Strictly Confidential (For Internal and Restricted Use only) Senior School Certificate Examination
 Marking Scheme - Physics (Code 55/2/1, Code 55/2/2, Code 55/2/3)

1. The marking scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the marking scheme are suggested answers. The content is thus indicated. If a student has given any other answer, which is different from the one given in the marking scheme, but conveys the meaning correctly, such answers should be given full weightage.
2. In value based questions, any other individual response with suitable justification should also be accepted even if there is no reference to the text.
3. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration. Marking scheme should be adhered to and religiously followed.
4. If a question has parts, please award in the right hand side for each part. Marks awarded for different part of the question should then be totaled up and written in the left hand margin and circled.
5. If a question does not have any parts, marks are to be awarded in the left hand margin only.
6. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
7. No marks are to be deducted for the cumulative effect of an error. The student should be penalized only once.
8. Deduct $1 / 2$ mark for writing wrong units, missing units, in the final answer to numerical problems.
9. Formula can be taken as implied from the calculations even if not explicitly written.
10. In short answer type question, asking for two features / characteristics / properties if a candidate writes three features, characteristics / properties or more, only the correct two should be evaluated.
11. Full marks should be awarded to a candidate if his / her answer in a numerical problem is close to the value given in the scheme.
12. In compliance to the judgement of the Hon'ble Supreme Court of India, Board has decided to provide photocopy of the answer book(s) to the candidates who will apply for it along with the requisite fee. Therefore, it is all the more important that the evaluation is done strictly as per the value points given in the marking scheme so that the Board could be in a position to defend the evaluation at any forum.
13. The Examiner shall also have to certify in the answer book that they have evaluated the answer book strictly in accordance with the value points given in the marking scheme and correct set of question paper.
14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title paper, correctly totaled and written in figures and words.
15. In the past it has been observed that the following are the common types of errors committed by the Examiners

- Leaving answer or part thereof unassessed in an answer script.
- Giving more marks for an answer than assigned to it or deviation from the marking scheme.
- Wrong transference of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transference to marks from the answer book to award list.
- Answer marked as correct $(\sqrt{ })$ but marks not awarded.
- Half or part of answer marked correct $(\sqrt{ })$ and the rest as wrong (\times) but no marks awarded.

16. Any unassessed portion, non carrying over of marks to the title page or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

MARKING SCHEME

Set1 Q10	Formula $1 / 2$ Image distance for $\|u\| \leq\|f+x\|$ $1 / 2$ Image distance where $\|x\| \leq\|f\|$ 1 $\frac{1}{v}+\frac{1}{u}=\frac{1}{f} \quad(f$ is negative $)$ $\mathrm{U}=-\mathrm{f} \Rightarrow \frac{1}{v}=0 \Rightarrow v=\infty$ $\mathrm{U}=-2 \mathrm{f} \Rightarrow \frac{v^{v}}{v}=\frac{-1}{2 f} \Rightarrow v=-2 f$ Hence if $-2 \mathrm{f}<\mathrm{u}<-\mathrm{f} \Rightarrow-2 f<v<\infty$ [Alternatively $\begin{aligned} & 2 f>u>f \\ & -\frac{1}{2 f}>-\frac{1}{u}>-\frac{1}{f} \\ & \frac{1}{f}-\frac{1}{2 f}>\frac{1}{f}-\frac{1}{u}>\frac{1}{f}-\frac{1}{f} \\ & \frac{1}{2 f}<\frac{1}{V}<0 \\ & 2 \mathrm{f}<\mathrm{V}<\propto] \end{aligned}$ OR (a) $m=-\frac{f_{0}}{f_{e}}$ By increasing $f_{0} /$ decreasing f_{e} (b) Any two (i) No chromatic aberration. (ii) No spherical aberration. (iii) Mechanical advantage - low weight, easier to support. (iv) Mirrors are easy to prepare. (v) More economical	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ \\ \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ \\ \\ 1 / 2 \\ 1 / 2 \end{gathered}$	2
	SECTION C		
Set1 Q11	a) Definition 1 Explanation $1 / 2$ b) Determination of modulation index $1 / 2$ Side bands $(1 / 2+1 / 2)$ a) $\mu=\frac{A_{m}}{A_{c}}$ $\mu \leq 1$ to avoid distortion of signal.	1 $1 / 2$	

		$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3
Set1 Q12	Bohr quantum condition $1 / 2$ Expression for Time period $21 / 2$ $m v r=\frac{n h}{2 \pi} \quad$---- Bohr postulate Also, $\frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}}$ $\Leftrightarrow m v^{2} r=\frac{e^{2}}{4 \pi \epsilon_{0}}$ $\therefore v=\frac{e^{2}}{4 \pi \epsilon_{0}} X \frac{2 \pi}{n h}=\frac{e^{2}}{2 \epsilon_{0} n h}$ $T=\frac{2 \pi r}{v}=\frac{2 \pi m v r}{m v^{2}}$ $=\frac{2 \pi\left(\frac{n h}{2 \pi}\right)}{m\left(\frac{e^{2}}{2 \epsilon_{0} n h}\right)^{2}}$ $=\frac{4 n^{3} h^{3} \epsilon_{0}^{2}}{m e^{4}}$ (Also accept if the student calculates T by obtaining expressions for both v and r.)	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
Set1 Q13	Expression for electric field $11 / 2$ Expression for potential $1 / 2$ Plot of graph $\left(\mathrm{E} V_{s} r\right)$ $1 / 2$ Plot of graph $\left(\mathrm{V} V_{s} \mathrm{r}\right)$ $1 / 2$ By Gauss theorem $\oint \vec{E} . \mathrm{d} \vec{s}=\frac{q}{E_{0}}$ $\mathrm{q}=0$ in interval $0<\mathrm{x}<\mathrm{R}$ $\begin{aligned} & \Rightarrow E=0 \\ & \mathrm{E}=-\frac{d V}{d r} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	

	$\Rightarrow V=$ constant $=\frac{1}{4 \pi E_{0}} \frac{Q}{R}$ [Even if a student draws E and V for $0<\mathrm{r}<\mathrm{R}$ award $1 / 2+1 / 2$ mark.]	1/2	3
Set1 Q14	Value of current 1 Value of voltage 1 Value of charge 1		

