conditions for large magnification	1⁄2		
	(b) Anv two reasons	$\frac{1/2 + 1/2}{2}$		
	(a) $m = -\frac{f_0}{f_e}$	1	1/2	
	By increasing f_0 / decreasing f_e	1	1/2	
	(b) Any two			
	(i) No chromatic aberration.			
	(ii) No spherical aberration.			
	 (iii) Mechanical advantage – low weigh (iv) Mirrors are easy to prepare. (v) More economical 	t, easier to support. $1/2$.	+ 1/2	2
Q9	Conversion of phase difference to path difference	nce $\frac{1}{2}$		
	Formula for Intensity	1/2		
	Finding intensity values	$(\frac{1}{2} + \frac{1}{2})$		
	Path difference $\lambda_{4} \Rightarrow$ phase difference π_{2}]		
	Path difference $\lambda/$ \rightarrow phase difference $(2\pi/)$		1/2	
	1 an unrefere $7_3 \rightarrow \text{phase unrefere } (2_{73})$	J		
	$I = 4I_0 \cos^2 \left(\frac{\emptyset}{2} \right)$	1	1/2	
	i) $I_1 = 4I_0 X \frac{1}{2} = 2I_0$	1	1/2	
	1	1	17	
	ii) $I_2 = 4I_0 X \frac{1}{4} = I_0$	1	/2	2
				4
Q10	Any two differences	1+1		
	S no n- type semiconductor n- type	semiconductor		
	1 Pentavalent impurity is Trivale	nt impurity is added		
	added	1	+1	
	2 Electrons are the majority Holes a	re the majority		
	charge carrier/ charge	carriers /		
	$(n_e \gg n_h) \qquad (n_h \gg$	n_e)		
	3 New energy level formed New en	ergy level formed		
	near conduction band near va	lence band.		2
				-

	$\therefore \frac{r_p}{r_\alpha} = \frac{q_\alpha}{q_p} \qquad = 2$	1/2	
	ii) $r = \frac{mv}{qB} = \frac{1}{B}\sqrt{\frac{2mV}{q}}$	1/2	
	for proton $r_p = \frac{1}{B} \sqrt{\frac{2m_p V}{q_p}}$		
	and for α particles $r_{\alpha} = \frac{1}{B} \sqrt{\frac{2m_{\alpha}V}{q_{\alpha}}}$	1/2	
	$\therefore \frac{r_p}{r_\alpha} = \sqrt{\frac{m_p}{q_p} \frac{q_\alpha}{m_\alpha}}$		
	$=\sqrt{\frac{2}{4}}=\frac{1}{\sqrt{2}}$	1⁄2	3
Q14	Diagram1/2Path Difference1/2Condition for minima1/2		
	Condition for maxima ¹ / ₂		
	Width of central maxima1/2Width of central maxima1/2		
	Width of secondary maxima ¹ / ₂		
	From S $M_1 \cdot \theta$ $M_1 \cdot \theta$ $M_2 \cdot \theta$ $M_2 \cdot M_2$ N	1⁄2	
	The path difference		
	$NP - LP = NQ$ $= a\sin\theta \simeq a\theta$	1/2	
		72	
	By dividing the slit into an appropriate number of parts, we find that points P for which n^{2}		
	i) $\theta = \frac{n\pi}{a}$ are points of minima.	1/2 1/2	
	ii) $\theta = \left(n + \frac{1}{2}\right) \frac{\lambda}{a}$ are points of maxima	72	

