| Q. No.              | <b>Expected Answer / Value Points</b>                                                  | Marks | Total<br>Marks |
|---------------------|----------------------------------------------------------------------------------------|-------|----------------|
|                     |                                                                                        |       | Marks          |
| Set1 Q1             | It is defined as the opposition to the flow of current in ac circuits offered by a     |       |                |
| Set2 Q5<br>Set3 O4  | capacitor.                                                                             |       |                |
| 5013 Q I            | <u>Alternatively:</u>                                                                  |       |                |
|                     | $v - \frac{1}{2}$                                                                      | 1/2   |                |
|                     | $\Lambda_c - \omega c$                                                                 |       |                |
|                     | S.I Unit : ohm                                                                         | 1/2   | 1              |
| Set1 Q2             | Zero                                                                                   | 1     | 1              |
| Set2 Q1             |                                                                                        |       |                |
| Set3 Q5             |                                                                                        |       |                |
| Set1 Q3             | Converging (Convex Lens), (Also accept if a student writes it as a diverging           | 1     | 1              |
| Set2 Q2             | Lens or Concave lens (Since hindi translation does not match with English              |       |                |
| Set3 Q1             | version)                                                                               |       |                |
| Set1 Q4             | Side bands are produced due to the superposition of carrier waves of                   |       |                |
| Set2 Q3             | frequency $\omega_c$ over modulating / audio signal of frequency $\omega_m$ .          | 1     |                |
| Set3 Q2             |                                                                                        |       |                |
|                     | <u>Alternatively:</u>                                                                  |       |                |
|                     | (Credit may be given if a student mentions the side bands as $\omega_c \pm \omega_m$ ) |       | 1              |
| Set1 Q5             | DE : Negative resistance region                                                        | 1⁄2   |                |
| Set2 Q4             | AB : Where Ohm's law is obeyed.(Also accept BC)                                        | 1/2   | 1              |
| 5013 Q3             |                                                                                        |       |                |
| Set1 Q6             | Determination of ratio (i) accelerating potential 1                                    |       |                |
| Set2 Q10<br>Set3 Q9 | (ii) speed 1                                                                           |       |                |
|                     | h h <sup>2</sup>                                                                       |       |                |
|                     | (i) $\lambda = \frac{n}{\sqrt{2mqV}} \implies V = \frac{n}{2mq\lambda^2}$              | 1/2   |                |
|                     | $m_{lpha}=4m_p$ , $q_{lpha}=2q_p$                                                      |       |                |
|                     | $= >  \frac{V_p}{V_\alpha} = \frac{m_\alpha \ q_\alpha}{m_p q_p}$                      |       |                |
|                     |                                                                                        |       |                |
|                     | $=\frac{4m_p \times 2q_p}{m_p q_p}$                                                    |       |                |
|                     | ···*p~*p                                                                               |       |                |
|                     | = 8:1                                                                                  | 1/2   |                |
|                     |                                                                                        |       |                |

#### **MARKING SCHEME**

|                                | (ii) $\lambda = \frac{h}{mv} \implies v = \frac{h}{m\lambda}$                     |                             | 1⁄2 |   |
|--------------------------------|-----------------------------------------------------------------------------------|-----------------------------|-----|---|
|                                | $=> \qquad \frac{V_p}{V_\alpha} = \frac{m_\alpha}{m_p} = 4$                       |                             | 1/2 | 2 |
| Set1 Q7<br>Set2 Q6<br>Set3 O10 | Showing that the radius of orbit varies as                                        | n <sup>2</sup> 2            |     |   |
|                                | $\frac{mv^2}{r} = \frac{1}{4\pi \in_0} \frac{e^2}{r^2}$                           |                             | 1⁄2 |   |
|                                | Or $mv^2r = \frac{1}{4\pi\epsilon_0} e^2$ (                                       | (i)                         |     |   |
|                                | $mvr = \frac{nh}{2\pi}$                                                           |                             | 1⁄2 |   |
|                                | $m^2 v^2 r^2 = \frac{n^2 h^2}{4\pi^2}$ (                                          | ii)                         | 1/  |   |
|                                | Divide (ii) by (i)                                                                |                             | 1/2 |   |
|                                | $\mathrm{mr} = \frac{n^2 h^2}{4\pi^2} \times \frac{4\pi \epsilon_0}{e^2}$         |                             |     |   |
|                                | $\therefore r = \frac{n^2 h^2}{4\pi^2 m e^2} \cdot 4\pi \in_0$                    |                             | 1/2 |   |
|                                | $\therefore r \propto n^2$<br>(Give full credit to any other correct alternative) | ative method)               |     | 2 |
| Set1 Q8<br>Set2 Q7<br>Set3 O6  | Distinction between intrinsic & extrinsic s                                       | semiconductor 2             |     |   |
|                                | Intrinsic Semiconductor                                                           | Extrinsic Semiconductor     |     |   |
|                                |                                                                                   |                             | 1   |   |
|                                | (1) Without any impurity (<br>atoms.                                              | pentavalent impurity atoms. | 1   |   |
|                                | (ii) $n_e = n_h$ (iii)                                                            | ii) $n_e \neq n_h$          | 1   |   |
|                                | (Any other correct distinguishing features.)                                      | )                           |     |   |
| Set1 O9                        |                                                                                   |                             |     | 2 |
| Set2 Q8<br>Set3 Q7             | Derivation of the required condition                                              | 2                           |     |   |
|                                |                                                                                   |                             |     |   |