	In loop ACDFA $I=\frac{12-6}{(1+2)}=2 \mathrm{~A}$ $\begin{aligned} & V_{A F}=V_{B E} \\ & \Rightarrow 6+2=6+V_{c} \\ & \Rightarrow V_{c}=2 V \end{aligned}$ Charge $\mathrm{Q}=\mathrm{C} V_{c}=5 \mu F \times 2 V=10 \mu C$	$\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2 \\ 1 \end{gathered}$	3
Set1 Q15	Gauss's theorm Diagram Electric field between the cylinders Electric field outside the cylinders As Gauss's Law states $\oint \vec{E} \cdot \overrightarrow{d s}=\frac{q}{\epsilon_{0}}$ $\begin{aligned} & \text { (i) } \oint \overrightarrow{E_{1}} \cdot \overrightarrow{d s}=\frac{\lambda_{1} l}{\epsilon_{0}} \\ \Rightarrow & \overrightarrow{E_{1}}=\frac{\lambda_{1}}{2 \pi \epsilon_{0} r_{1}} \widehat{r_{1}} \end{aligned}$ (ii) $\oint \overrightarrow{E_{2}} \cdot \overrightarrow{d s}=\frac{\left(\lambda_{1}-\lambda_{2}\right) l}{\epsilon_{0}}$ $\Rightarrow \overrightarrow{E_{2}}=\frac{\left(\lambda_{1}-\lambda_{2}\right)}{2 \pi \epsilon_{0} r_{2}} \widehat{r_{2}}$	1/2	3
Set1 Q16	Biot Savart's Law $1 / 2$ mark Deduction of Expression 2 marks Direction of magnetic field $1 / 2$ mark		

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\(B_{3}=\frac{\mu_{0}}{4 \pi} \frac{2(4 I)}{3 r}=\frac{\mu_{0}}{4 \pi}\left(\frac{8 I}{3 r}\right)\) out of the plane of the paper/(〇). \\
\(B_{A}=B_{2}-B_{3}\) into the paper. \\
\(=\frac{\mu_{0}}{4 \pi}\left(\frac{10 I}{3 r}\right)\) into the paper. \((\otimes)\) \\
(ii) \(\quad F_{21}=\frac{\mu_{0}}{4 \pi} \frac{2 I(3 I)}{r}\) away from wire1 (/towards 3) \\
\(F_{23}=\frac{\mu_{0}}{4 \pi} \frac{2(3 I)(4 I)}{2 r}\) away from wire 3 (towards 1) \\
\(F_{\text {net }}=F_{23}-F_{21}\) towards wire1 \\
\(=\frac{\mu_{0}}{4 \pi} \frac{6(I)^{2}}{r}\) towards wire 1
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 3

\hline Set1 Q17 \& | Statement - 1
 S.I Unit - $1 / 2$
 Formula- $1 / 2$
 Calculation of number of nuclei 1 |
| :--- |
| (a) Statement : Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. |
| [Alternatively: $-\frac{d N}{d t} \propto N$] |
| Unit- becquerel(Bq) |
| (b) $\begin{aligned} & N=N_{0} e^{-\lambda t} / \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} \\ & \mathrm{n}=\frac{t}{T_{1 / 2}}=\frac{10}{20}=\frac{1}{2} \\ & \Rightarrow N=4 \sqrt{ } 2 \times 10^{6} \times\left(\frac{1}{2}\right)^{1 / 2} \\ & =4 \times 10^{6} \text { nuclei } \end{aligned}$ | \& 1

$11 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline Set1 Q18 \& | (a) Explanation of production of em waves $11 / 2$
 (b) Depiction of em waves $1^{11 / 2}$ |
| :--- |
| (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each other, they then propagate in space. | \& $11 / 2$ \&

\hline
\end{tabular}

	[Alternatively, if a student writes Electromagnetic waves are produced by oscillating electric and magnetic fields / oscillating charges produce em waves. Award 1 mark]	$11 / 2$	3
Set1 Q19	Given $V=V_{0} \sin w t$ $V=L \frac{d i}{d t} \Rightarrow d i=\frac{V}{L} d t$ $\therefore d i=\frac{\mathrm{V}_{0}}{L} \sin w t d t$ $v=v_{0} \sin \omega t$ Integrating $i=-\frac{V_{0}}{w L} \cos w t$ $\therefore i=-\frac{\mathrm{V}_{0}}{w L} \sin (\pi / 2-w t)=I_{0} \sin (\pi / 2-w t)$ where $I_{0}=\frac{V_{0}}{w L}$ Average power $\begin{aligned} & P_{a v}=\int_{0}^{T} v i d t \\ & =\frac{-V_{0}^{2}}{w L} \int_{0}^{T} \sin w t \cos w t d t \\ & =\frac{-V_{0}^{2}}{2 w L} \int_{0}^{T} \sin (2 w t) d t \\ & =0 \end{aligned}$	1/2	3

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \\
\hline \multirow[t]{3}{*}{Set1 Q20} \& \begin{tabular}{l}
a) Graph of photo current vs collector potential for different frequencies \\
b) Einstein's photo electric equation Explanation of graph \\
c) Graph of photocurrent with collector potential for different intensities
\end{tabular} \& \& \\
\hline \& (a) \& 1 \& \\
\hline \& \begin{tabular}{l}
(b) According to Einstein's photoelectric equation
\[
K_{\max }=h v-\emptyset_{0}
\] \\
If \(V_{0}\) is stopping potential then
\[
e V_{0}=h v-\emptyset
\] \\
Thus for different value of frequency \((v)\) there will be a different value of cut off potential \(V_{0}\). \\
(c)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

1 \& 3

\hline \multirow[t]{2}{*}{Set1 Q21} \& | (a) Condition for charge going undeflected | 1 |
| :--- | :--- |
| (b) Formula for radius | $11 / 2$ |
| \quad Calculation of radius | 112 | \& \&