	Angular width of central maxima, $\theta = \theta_1 - \theta_{-1}$ = $\frac{\lambda}{\alpha} - \left(-\frac{\lambda}{\alpha}\right)$		
	$\theta = \frac{2\lambda}{a}$	1/2	
	Angular width of secondary maxima = $\theta_2 - \theta_1$ = $\frac{2\lambda}{\lambda} - \frac{\lambda}{\lambda} - \frac{\lambda}{\lambda}$		
	$= \frac{1}{2} X \text{ Angular width of central maxima}$	1/2	3
Q15	Bohr quantum condition1/2Expression for Time period21/2		
	$mvr = \frac{nh}{2\pi}$ Bohr postulate	1/2	
	Also, $\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$	1/2	
	$\Leftrightarrow mv^2r = \frac{e^2}{4\pi\epsilon_0}$	1⁄2	
	$\therefore v = \frac{e^2}{4\pi\epsilon_0} X \frac{2\pi}{nh} = \frac{e^2}{2\epsilon_0 nh}$	1/2	
	$T = \frac{2\pi r}{m} = \frac{2\pi m v r}{m v^2}$	1/2	
	$=\frac{2\pi\left(\frac{nh}{2\pi}\right)}{m\left(\frac{e^2}{2\epsilon_0 nh}\right)^2}$		
	$= \frac{4n^3h^3\epsilon_0^2}{me^4}$ (Also accept if the student calculates T by obtaining expressions for both v and r.)	1/2	3
Q16	Calculation of current1 ½Calculation of potential across capacitor1 ½		
	In steady state branch BE is eliminated 5v.	1/2	
	$I = \frac{10V - 5V}{(3 + 2)\Omega} A$	1⁄2	
	= 1 A $B = C = C = C$ $B = C = C$	1⁄2	
	For loop EBCDE $-v_c - 5 + 10 - 3 \times 1 = 0$	1/2	

	$-V_c + 10 - 8 = 0$ $\therefore V_c = 2 \text{ volt}$	1/2 1/2	3
Q17	(a) Explanation of production of em waves1½(b) Depiction of em waves1½(a) An oscillating charge produces an oscillating electric field in space,which produces an oscillating magnetic field, which in turn, is a sourceof oscillating electric field and so on. Thus, oscillating electric andmagnetic fields generate each other, they then propagate in space.[Alternatively, if a student writesElectromagnetic waves are produced by oscillating electric andmagnetic fields / oscillating charges produce em waves. Award 1mark]	11/2	
	Electric field OR βfield EM waves	11/2	3
Q18	a) Process of $\bar{\beta}$ decay1Explanation of emission of β particles1Reason1/2b) Correct identification1/2		
	(a) A nucleus, that spontaneously decays by emitting an electron, or a positron, is said to undergo β decay [Alternatively $_{Z}^{A}X \rightarrow _{Z+1}^{A}Y + e^{-} + \bar{\nu}$ (antineutrino)		
	$ {}^{A}_{Z}X \longrightarrow {}^{A}_{Z-1}Y + e^{+} + \nu \text{ (neutrino)]} $ [Any one]	1	
	During β decay, nucleons undergo a transformation. We can have $n \rightarrow p + e^- + \bar{v}$ \rightarrow A neutron converts into a proton and an electron [Alternatively $p \rightarrow n + e^+ + v$ [A proton converts into a neutron and a positron] It is because the neutrinos, or antineutrino, carry off different amounts of energy.	1 1⁄2	

	(b) The daughter nuclei have more binding energy per nucleon.	1⁄2	3
Q19	Sky wave propagation1Frequency range, reason1Frequency range through free space1		
	In sky wave propagation, long distance communication is achieved by ionospheric reflection of radio waves back towards the earth.	1	
	The frequency range is from a few Mega hertz to 30/40 Mega hertz. The ionospheric layers can act as a reflector over the frequency range (3 MHz to 30/40 MHz). Higher frequencies penetrate through it.	1	
	The frequency range for communication of radio waves through free space is the entire range of radio frequencies, i.e. a few hundred kHz to a few GHz.	4	
	(waves having frequency beyond 40 MHz)	1	3
Q20	(a) Plotting of graph 1/2 Marking saturation current 1/2 Marking stopping potential 1/2 (b) Photoelectric equation 1/2 Calculation of increases in stopping potential 1 (a) Graph: Photoelectric Current		
	-V ₀ 0 Collector plate potential → ← Stopping Potential	¹ /2+ ¹ /2+ ¹ /2	
	(b) We know that $eV_0 = hv - \phi$ $\therefore eV_1 = hv_1 - \phi$ and $eV_2 = hv_2 - \phi$	1/2	
	Increase in potential $\therefore V_2 - V_1 = \frac{h}{e} (v_2 - v_1)$ 6.63×10^{-34}	1/2	
	$= \frac{0.05 \times 10}{1.6 \times 10^{-19}} (8 \times 10^{15} - 4 \times 10^{15}) V$ =16.5 V		3