\hline \& | (a) The force experienced $\vec{F}=q(\vec{v} \times \vec{B})$ |
| :--- |
| The charge will go undeflected when \vec{v} is parallel or | \& $1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
antiparallel to \(\vec{B} \because \vec{F}=0\). \\
[Alternatively, \\
If \(\vec{v}\) makes an angle of \(0^{0}\) or \(180^{\circ}\) with \(\vec{B}\).] \\
(b) The radius of electron
\[
\begin{gathered}
e V=\frac{1}{2} m v^{2} \\
\frac{m v^{2}}{r}=q v B \\
\therefore r=\frac{1}{B} \sqrt{\frac{2 m V}{e}} \\
=\left[\sqrt{\frac{2 X 9.1 \times 10^{-31} \times 10^{4}}{1.6 \times 10^{-19}}} \times \frac{1}{0.04}\right] m \\
=8.4 \times 10^{-3} \mathrm{~m}
\end{gathered}
\]
\end{tabular} \& 1/2 \& 3 \\
\hline Set1 Q22 \& \begin{tabular}{l}
The path difference
\[
\begin{aligned}
\& N P-L P=N Q \\
\& =a \sin \theta \simeq a \theta
\end{aligned}
\] \\
By dividing the slit into an appropriate number of parts, we find that points \(P\) for which \\
i) \(\quad \theta=\frac{n \lambda}{a}\) are points of minima. \\
ii) \(\quad \theta=\left(n+\frac{1}{2}\right) \frac{\lambda}{a}\) are points of maxima
\end{tabular} \& \(1 / 2\)

$1 / 1 / 2$
$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& combination of two capacitors.
\[
\begin{gathered}
C_{1}=K \frac{\epsilon_{0} A}{\left(\frac{3}{4} d\right)} \\
C_{2}=\frac{\epsilon_{0} A}{\left(\frac{1}{4} d\right)} \\
=\frac{4}{(3+k)} \frac{\left(K \frac{\epsilon_{0} A}{\left(\frac{3}{4} d\right)}\right)\left(\frac{\epsilon_{0} A}{\left(\frac{1}{4} d\right)}\right)}{\frac{\epsilon_{0} A}{d}\left[\frac{4}{3} k+4\right]} \frac{4}{C_{1}+C_{2}}=\frac{C_{1} C_{2}}{(3+k)} C_{0} \\
\left.\frac{c}{c_{0}}=\frac{4}{k+3}\right]
\end{gathered}
\] \& \(1 / 2\)
\(11 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 5 \\
\hline Set1 Q25 \& \begin{tabular}{l}
\begin{tabular}{lll}
a) Statement of Faraday's Law \& 1 \\
b) Calculation of current \& 2 \\
\& Graph of current \& 1 \\
c) Lenz's Law \& 1 \\
\hline
\end{tabular} \\
(a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. \\
[Alternately: \(e=-\frac{d \phi}{d t}\)] \\
(b)
\[
\begin{array}{r}
\text { Area }=\pi R^{2}=\pi \times 1.44 \times 10^{-2} \mathrm{~m}^{2} \\
=4.5 \times 10^{-2} \mathrm{~m}^{2}
\end{array}
\] \\
For \(0<t<2\) \\
\(\operatorname{Emf} e_{1}=\frac{d \emptyset_{1}}{d t}=-A \frac{d B}{d t}\)
\[
\begin{aligned}
\& =-4.5 \times 10^{-2} \times \frac{1}{2} \\
\& I_{1}=-\frac{e_{1}}{R}=-\frac{2.25 \times 10^{-2}}{8.5}=-2.7 \mathrm{~mA}
\end{aligned}
\] \\
For \(2<\mathrm{t}<4\)
\[
I_{2}=\frac{e_{2}}{R}=0
\] \\
For \(4<\mathrm{t}<6\)
\[
I_{3}=-\frac{e_{3}}{R}=+2.7 \mathrm{~mA}
\]
\end{tabular} \& 1

$11 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

	Working principle Whenever current in one coil changes an emf gets induced in the neighboring coil /Principle of mutual induction Voltage across secondary. $V_{s}=e_{s}=-N_{s} \frac{d \phi}{d t}$ Voltage across primary $\begin{gathered} V_{p}=e_{p}=-N_{p} \frac{d \phi}{d t} \\ \frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}} \quad\left(\text { here } N_{s}>N_{p}\right) \end{gathered}$ In an Ideal transformer Power Input= Power Input $\begin{aligned} & I_{p} V_{p}=I_{s} V_{s} \\ & \frac{V_{s}}{V_{p}}=\frac{I_{p}}{I_{s}} \\ & \therefore \frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}=\frac{I_{p}}{I_{s}} \end{aligned}$ (b) Input power, $P_{i}=I_{i} . V_{i}=15 \times 100$ $=1500 \mathrm{~W}$ Power output, $P_{0}=P_{i} \times \frac{90}{100}=1350 \mathrm{~W}$ $\Rightarrow I_{0} V_{0}-1350 \mathrm{~W}$ Output voltage, $V_{0}=\frac{1350}{3} \mathrm{~V}=450 \mathrm{~V}$	1/2	5
Set1 Q26	a) Diagram 1 Derivation of the relation 2 b) Lens Maker's formula - $1 / 2$ Calculation of f in water - $11 / 2$		

MARKING SCHEME

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{gathered}
I=n e A_{1} V_{d 1}=n e A_{2} V_{d 2} \\
\therefore \frac{V_{d 1}}{V_{d 2}}=\frac{A_{2}}{A_{1}}
\end{gathered}
\] \\
In parallel potential difference is same but currents are different.
\[
V=I_{1} R_{1}=n e A_{1} V_{d 1} \frac{\varrho l}{A_{1}}=n e \varrho V_{d 1} l
\] \\
Similarly, \(V=I_{2} R_{2}=n e \varrho V_{d 2} l\)
\[
\begin{aligned}
\& I_{1} R_{1}=I_{2} R_{2} \\
\& \quad \therefore \frac{V_{d 1}}{V_{d 2}}=1
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2 \\
\hline Q7 \& \begin{tabular}{|lr|}
\hline \begin{tabular}{l}
Distinguishing the two nodes \\
One example of each
\end{tabular} \& \begin{tabular}{c}
\((1 / 2+1 / 2)\) \\
\((1 / 2+1 / 2)\)
\end{tabular} \\
\hline \begin{tabular}{l}
In point-to-point communication mode, communication takes place \\
over a link between a single transmitter and a single receiver.
\end{tabular} \\
\begin{tabular}{l}
In the broadcast mode, there are a large number of receivers \\
corresponding to a single transmitter.
\end{tabular} \\
Example: Point-to-point: telephone (any other) \\
Broadcast: \(\quad\) T.V., Radio (any other) \\
\hline
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2 \\
\hline Q8 \& \begin{tabular}{l}
Formula \\
Image distance for \(|u| \leq|f+x|\) \\
Image distance where \(|x| \leq|f|\)
\end{tabular}
\begin{tabular}{l}
\(\frac{1}{v}+\frac{1}{u}=\frac{1}{f} \quad(f\) is negative \()\) \\
\(\mathrm{U}=-\mathrm{f} \Rightarrow \frac{1}{v}=0 \Longrightarrow v=\infty\) \\
\(\mathrm{U}=-2 \mathrm{f} \Rightarrow \frac{1}{v}=\frac{-1}{2 f} \Longrightarrow v=-2 f\) \\
Hence if \(-2 \mathrm{f}<\mathrm{u}<-\mathrm{f} \Rightarrow-2 f<v<\infty\) \\
[Alternatively \\
\(2 f>u>f\) \\
\(-\frac{1}{2 f}>-\frac{1}{u}>-\frac{1}{f}\) \\
\(\frac{1}{f}-\frac{1}{2 f}>\frac{1}{f}-\frac{1}{u}>\frac{1}{f}-\frac{1}{f}\) \\
\(\frac{1}{2 f}<\frac{1}{V}<0\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 2