3

	$B_3 = \frac{\mu_0}{4\pi} \frac{2(4I)}{3r} = \frac{\mu_0}{4\pi} \left(\frac{8I}{3r}\right) \text{out of the plane of the paper/(O)}.$	1⁄2	
	$B_A = B_2 - B_3$ into the paper. = $\frac{\mu_0}{4\pi} \left(\frac{10I}{3r}\right)$ into the plane of the paper.(\otimes)	1/2	
	(ii) $F_{21} = \frac{\mu_0}{4\pi} \frac{2I(3I)}{r}$ away from wire1 (/towards 3)	1⁄2	
	$F_{23} = \frac{\mu_0}{4\pi} \frac{2(3I)(4I)}{2r}$ away from wire 3 (towards 1) $F_{\text{net}} = F_{23} - F_{21}$ towards wire1	1⁄2	
	$=\frac{\mu_0}{4\pi} \frac{6(I)^2}{r}$ towards wire 1	1⁄2	3
Q23	Values displayed1 + 1Usefulness of solar panels1/2Name of semiconductor device1/2Diagram of the device1/2Working of device1/2		
	a) Value displayed by mother:		
	Inquisitive / scientific temperament / wants to learn / any other.	1	
	Value displayed by Sunil: Knowledgeable / helpful/ considerate	1	
	 b) Provide clean / green energy Reduces dependence on fossil fuels, Environment friendly energy source 	1/2	
	c) Solar Cell	1⁄2	
	c) Solar Cell	1⁄2	
	(full marks for any one figure out of a &b) Working: When light falls on the device the solar cell generates an emf.	1/2	4

	(b) From Snell's law $\mu_1 \sin i = \mu_2 \sin r$	1/2	
	Given $\mu_1 = \sqrt{2}$, $\mu_2 = 1$ and r= 90 ⁰ (just grazing)		
	$\therefore \sqrt{2} \sin i = 1 \sin 90^0 \Longrightarrow \sin i \frac{1}{\sqrt{2}}$	1/2	
	$\sqrt{2}$	1/2	5
	$01 t = 45^{\circ}$	12	5
Q25	a) (i) Principle of potentiometer1How to increase sensitivity $\frac{1}{2}$ (ii) Name of potentiometer $\frac{1}{2}$ Reason $\frac{1}{2}$ b) Formula $\frac{1}{2}$ (i) Ratio of drift velocities in series1(ii) Ratio of drift velocities in parallel1a) (i) The potential difference across any length of wire is directly proportional to the length provided current and area of cross section are constant i.e., $E(l) = \phi l$ where ϕ is the potential drop part unit length	1	
	 It can be made more sensitive by decreasing current in the main circuit /decreasing potential gradient / increasing resistance put in series with the potentiometer wire. ii) Potentiometer B Has smaller value of V/l (slope / potential gradient). 	1/2 1/2 1/2	
	b) In series, the current remains the same.	1⁄2	
	$\begin{array}{c} P_1 & 1 & P_2 \\ \bullet & \end{array} $		
	$V = neA_1V_{d1} = neA_2V_{d2}$	1/2	
	$\therefore \frac{V_{d1}}{V_{d2}} = \frac{V_{d2}}{A_1}$ In parallel potential difference is same but currents are different.	1/2	
	$V = I_1 R_1 = neA_1 V_{d1} \frac{\varrho l}{A_1} = ne\varrho V_{d1} l$ Similarly, $V = I_2 R_2 = ne\varrho V_{d2} l$	1/2	
	$I_1 R_1 = I_2 R_2$ $\therefore \frac{V_{d1}}{V_{d2}} = 1$	1/2	5
	OR		