2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\therefore \frac{r_{p}}{r_{\alpha}}=\frac{q_{\alpha}}{q_{p}} \quad=2
\] \\
ii) \(r=\frac{m v}{q B}=\frac{1}{B} \sqrt{\frac{2 m V}{q}}\) for proton \(r_{p}=\frac{1}{B} \sqrt{\frac{2 m_{p} V}{q_{p}}}\) and for \(\alpha\) particles \(r_{\alpha}=\frac{1}{B} \sqrt{\frac{2 m_{\alpha} V}{q_{\alpha}}}\)
\[
\begin{aligned}
\therefore \frac{r_{p}}{r_{\alpha}} \& =\sqrt{\frac{m_{p}}{q_{p}} \frac{q_{\alpha}}{m_{\alpha}}} \\
\& =\sqrt{\frac{2}{4}}=\frac{1}{\sqrt{2}}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 3

\hline Q14 \& | Diagram | $1 / 2$ |
| :--- | ---: |
| Path Difference | 112 |
| Condition for minima | $1 / 2$ |
| Condition for maxima | $1 / 2$ |
| Width of central maxima | $1 / 2$ |
| Width of secondary maxima | $1 / 2$ | \& \&

\hline \& | The path difference $\begin{aligned} & N P-L P=N Q \\ & =a \sin \theta \simeq a \theta \end{aligned}$ |
| :--- |
| By dividing the slit into an appropriate number of parts, we find that points P for which |
| i) $\quad \theta=\frac{n \lambda}{a}$ are points of minima. |
| ii) $\quad \theta=\left(n+\frac{1}{2}\right) \frac{\lambda}{a}$ are points of maxima | \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Angular width of central maxima, \(\theta=\theta_{1}-\theta_{-1}\)
\[
\begin{gathered}
=\frac{\lambda}{a}-\left(-\frac{\lambda}{a}\right) \\
\theta=\frac{2 \lambda}{a}
\end{gathered}
\] \\
Angular width of secondary maxima \(=\theta_{2}-\theta_{1}\)
\[
=\frac{2 \lambda}{a}-\frac{\lambda}{a}=\frac{\lambda}{a}
\] \\
\(=\frac{1}{2} \mathrm{X}\) Angular width of central maxima
\end{tabular} \& \(1 / 2\)

$1 / 2$ \& 3

\hline Q15 \& | Bohr quantum condition $1 / 2$
 Expression for Time period $21 / 2$ |
| :--- |
| $m v r=\frac{n h}{2 \pi} \quad$---- Bohr postulate |
| Also, $\frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}}$ $\Leftrightarrow m v^{2} r=\frac{e^{2}}{4 \pi \epsilon_{0}}$ $\therefore v=\frac{e^{2}}{4 \pi \epsilon_{0}} X \frac{2 \pi}{n h}=\frac{e^{2}}{2 \epsilon_{0} n h}$ $T=\frac{2 \pi r}{v}=\frac{2 \pi m v r}{m v^{2}}$ $=\frac{2 \pi\left(\frac{n h}{2 \pi}\right)}{m\left(\frac{e^{2}}{2 \epsilon_{0} n h}\right)^{2}}$ $=\frac{4 n^{3} h^{3} \epsilon_{0}^{2}}{m e^{4}}$ |
| (Also accept if the student calculates T by obtaining expressions for both v and r.) | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline Q16 \& | Calculation of current $1 \frac{1}{2}$
 Calculation of potential across capacitor $11 / 2$ |
| :--- |
| In steady state branch BE is eliminated $\begin{gathered} I=\frac{10 \mathrm{~V}-5 \mathrm{~V}}{(3+2) \Omega} \mathrm{A} \\ =1 \mathrm{~A} \end{gathered}$ |
| For loop EBCDE $-v_{c}-5+10-3 \times 1=0$ | \& $1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& --V_{c}+10-8=0 \\
\& \therefore V_{c}=2 \text { volt }
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \& 3 \\
\hline Q17 \& \begin{tabular}{l}
(a) Explanation of production of em waves \\
(b) Depiction of em waves \\
(a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each other, they then propagate in space. \\
[Alternatively, if a student writes \\
Electromagnetic waves are produced by oscillating electric and magnetic fields / oscillating charges produce em waves. Award 1 mark]
\end{tabular} \& \(11 / 2\)

1112 \& 3

\hline Q18 \& | a) Process of $\bar{\beta}$ decay 1
 Explanation of emission of β particles 1
 Reason $1 / 2$
 b) Correct identification $1 / 2$ |
| :--- |
| (a) A nucleus, that spontaneously decays by emitting an electron, or a positron, is said to undergo β decay [Alternatively ${ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{Z+1}^{A} \mathrm{Y}+e^{-}+\bar{v}$ (antineutrino) ${ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{Z-1}^{A} \mathrm{Y}+e^{+}+v \text { (neutrino)] }$ |
| [Any one] |
| During β decay, nucleons undergo a transformation. We can have $n \rightarrow p+e^{-}+\bar{v}$ |
| \rightarrow A neutron converts into a proton and an electron [Alternatively $p \rightarrow n+e^{+}+v$ |
| [A proton converts into a neutron and a positron] It is because the neutrinos, or antineutrino, carry off different amounts of energy. | \& 1

1
$1 / 2$ \&

\hline
\end{tabular}

	(b) The daughter nuclei have more binding energy per nucleon.	1/2	3
Q19	Sky wave propagation 1 Frequency range, reason 1 Frequency range through free space 1 In sky wave propagation, long distance communication is achieved by ionospheric reflection of radio waves back towards the earth. The frequency range is from a few Mega hertz to 30/40 Mega hertz. The ionospheric layers can act as a reflector over the frequency range (3 MHz to $30 / 40 \mathrm{MHz}$). Higher frequencies penetrate through it. The frequency range for communication of radio waves through free space is the entire range of radio frequencies, i.e. a few hundred kHz to a few GHz. (waves having frequency beyond 40 MHz)	1 1	3
Q20	(a) Plotting of graph $1 / 2$ Marking saturation current $1 / 2$ Marking stopping potential $1 / 2$ (b) Photoelectric equation $1 / 2$ Calculation of increases in stopping potential 1 (a) Graph: (b) We know that $\mathrm{e} V_{0}=h v-\phi$ $\therefore e V_{1}=\mathrm{h} v_{1}-\phi$ and $e V_{2}=h v_{2}-\phi$ Increase in potential $\begin{gathered} \therefore V_{2}-V_{1}=\frac{h}{e}\left(v_{2}-v_{1}\right) \\ =\frac{6.63 \times 10^{-34}}{1.6 \times 10^{-19}}\left(8 \times 10^{15}-4 \times 10^{15}\right) \mathrm{V} \\ =16.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1 / 2+1 / 2+ \\ 1 / 2 \\ 1 / 2 \\ \\ 1 / 2 \end{gathered}$	3

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\(B_{3}=\frac{\mu_{0}}{4 \pi} \frac{2(4 I)}{3 r}=\frac{\mu_{0}}{4 \pi}\left(\frac{8 I}{3 r}\right)\) out of the plane of the paper/(\(\left.\odot\right)\). \\
\(B_{A}=B_{2}-B_{3}\) into the paper. \\
\(=\frac{\mu_{0}}{4 \pi}\left(\frac{10 I}{3 r}\right)\) into the plane of the paper. \((\otimes)\) \\
(ii) \(F_{21}=\frac{\mu_{0}}{4 \pi} \frac{2 I(3 I)}{r}\) away from wire1 (/towards 3) \\
\(F_{23}=\frac{\mu_{0}}{4 \pi} \frac{2(3 I)(4 I)}{2 r}\) away from wire 3 (towards 1) \\
\(\mathrm{F}_{\text {net }}=\mathrm{F}_{23}-\mathrm{F}_{21}\) towards wire1 \\
\(=\frac{\mu_{0}}{4 \pi} \frac{6(I)^{2}}{r}\) towards wire 1
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline \multirow[t]{3}{*}{Q23} \& \begin{tabular}{lc}
Values displayed \& \(1+1\) \\
Usefulness of solar panels \& \(1 / 2\) \\
Name of semiconductor device \& \(1 / 2\) \\
Diagram of the device \& \(1 / 2\) \\
Working of device \& \(1 / 2\)
\end{tabular} \& \& \\
\hline \& \begin{tabular}{l}
a) Value displayed by mother: \\
Inquisitive / scientific temperament / wants to learn / any other. \\
Value displayed by Sunil: \\
Knowledgeable / helpful/ considerate \\
b) Provide clean / green energy Reduces dependence on fossil fuels, Environment friendly energy source. \\
c) Solar Cell
\end{tabular} \& 1
1
1
\(1 / 2\)
\(1 / 2\) \& \\
\hline \& \begin{tabular}{l}
(full marks for any one figure out of a \& b) \\
Working: When light falls on the device the solar cell generates an emf.
\end{tabular} \& \(1 / 2\)

$1 / 2$ \& 4

\hline
\end{tabular}

	$\begin{aligned} & \therefore \frac{1}{20}=(1.6-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\ & \quad \therefore\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\frac{1}{20 \times 0.6}=\frac{1}{12} \end{aligned}$ Let f be the focal length of the lens in water $\therefore \frac{1}{f^{\prime}}=\frac{1.6-1.3}{1.3}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\frac{0.3}{12 \times 1.3}$ Or $f^{\prime}=\frac{120 \times 1.3}{3}=52 \mathrm{~cm}$ OR (a) Diagram Obtaining the relation (b) Numerical (a) From fig $\angle A+\angle Q N R=180^{\circ}$ From triangle $\triangle Q N R \quad r_{1+} r_{2}+\angle Q N R=180^{\circ}$ Hence from equ (1) \&(2) $\therefore \angle A=r_{1}+r_{2}$ The angle of deviation $\delta=\left(i-r_{1}\right)+\left(\mathrm{e}-r_{2}\right)=\mathrm{i}+\mathrm{e}-\mathrm{A}$ At minimum deviation $\mathrm{i}=\mathrm{e}$ and $r_{1}=r_{2}$ $\therefore r=\frac{A}{2}$ And $\mathrm{i}=\frac{A+\delta m}{2}$ Hence refractive index $\mu=\frac{\sin i}{\sin r}=\frac{\sin \left(\frac{A+\delta m}{2}\right)}{\sin A / 2}$	1/2	5

\begin{tabular}{|c|c|c|c|}
\hline \& (b) From Snell's law $\mu_{1} \sin i=\mu_{2} \operatorname{sinr}$ Given $\mu_{1}=\sqrt{2}, \mu_{2}=1$ and $\mathrm{r}=90^{\circ}$ (just grazing)
$$
\begin{aligned}
\therefore \sqrt{2} \sin \mathrm{i}=1 \sin 90^{\circ} \Rightarrow & \sin i \frac{1}{\sqrt{2}} \\
& \text { or } i=45^{\circ}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$
$1 / 2$ \& 5

\hline Q25 \& | a) | (i) Principle of potentiometer | 1 |
| :--- | :--- | :--- |
| | How to increase sensitivity | $1 / 2$ |
| | (ii) Name of potentiometer | $1 / 2$ |
| | Reason | $1 / 2$ |
| b) | Formula | $1 / 2$ |
| | (i) Ratio of drift velocities in series | 1 |
| | (ii) Ratio of drift velocities in parallel | 1 | \& \&