	$(Ak) \in A$		
	$\therefore c = \left(\frac{4k}{k+3}\right)\frac{\epsilon_0 A}{d}$		
	$\frac{1}{c_0} = \frac{1}{k+3}$ [Alternatively,		
	The capacitance, with dielectric, can be treated as a series combination of two capacitors.	1⁄2	
	$C_1 = K \frac{\epsilon_0 A}{\epsilon_0 A}$	1/2	
	$C_{2} = \frac{\left(\frac{3}{4}d\right)}{\epsilon_{0}A}$		
	$\begin{pmatrix} \frac{1}{4}d \end{pmatrix} \begin{pmatrix} \frac{1}{4}d \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{4}d \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{4}d \end{pmatrix} \begin{pmatrix} \frac{1}{4}d \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{4}d \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{4}d \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{4}d \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{4}d \end{pmatrix} \end{pmatrix} $	1/2	
	$\therefore C = \frac{C_1 C_2}{C_1 + C_2} = \frac{\left(\frac{K \frac{c_0 A}{\left(\frac{3}{4}d\right)}}{\left(\frac{3}{4}d\right)}\right) \left(\frac{c_0 A}{\left(\frac{1}{4}d\right)}\right)}{C_1 + C_2 + C_2}$	14	5
	$= \frac{4}{(3+k)} \frac{\epsilon_0 A}{d} = \frac{4}{(3+k)} C_0$	72	3
	$\frac{c}{c_0} = \frac{4}{k+3}$		
Q26	a) Statement of Faraday's Law1b) Calculation of current2Graph of current1		
	c) Lenz's Law 1		
	(a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit.	1	
	[Alternately: $e = -\frac{d\phi}{dt}$] (b) Area= $\pi R^2 = \pi X \ 1.44 \ X \ 10^{-2} m^2$		
	$= 4.5 X 10^{-2} m^2$		
	Emf $e_1 = \frac{d\phi_1}{dt} = -A\frac{dB}{dt}$	1⁄2	
	$=-4.5 X 10^{-2} X \frac{1}{2}$		
	$I_1 = -\frac{e_1}{R} = -\frac{2.25 \times 10^{-2}}{8.5} = -2.7 \ mA$ For 2 <t<4< td=""><td>1/2</td><td></td></t<4<>	1/2	
	$I_2 = \frac{e_2}{R} = 0$	1⁄2	

SET 55/2/2

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Q1	For writing yes1/2Justification1/2		
	Yes Justification: $m \alpha \frac{1}{f_0 f_e}$	1/2	
02	And focal length depends on $colour/\mu$.	1/2	1
Q2	Writing Yes1/2Reason1/2		
	Yes	1/2	
	Reason - $\mathcal{V}_{blue} > \mathcal{V}_{red}$	1/2	
	Energy of blue light photon is greater than energy of red light photon.]		1
Q3	Logic Symbol1/2Truth Table1/2		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1⁄2 1⁄2	1
Q4	i) $V_A > V_B$ ii) $V_A < V_B$	1/2 1/2	1
Q5	Formula 1		
	$c = \frac{1}{\sqrt{\mu\epsilon}}$ [Alternatively, $c = \frac{1}{\sqrt{\mu_0\mu_r\epsilon_0\epsilon_r}}$]	1	1
Q6	Formula $\frac{1}{2}$ Image distance for $ u \le f + x $ $\frac{1}{2}$ Image distance where $ x \le f $ 1		
	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ (f is negative)	1/2	

MARKING SCHEME

	1		
	$U = -f \Longrightarrow \frac{1}{\nu} = 0 \Longrightarrow \nu = \infty$	1/2	
	$U = -2f \Longrightarrow \frac{1}{v} = \frac{-1}{2f} \Longrightarrow v = -2f$	1/2	
	Hence if $-2f < u < -f \implies -2f < v < \infty$	1/2	2
	[Alternatively		
	2f > u > f		
	1 1 1		
	$-\frac{1}{2f} > -\frac{1}{u} > -\frac{1}{f}$	1/2	
	$\left \frac{1}{c} - \frac{1}{2c} > \frac{1}{c} - \frac{1}{c} > \frac{1}{c} - \frac{1}{c} \right > \frac{1}{c} - \frac{1}{c}$	1/2	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	
	$\frac{1}{2f} < \frac{1}{V} < 0$	1/2	
	$2f < V < \alpha$]	1/2	2
	OR		
	(a) Formula for magnification 1/2		
	Conditions for large magnification ¹ / ₂		
	(b) Any two reasons $\frac{1}{2} + \frac{1}{2}$		
	$m \frac{f_0}{f_0}$	1/2	
	f_e	,2	
	By increasing f_0 / decreasing f_e	1⁄2	
	(a) Any two		
	(i) No chromatic aberration.		
	(ii) No spherical aberration.		
	(iii) Mechanical advantage – low weight, easier to		2
	(iv) Mirrors are easy to prepare	$\frac{1}{2} + \frac{1}{2}$	
	(v) More economical		
07	Formulae ¹ / ₂ + ¹ / ₂		
Q/	Finding Intensity $\frac{1}{2} + \frac{1}{2}$		
	Phase difference $=\frac{2\pi}{2}$ × Path diffrence		
	Path difference $\stackrel{\lambda}{\rightarrow} \Rightarrow$ phase difference $= \frac{\pi}{-}$	17	
	$\frac{1}{6} = \frac{1}{3}$	¹ /2 1/2	
	Faur unterence $\frac{1}{2} \implies$ phase difference $= \pi$, 2	
	$I = 4I_0 \cos^2\left(\frac{\varphi}{2}\right)$		
	i. $I_1 = 4I_0 \times \frac{3}{4} = 3I_0$	1/2	
	4 -	/ 4	
	ii. $I_2 = 4I_0 \times 0 = 0$	1⁄2	2

Q8	Circuit Diagram1Working1		
	p-side n-side	1	
	When photodiode is illuminated with light (photons), with energy ($h\nu > E_g$), electron-hole pairs are generated near the depletion region of the diode. The direction of electric field is such that electrons reach n-side and holes reach p-side and give current(in reverse direction)	1	2
Q9	Distinguishing the two nodes $(\frac{1}{2} + \frac{1}{2})$ One example of each $(\frac{1}{2} + \frac{1}{2})$		
	In point-to-point communication mode, communication takes place over a link between a single transmitter and a single receiver.	1/2	
	In the broadcast mode, there are a large number of receivers corresponding to a single transmitter.	1/2	
	Example: Point-to-point: telephone (any other)	1/2	
	Broadcast: T.V., Radio (any other)	1/2	2
Q10	Effect on brightness1Explanation1		
	Brightness decreases	1	
	Explanation:- Self inductance of solenoid increases; this increases the impedance of the circuit and hence current decreases .	1	2
	(Even if student just writes self inductance increases, award this 1 mark.)		

	Section: C		
Q11	i. Formula ¹ / ₂ Finding ratio 1 ii. Formula ¹ / ₂ Finding ratio 1		
	i. $r = \frac{mv}{qB}$ For proton $r_p = \frac{m_p v}{q_p B}$	1/2	
	For α particle $r_{\alpha} = \frac{m_{\alpha}v}{q_{\alpha}B}$ $\frac{r_p}{r_{\alpha}} = \frac{m_p}{q_p} \frac{q_{\alpha}}{m_{\alpha}} = \frac{1}{2}$	1	
	ii. $r = \frac{\sqrt{2mK}}{qB}$	1⁄2	
	$r_p = \frac{\sqrt{2m_p K}}{q_p B}$		
	$r_{\alpha} = \frac{\sqrt{2m_{\alpha}K}}{q_{\alpha}B}$		
	$rac{r_p}{r_lpha}=rac{q_lpha}{q_p}\sqrt{rac{m_p}{m_lpha}}=rac{1}{1}$	1	3
Q12	Intensity distribution graph for interference1Intensity distribution graph for diffraction1Any two differences $\frac{1}{2} + \frac{1}{2}$		
	I I I I I I I I I I	1	
	> Fath dillernce		

SET 55/2/3

	$I = \left[\frac{8-4}{4+2}\right] \mathbf{A} = \frac{2}{3}\mathbf{A}$	1	
	$V_{AF} = V_{BE}$	1/2	
	$\Rightarrow 4 - 2 \times \frac{2}{3} = 4 - V_c$		
	$\Rightarrow V_c = \frac{4}{3} V$	1/2	
	Charge, $Q = CV_c$ $Q = (10\mu F \times \frac{4}{3})$ $= 13.33 \mu C$	1	3
Q15	(a) Explanation of production of em waves1½(b) Depiction of em waves1½		
	(a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each other, they then propagate in space.	11/2	
	[Alternatively, if a student writes Electromagnetic waves are produced by oscillating electric and magnetic fields / oscillating charges produce em waves. Award 1 mark]		
	Electric field OR βfield EM waves B Magnetic field or E field	11/2	3
Q16	(a) Derivation (b) Formula Calculation (a) $N(t)=N_0 e^{-\lambda t}$ When $t=T_{1/2} \implies N(t) = \frac{N_0}{2}$	1/2 1/2	
	$\therefore \frac{N_0}{2} = N_0 e^{-\lambda} T_{1/2}$		