\hline \& | a) (i) The potential difference across any length of wire is directly proportional to the length provided current and area of cross section are constant i.e., $E(l)=\phi l$ where ϕ is the potential drop per unit length. |
| :--- |
| It can be made more sensitive by decreasing current in the main circuit/decreasing potential gradient / increasing resistance put in series with the potentiometer wire. |
| ii) Potentiometer B |
| Has smaller value of V / l (slope / potential gradient). |
| b) In series, the current remains the same. $\begin{gathered} I=n e A_{1} V_{d 1}=n e A_{2} V_{d 2} \\ \therefore \frac{V_{d 1}}{V_{d 2}}=\frac{A_{2}}{A_{1}} \end{gathered}$ |
| In parallel potential difference is same but currents are different. $V=I_{1} R_{1}=n e A_{1} V_{d 1} \frac{\varrho l}{A_{1}}=n e \varrho V_{d 1} l$ |
| Similarly, $V=I_{2} R_{2}=n e \varrho V_{d 2} l$ $\begin{aligned} & I_{1} R_{1}=I_{2} R_{2} \\ & \quad \therefore \frac{V_{d 1}}{V_{d 2}}=1 \end{aligned}$ |
| OR | \& 1

$11 / 2$
$1 / 2$
$1 / 2$
$1 / 2$

$1 / 1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \therefore c=\left(\frac{4 k}{k+3}\right) \frac{\epsilon_{0} A}{d} \\
\& \quad \therefore \frac{c}{c_{0}}=\frac{4 k}{k+3}
\end{aligned}
\] \\
[Alternatively, \\
The capacitance, with dielectric, can be treated as a series combination of two capacitors.
\[
\begin{aligned}
\& C_{1}=K \frac{\epsilon_{0} A}{\left(\frac{3}{4} d\right)} \\
\& C_{2}=\frac{\epsilon_{0} A}{\left(\frac{1}{4} d\right)} \\
\& \therefore C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=\frac{\left(K \frac{\epsilon_{0} A}{\left(\frac{3}{4} d\right)}\right)\left(\frac{\epsilon_{0} A}{\left(\frac{1}{4} d\right)}\right)}{\frac{\epsilon_{0} A}{d}\left[\frac{4}{3} k+4\right]} \\
\&=\frac{4}{(3+k)} \frac{\epsilon_{0} A}{d}=\frac{4}{(3+k)} C_{0} \\
\&\left.\frac{c}{c_{0}}=\frac{4}{k+3}\right]
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$ \& 5

\hline Q26 \& | a) Statement of Faraday's Law 1
 b) Calculation of current 2
 Graph of current 1
 c) Lenz's Law 1 |
| :--- |
| (a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. |
| [Alternately: $e=-\frac{d \emptyset}{d t}$] |
| (b) $\begin{array}{r} \text { Area }=\pi R^{2}=\pi \times 1.44 \times 10^{-2} \mathrm{~m}^{2} \\ =4.5 \times 10^{-2} \mathrm{~m}^{2} \end{array}$ |
| For $0<t<2$ |
| Emf $e_{1}=\frac{d \emptyset_{1}}{d t}=-A \frac{d B}{d t}$ $\begin{aligned} & =-4.5 \times 10^{-2} \times \frac{1}{2} \\ & \quad I_{1}=-\frac{e_{1}}{R}=-\frac{2.25 \times 10^{-2}}{8.5}=-2.7 \mathrm{~mA} \end{aligned}$ |
| For $2<\mathrm{t}<4$ $I_{2}=\frac{e_{2}}{R}=0$ | \& 1

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

MARKING SCHEME

	$\begin{aligned} & \mathrm{U}=-\mathrm{f} \Rightarrow \frac{1}{v}=0 \Rightarrow v=\infty \\ & \mathrm{U}=-2 \mathrm{f} \Rightarrow \frac{1}{v}=\frac{-1}{2 f} \Rightarrow v=-2 f \end{aligned}$ Hence if $-2 \mathrm{f}<\mathrm{u}<-\mathrm{f} \Rightarrow-2 f<v<\infty$ [Alternatively $\begin{aligned} & 2 f>u>f \\ & -\frac{1}{2 f}>-\frac{1}{u}>-\frac{1}{f} \\ & \frac{1}{f}-\frac{1}{2 f}>\frac{1}{f}-\frac{1}{u}>\frac{1}{f}-\frac{1}{f} \\ & \frac{1}{2 f}<\frac{1}{V}<0 \\ & 2 \mathrm{f}<\mathrm{V}<\propto] \end{aligned}$ OR $m=-\frac{f_{0}}{f_{e}}$ By increasing $f_{0} /$ decreasing f_{e} (a) Any two (i) No chromatic aberration. (ii) No spherical aberration. (iii) Mechanical advantage - low weight, easier to support. (iv) Mirrors are easy to prepare. (v) More economical	$\begin{gathered} \hline 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ \\ 11 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ \\ 1 / 2 \\ 1 / 2 \\ 1 / 2+1 / 2 \end{gathered}$	$2{ }^{2}$
Q7	Formulae $1 / 2+1 / 2$ Finding Intensity $1 / 2+1 / 2$ Phase difference $=\frac{2 \pi}{\lambda} \times$ Path diffrence Path difference $\frac{\lambda}{6} \Rightarrow$ phase difference $=\frac{\pi}{3}$ Path difference $\frac{\lambda}{2} \Rightarrow$ phase difference $=\pi$ $I=4 I_{0} \cos ^{2}\left(\frac{\emptyset}{2}\right)$ i. $\quad I_{1}=4 I_{0} \times \frac{3}{4}=3 I_{0}$ ii. $\quad I_{2}=4 I_{0} \times 0=0$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

| Q8 | Circuit Diagram
 Working | |
| :--- | :--- | :--- | :--- | :--- |

	Any two differencesS.No Interference Diffraction 1 All fringes are equal in width Central bright maxima is twice as wide as the other maxima. 2 Intensity of all bright fringes is same. Intensity falls as we go to successive maxima away from centre. 3 Conditions for maxima and minima are opposite to diffraction pattern. Condition for maxima and minima are opposite to interference pattern. 4 Pattern is formed by superposing two waves originating from two narrow slits. Diffraction pattern is a superposition of wavelets originating from different parts of a single wavefront.	1 $1 / 2+1 / 2$	3
Q13	By Gauss's law $\oint \vec{E} \cdot \overrightarrow{d s}=\frac{q}{\epsilon_{0}}$ $\therefore 2 \mathrm{EA}=\frac{\sigma A}{\epsilon_{0}}$	$1 / 2$ $1 / 2$ $1 / 2$	