	1		
	$\Longrightarrow \frac{1}{2} = e^{-\lambda} T_{1/2}$		
	$\implies -\lambda T_{\frac{1}{2}} = -ln2$	1/2	
	$\implies T_{\frac{1}{2}} = \frac{ln2}{\lambda} = \frac{0.693}{\lambda}$	1/2	
	(b) $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}}$	1/2	
	Given $\frac{N}{N_0} = \frac{1}{4} = \left(\frac{1}{2}\right)^n$		
	$\left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^2$ $\therefore \text{ Number of half lives}= 2$		
	$\Rightarrow \frac{1000}{T_{1/2}} = 2$ $\Rightarrow T_1 = \frac{1000}{T_1} = 500 \text{ years}$	1/2	
	$\frac{1}{2} 2$ $\frac{[Alternatively]}{1000 \text{ years}} = 2 \text{ half lives}$ $\therefore \text{ Half life} = 500 \text{ years}]$		3
Q17	Expression for electric field $1\frac{1}{2}$ Expression for potential $\frac{1}{2}$ Plot of graph (E $V_s r$) $\frac{1}{2}$ Plot of graph (V $V_s r$) $\frac{1}{2}$		
	Surface charge Gaussian density σ R O r P		
	By Gauss theorem $\oint \vec{E} \cdot d\vec{s} = \frac{q}{E_0}$	1/2 1/2	
	q = 0 in interval $0 < x < R\Rightarrow E = 0$	1/2	

	$T - \frac{2\pi r}{2\pi mvr} - \frac{2\pi mvr}{2\pi mvr}$		
	$r = v = mv^2$	1/2	
	$=\frac{2\pi\left(\frac{\pi n}{2\pi}\right)}{2\pi}$		
	$m\left(\frac{e^2}{2}\right)^2$		
	$(2\epsilon_0 nn)$		3
	$4n^3h^3\epsilon_0^2$		3
	$=\frac{me^{4}}{me^{4}}$	1⁄2	
	(Also accept if the student calculates T by obtaining		
019	expressions for both v and r.)		
QIJ	a) Graph of photo current vs collector potential for		
	b) Einstein's photo electric equation		
	Explanation of graph ¹ / ₂		
	c) Graph of photocurrent with collector potential for		
	different intensities 1		
	(a)		
	Photoelectric		
	K N K N K	1	
	Saturation current		
	$-V_{03} - V_{02} - V_{01} = 0$ Collector plate potential \rightarrow		
	Actuating potential		
	(b) According to Einstein's photoelectric equation $V_{\mu} = hr_{\mu} - d$	14	
	$\kappa_{max} = n\nu - \psi_0$ If V ₀ is stopping potential then	72	
	$eV_0 = hv - \emptyset$		
	Thus for different value of frequency(v) there will be a	14	
	different value of cut off potential V_0 .	' /2	
	(c) $\frac{1}{2}$		
	I,		
	Stopping potential		
	$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & \\ \hline \\ \hline$		
	potential	1	3

	 (i) Magnitude of magnetic field at A Direction of magnetic field at A Magnitude of magnetic force on conductor 2 Direction of magnetic force on conductor 2 		
	Direction of magnitude force on conductor $2 \frac{1}{2}$		
	(i) $B_2 = \frac{\mu_0}{4\pi} \frac{2(3I)}{r} = \frac{\mu_0}{4\pi} \left(\frac{6I}{r}\right)$ into the plane of the paper/(\otimes).	1/2	
	$B_3 = \frac{\mu_0}{4\pi} \frac{2(4I)}{3r} = \frac{\mu_0}{4\pi} \left(\frac{8I}{3r}\right) \text{out of the plane of the paper/(O)}.$	1⁄2	
	$B_A = B_2 - B_3$ into the paper. $-\frac{\mu_0}{\mu_0} \begin{pmatrix} 10I \end{pmatrix}$ into the plane of the paper (2)		
	$-\frac{1}{4\pi}\left(\frac{1}{3r}\right)$ into the plane of the paper.(\otimes)	1/2	
	(ii) $F_{21} = \frac{\mu_0}{4\pi} \frac{2I(3I)}{r}$ away from wire1 (/towards 3)	1/2	
	$F_{23} = \frac{\mu_0}{4\pi} \frac{2(3I)(4I)}{2r}$ away from wire 3 (towards 1) $F_{\text{net}} = F_{23} - F_{21}$ towards wire1	1/2	
	$=\frac{\mu_0}{4\pi}\frac{6(I)^2}{r}$ towards wire 1	1/2	3
Q21	Definition of space wave propagation1Naming system of communication1/2Definition of radio horizon1/2Explanation1		
	Propagation of wayes along a straight path from the		
	transmitting antenna to receiving antenna, using line of sight (LOC) communication is called space wave propagation.	1	
	Relevant system of communication: Television broadcast, microwave links and satellite communication (any one)	1/2	
	'Radio horizon' equals the distance between the transmitting antenna and the point on the earth where the direct waves get blocked due to the curvature of the earth.	1⁄2	
	[Also accept $d = \sqrt{2hR}$; h = height of transmitting antenna, R = Radius of the earth.]		
	At frequencies above 40 MHz, relatively smaller antennas are needed and communication is essentially limited to line of	1	

	sight paths.		
	[Alternatively, At frequencies (more than 40 MHz), e.m. waves do not get bent or reflected by ionosphere. Therefore space wave propagation has to be used for frequencies above 40 MHz.]	1	3
Q22	Derivation of instantaneous current2Derivation of average power dissipated1		
	Given $V = V_0 \sin wt$ $V = L \frac{di}{dt} \Longrightarrow di = \frac{V}{L} dt$	1⁄2	
	$\therefore di = \frac{V_0}{\sin wt} dt$	1/2	
	Integrating $i = -\frac{V_0}{wL}\cos wt$ $\therefore i = -\frac{V_0}{wL}\sin(\pi/2 - wt) = I_0\sin(\pi/2 - wt)$ where $I_0 = \frac{V_0}{wL}$	1/2 1/2	
	Average power $P_{av} = \int_{0}^{T} vidt$ $= \frac{-V_{0}^{2}}{mt} \int_{0}^{T} \sin wt \cos wt dt$	1⁄2	
	$=\frac{-V_0^2}{2wL}\int_0^T\sin(2wt)dt$		
	=0	1/2	3
Q23	Values displayed1 + 1Usefulness of solar panels1/2Name of semiconductor device1/2Diagram of the device1/2Working of device1/2		
	a) Value displayed by mother:		

 MN		
and $\tan \angle NIM = \frac{MN}{MI}$		
For ΔNOC , i is exterior angle, therefore		
$i = \angle NOM + \angle NCM = \frac{MN}{OM} + \frac{MN}{MC}$	1/2	
Similarly $\mathbf{r} = \frac{MN}{MC} - \frac{MN}{MI}$	1/2	
For small angles Snells law can be written as		
$n_1 \mathbf{i} = n_2 r$		
$\therefore \frac{n_1}{OM} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$	1/2	
\therefore OM= - u, MI = +v MC= +R (using sign conversion)		
$\therefore \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$	1/2	
(b) Lens Maker's formula is		
$\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2	
$\therefore \frac{1}{20} = (1.6 - 1)(\frac{1}{R_1} - \frac{1}{R_2})$		
$\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$	1/2	
Let f be the focal length of the lens in water		
$\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3}$	1/2	
Or $f' = \frac{120 \times 1.3}{3} = 52cm$	1/2	5
OR		
(a) Diagram ¹ / ₂		
Obtaining the relation3(b) Numerical1½		