	$\therefore \mathrm{E}=\frac{\sigma}{2 \epsilon_{0}} \text { or } \vec{E}=\frac{\sigma}{2 \epsilon_{0}} A$ Electric field between two identical charged sheets \because Both the sheets have same charge density, their electric fields will be equal and opposite in the region between the two sheets. Hence the net field is zero. [Alternatively $\quad E_{1}=\frac{\sigma}{2 \epsilon_{0}}$ $E_{2}=-\frac{\sigma}{2 \epsilon_{0}}$ Resultant electric field between the plates $=E_{1}+E_{2}$ $\begin{aligned} & =\frac{\sigma}{2 \epsilon_{0}}-\frac{\sigma}{2 \epsilon_{0}} \\ & =0] \end{aligned}$	1/2	3
Q14	Value of current 1 Value of voltage 1 Value of charge 1 In loop ACDFA		

	$\begin{gathered} I=\left[\frac{8-4}{4+2}\right] \mathrm{A}=\frac{2}{3} \mathrm{~A} \\ V_{A F}=V_{B E} \\ \Rightarrow 4-2 \times \frac{2}{3}=4-V_{c} \\ \Rightarrow V_{c}=\frac{4}{3} \mathrm{~V} \end{gathered}$ Charge, $Q=C V_{c}$ $\begin{aligned} & \mathrm{Q}=\left(10 \mu \mathrm{~F} \times \frac{4}{3}\right) \\ & =13.33 \mu \mathrm{C} \end{aligned}$	1 $1 / 2$ $1 / 2$ 1	3
Q15	(a) Explanation of production of em waves $11 / 2$ (b) Depiction of em waves $11 / 2$ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each other, they then propagate in space. [Alternatively, if a student writes Electromagnetic waves are produced by oscillating electric and magnetic fields / oscillating charges produce em waves. Award 1 mark]	$11 / 2$ $11 / 2$	3
Q16	(a) Derivation 2 (b) Formula $1 / 2$ Calculation $1 / 2$ (a) $\quad N(t)=N_{0} e^{-\lambda t}$ When $t=T_{1 / 2} \Rightarrow N(t)=\frac{N_{0}}{2}$ $\therefore \frac{N_{0}}{2}=N_{0} e^{-\lambda} T_{1 / 2}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	

	$\begin{gathered} \Rightarrow \frac{1}{2}=e^{-\lambda} T_{1 / 2} \\ \Rightarrow-\lambda T_{\frac{1}{2}}=-\ln 2 \\ \Rightarrow T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}=\frac{0.693}{\lambda} \end{gathered}$ (b) $\quad \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} \quad n=\frac{t}{T_{1 / 2}}$ Given $\frac{N}{N_{0}}=\frac{1}{4}=\left(\frac{1}{2}\right)^{n}$ $\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{2}$ \therefore Number of half lives $=2$ $\begin{aligned} & \Rightarrow \frac{1000}{T_{1 / 2}}=2 \\ & \Rightarrow T_{\frac{1}{2}}=\frac{1000}{2}=500 \text { years } \end{aligned}$ Alternatively 1000 years $=2$ half lives \therefore Half life $=500$ years]		$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
Q17	Expression for electric field Expression for potential Plot of graph ($\mathrm{E} V_{s} r$) Plot of graph ($\mathrm{V} V_{S} \mathrm{r}$) By Gauss theorem $\oint \vec{E} . \mathrm{d} \vec{s}=\frac{q}{E_{0}}$ $\mathrm{q}=0$ in interval $0<\mathrm{x}<\mathrm{R}$ $\Rightarrow E=0$	$\begin{aligned} & 11 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	

	$\Rightarrow V=-\frac{d V}{d r}$ [Even if a student draws E and V for $0<r<\mathrm{R}$ award $1 / 2+1 / 2$ mark.]	$1 / 2$	3
Q18	Bohr quantum condition $1 / 2$ Expression for Time period $21 / 2$ $m v r=\frac{n h}{2 \pi}$ --- Bohr postulate Also, $\frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}}$ $\Leftrightarrow m v^{2} r=\frac{e^{2}}{4 \pi \epsilon_{0}}$ $\therefore v=\frac{e^{2}}{4 \pi \epsilon_{0}} \times \frac{2 \pi}{n h}=\frac{e^{2}}{2 \epsilon_{0} n h}$,l	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
T \& =\frac{2 \pi r}{v}=\frac{2 \pi m v r}{m v^{2}} \\
\& =\frac{2 \pi\left(\frac{n h}{2 \pi}\right)}{m\left(\frac{e^{2}}{2 \epsilon_{0} n h}\right)^{2}} \\
\& =\frac{4 n^{3} h^{3} \epsilon_{0}^{2}}{m e^{4}}
\end{aligned}
\] \\
(Also accept if the student calculates T by obtaining expressions for both \(v\) and r .)
\end{tabular} \& \(1 / 2\)

$1 / 2$ \& 3

\hline \multirow[t]{2}{*}{Q19} \& | a) Graph of photo current vs collector potential for different frequencies |
| :--- |
| b) Einstein's photo electric equation Explanation of graph |
| c) Graph of photocurrent with collector potential for different intensities | \& \&

\hline \& | (a) |
| :--- |
| (b) According to Einstein's photoelectric equation $K_{\max }=h v-\emptyset_{0}$ |
| If V_{0} is stopping potential then $e V_{0}=h v-\emptyset$ |
| Thus for different value of frequency (v) there will be a different value of cut off potential V_{0}. |
| (c) | \& 1

$11 / 2$

$1 / 2$
$1 / 20$ \& 3

\hline
\end{tabular}

| Q20 | Biot Savart's Law
 Deduction of Expression
 Direction of magnetic field | $1 / 2$ mark
 2 marks
 $1 / 2$ mark |
| :--- | :--- | :--- | :--- | :--- |

	sight paths. [Alternatively, At frequencies (more than 40 MHz), e.m. waves do not get bent or reflected by ionosphere. Therefore space wave propagation has to be used for frequencies above 40 MHz .]	1	3
Q22	Derivation of instantaneous current 2 Derivation of average power dissipated 1 Given $V=V_{0} \sin w t$ $V=L \frac{d i}{d t} \Rightarrow d i=\frac{V}{L} d t$ $\therefore d i=\frac{\mathrm{V}_{0}}{L} \sin w t d t$ Integrating $i=-\frac{\mathrm{V}_{0}}{w L} \cos w t$ $\therefore i=-\frac{\mathrm{V}_{0}}{w L} \sin (\pi / 2-w t)=I_{0} \sin (\pi / 2-w t)$ where $I_{0}=\frac{V_{0}}{w L}$ Average power $\begin{aligned} & P_{a v}=\int_{0}^{T} v i d t \\ & =\frac{-V_{0}^{2}}{w L} \int_{0}^{T} \sin w t \cos w t d t \\ & =\frac{-V_{0}^{2}}{2 w L} \int_{0}^{T} \sin (2 w t) d t \\ & =0 \end{aligned}$	1/2	3
Q23	Values displayed $1+1$ Usefulness of solar panels $1 / 2$ Name of semiconductor device $1 / 2$ Diagram of the device $1 / 2$ Working of device $1 / 2$ a) Value displayed by mother:		