	(a) A M_{38} P B C S	1/2	
	From fig $\angle A + \angle QNR = 180^{\circ}$ (1) From triangle $\triangle QNR$ $r_{1+}r_2 + \angle QNR = 180^{\circ}$ (2)	1/2	
	Hence from equ (1) &(2) $\therefore \angle A = r_1 + r_2$ The angle of deviation	1/2	
	$\delta = (i - r_1) + (e - r_2) = i + e - A$ At minimum deviation i=e and $r_1 = r_2$	1/2	
	$\therefore r = \frac{A}{2}$ $A + \delta m$	1/2	
	And $i = \frac{1}{2}$ Hence refractive index	1/2	
	$\mu = \frac{\sin i}{\sin r} = \frac{\sin\left(\frac{A+\delta m}{2}\right)}{\sin A/2}$	1/2	
	(b) From Snell's law $\mu_1 \sin i = \mu_2 sinr$ Given $\mu_1 = \sqrt{2}$, $\mu_2 = 1$ and $r = 90^0$ (just grazing)	1/2	
	$\therefore \sqrt{2} \sin i = 1 \sin 90^{\circ} \Longrightarrow \sin i \frac{1}{\sqrt{2}}$ $or \ i = 45^{\circ}$	1/2 1/2	5
Q25	 a) (i) Principle of potentiometer 1 How to increase sensitivity 1/2 (ii) Name of potentiometer 1/2 Reason 1/2 b) Formula 1/2 (i) Ratio of drift velocities in series 1 (ii) Ratio of drift velocities in parallel 1 a) (i) The potential difference across any length of wire is directly proportional to the length of wire is 		

area of cross section are constant i.e., $E(l) = \phi l$ where ϕ is the potential drop per unit length.	1	
It can be made more sensitive by decreasing current in the main circuit /decreasing potential gradient / increasing resistance put in series with the potentiometer wire	1⁄2	
ii) Detentiomator P	1/2	
II) Follentionieter \mathbf{D}	14	
Has smaller value of V/l (slope / potential gradient).	72	
b) In series, the current remains the same.	1/2	
$\bullet \xrightarrow{P_1} \xrightarrow{I} \xrightarrow{P_2} \bullet$		
<		
V		
$I = neA_1V_{d1} = neA_2V_{d2}$	1/2	
$\therefore \frac{v_{d1}}{r} = \frac{A_2}{r}$	1/2	
V_{d2} A_1	/2	
In parallel potential difference is same but currents are different.		
$V = I P = naA V \frac{\varrho l}{\rho} = naQV l$	14	
$v = I_1 K_1 = h e A_1 v_{d1} \frac{1}{A_1} = h e g v_{d1} t$	72	
Similarly, $V = I_2 R_2 = ne \varrho V_{d2} l$		
$I_1 R_1 = I_2 R_2$	1/2	5
$\frac{1}{V} \frac{V_{d1}}{V} = 1$		
(a) Definition of capacitance 1		
Obtaining capacitance 2		
(b) Ratio of capacitances 2		
 a) Capacitance equals the magnitude of the charge on each plate needed to raise the potential difference between the plates by unity. OR [The capacitance is defined as 	1	
$c = \frac{q}{1}$		
$c = \overline{V}_1$		

	$C_{1} = K \frac{\epsilon_{0}A}{\left(\frac{3}{4}d\right)}$ $C_{2} = \frac{\epsilon_{0}A}{\left(\frac{1}{4}d\right)}$	1/2	
	$\therefore C = \frac{C_1 C_2}{C_1 C_2} = \frac{\left(\frac{(4^{-1})}{(\frac{3}{4}d)}\right)\left(\frac{\epsilon_0 A}{(\frac{1}{4}d)}\right)}{(\frac{1}{4}d)}$	1/2	
	$= \frac{4}{(3+k)} \frac{\epsilon_0 A}{d} = \frac{4}{(3+k)} C_0$ $= \frac{4}{(3-k)} \frac{\epsilon_0 A}{d} = \frac{4}{(3+k)} C_0$	1/2	
	$\frac{1}{c_0} - \frac{1}{k+3}$	1⁄2	5
Q26	a) Statement of Faraday's Law 1 b) Calculation of current 2 Graph of current 1 c) Lenz's Law 1 (a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. [Alternately: $e = -\frac{d\varphi}{dt}$] (b) Area= $\pi R^2 = \pi X 1.44 X 10^{-2}m^2$ $= 4.5 X 10^{-2}m^2$ For 0 <t<2 Emf $e_1 = \frac{d\varphi_1}{dt} = -A\frac{dB}{dt}$ $=-4.5 X 10^{-2}X\frac{1}{2}$ $I_1 = -\frac{e_1}{R} = -\frac{2.25 X 10^{-2}}{8.5} = -2.7 mA$ For 2<t<4 $I_2 = \frac{e_2}{R} = 0$ For 4<t<6 $I_3 = -\frac{e_3}{R} = +2.7 mA$</t<6 </t<4 </t<2 	1 1/2 1/2 1/2 1/2	