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Inquisitive / scientific temperament / wants to learn / any other. \\
Value displayed by Sunil: \\
Knowledgeable / helpful/ considerate \\
b) Provide clean / green energy Reduces dependence on fossil fuels, Environment friendly energy source. \\
c) Solar Cell \\
(full marks for any one figure out of a \&b) \\
Working: When light falls on the device the solar cell generates an emf.
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \& 4

\hline Q24 \& For small angles

$$
\tan \angle N O M=\frac{M N}{O M}: \tan \angle N C M=\frac{M N}{N C}
$$ \& 1 \&

\hline
\end{tabular}

	(a) From fig $\angle A+\angle Q N R=180^{\circ}$ From triangle $\triangle Q N R \quad r_{1+} r_{2}+\angle Q N R=180^{\circ}$ Hence from equ (1) \&(2) $\therefore \angle A=r_{1}+r_{2}$ The angle of deviation $\delta=\left(i-r_{1}\right)+\left(\mathrm{e}-r_{2}\right)=\mathrm{i}+\mathrm{e}-\mathrm{A}$ At minimum deviation $\mathrm{i}=\mathrm{e}$ and $r_{1}=r_{2}$ $\therefore r=\frac{A}{2}$ And $\mathrm{i}=\frac{A+\delta m}{2}$ Hence refractive index $\mu=\frac{\sin i}{\sin r}=\frac{\sin \left(\frac{A+\delta m}{2}\right)}{\sin A / 2}$ (b) From Snell's law $\mu_{1} \sin i=\mu_{2} \operatorname{sinr}$ Given $\mu_{1}=\sqrt{2}, \mu_{2}=1$ and $\mathrm{r}=90^{\circ}$ (just grazing) $\begin{array}{r} \therefore \sqrt{2} \sin \mathrm{i}=1 \sin 90^{\circ} \Rightarrow \sin i \frac{1}{\sqrt{2}} \\ \\ \text { or } i=45^{\circ} \end{array}$	1/2	5
Q25	a) (i) Principle of potentiometer 1 How to increase sensitivity $1 / 2$ (ii) Name of potentiometer $1 / 2$ Reason $1 / 2$ b) Formula $1 / 2$ (i) Ratio of drift velocities in series 1 (ii) Ratio of drift velocities in parallel 1 a) (i) The potential difference across any length of wire is directly proportional to the length provided current and		

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{aligned}
& C_{1}=K \frac{\epsilon_{0} A}{\left(\frac{3}{4} d\right)} \\
& C_{2}=\frac{\epsilon_{0} A}{\left(\frac{1}{4} d\right)} \\
& \therefore C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=\frac{\left(K \frac{\epsilon_{0} A}{\left(\frac{3}{4} d\right)}\right)\left(\frac{\epsilon_{0} A}{\left(\frac{1}{4} d\right)}\right)}{\frac{\epsilon_{0} A}{d}\left[\frac{4}{3} k+4\right]} \\
&=\frac{4}{(3+k)} \frac{\epsilon_{0} A}{d}=\frac{4}{(3+k)} C_{0} \\
&\left.\frac{c}{c_{0}}=\frac{4}{k+3}\right]
\end{aligned}
$$ \& $1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$ \& 5

\hline Q26 \& | a) Statement of Faraday's Law 1
 b) Calculation of current 2
 Graph of current
 c) Lenz's Law 1 |
| :--- |
| (a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. |
| [Alternately: $e=-\frac{d \emptyset}{d t}$] |
| (b) $\begin{array}{r} \text { Area }=\pi R^{2}=\pi \times 1.44 \times 10^{-2} \mathrm{~m}^{2} \\ =4.5 \times 10^{-2} \mathrm{~m}^{2} \end{array}$ |
| For $0<t<2$ |
| Emf $e_{1}=\frac{d \emptyset_{1}}{d t}=-A \frac{d B}{d t}$ $\begin{aligned} & =-4.5 \times 10^{-2} \times \frac{1}{2} \\ & I_{1}=-\frac{e_{1}}{R}=-\frac{2.25 \times 10^{-2}}{8.5}=-2.7 \mathrm{~mA} \end{aligned}$ |
| For $2<t<4$ $I_{2}=\frac{e_{2}}{R}=0$ |
| For $4<\mathrm{t}<6$ $I_{3}=-\frac{e_{3}}{R}=+2.7 \mathrm{~mA}$ | \& 1

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

Working principle - Whenever current in one coil changes an emf gets induced in the neighboring coil /Principle of mutual induction Voltage across secondary. $V_{s}=e_{s}=-N_{s} \frac{d \phi}{d t}$ Voltage across primary $\begin{gathered} V_{p}=e_{p}=-N_{p} \frac{d \phi}{d t} \\ \frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}} \quad\left(\text { here } N_{s}>N_{p}\right) \end{gathered}$ In an Ideal transformer Power Input= Power Input $\begin{aligned} & I_{p} V_{p}=I_{s} V_{s} \\ & \frac{V_{s}}{V_{p}}=\frac{I_{p}}{I_{s}} \\ & \therefore \frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}=\frac{I_{p}}{I_{s}} \end{aligned}$ (b) Input power, $P_{i}=I_{i} . V_{i}=15 \times 100$ $=1500 \mathrm{~W}$ Power output, $P_{0}=P_{i} \times \frac{90}{100}=1350 \mathrm{~W}$ $\Rightarrow I_{0} V_{0}-1350 \mathrm{~W}$ Output voltage, $V_{0}=\frac{1350}{3} \mathrm{~V}=450 \mathrm{~V}$	$1 / 2$	5