Page 2 of 23

| $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$                                                                     | 1/2 |   |
|---------------------------------------------------------------------------------------------------------------|-----|---|
| For concave mirror $f < 0$ and $u < 0$<br>As object lies between $f$ and $2f$<br>(i) At $u = -f$              |     |   |
| $\frac{1}{v} = -\frac{1}{f} + \frac{1}{f}$                                                                    |     |   |
| $=> v = \infty$<br>At $u = -2f$<br>$=> \frac{1}{v} = -\frac{1}{f} + \frac{1}{2f} = -\frac{1}{2f}$             | 1/2 |   |
| => v = -2 f                                                                                                   | 1⁄2 |   |
| => Hence, image distance $v \ge -2 f$                                                                         | 1⁄2 | 2 |
| Since $v$ is negative therefore the image is real.                                                            |     | 2 |
| Alternative Method                                                                                            | 1⁄2 |   |
| $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$<br>For Concave mirror<br>f < 0, u < 0                               | 1/2 |   |
| $\because 2f < u < f$                                                                                         |     |   |
| $\Rightarrow \frac{1}{2f} > \frac{1}{u} > \frac{1}{f}$                                                        |     |   |
| $\frac{1}{2f} - \frac{1}{f} > \frac{1}{u} - \frac{1}{f} > \frac{1}{f} - \frac{1}{f}$                          |     |   |
| $\Rightarrow -\frac{1}{2f} - \frac{1}{v} > 0 \qquad \qquad \because \frac{1}{u} - \frac{1}{f} = \frac{1}{-v}$ |     |   |
| $\Rightarrow \frac{1}{2f} < \frac{1}{\nu} < 0$                                                                | 1/2 |   |
| $\Rightarrow v < 0$ $\therefore$ image is real                                                                | 1/2 |   |
| Also $v > 2f$ image is formed beyond $2f$ .<br>(Any alternative correct method should be given full credit.)  | , 2 | 2 |



|          | For loop CBDC                                                                          |                        |   |
|----------|----------------------------------------------------------------------------------------|------------------------|---|
|          | $-I_2R_4 + 0 + I_1R_3 = 0$ (ii)                                                        |                        |   |
|          |                                                                                        |                        |   |
|          | => from equation (i)                                                                   |                        |   |
|          | $\frac{I_1}{I_1} = \frac{R_1}{I_1}$                                                    |                        |   |
|          | $I_2  R_2$                                                                             |                        |   |
|          | From equation (1) $L = R$ .                                                            |                        |   |
|          | $\frac{T_1}{I} = \frac{\pi 4}{D}$                                                      | 1/2                    |   |
|          | $I_2  K_3$                                                                             |                        |   |
|          | $R_1 \qquad R_4$                                                                       |                        |   |
|          | $\therefore \frac{1}{R_2} = \frac{1}{R_3}$                                             | 1⁄2                    | 2 |
|          |                                                                                        |                        |   |
| Set1 Q11 |                                                                                        |                        |   |
| Set2 Q19 | Name of the parts of e.m. spectrum for a,b,c $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ |                        |   |
| Set3 Q10 | Production                                                                             |                        |   |
|          | (a) Microwaye                                                                          | 1/2                    |   |
|          | Production · Klystron/magnetron/Gunn diode (any one)                                   | 1/2                    |   |
|          | Troduction - Thysiton, magnetion, Cann aloue (any one)                                 | , 2                    |   |
|          | (b) Infrared Radiation                                                                 | 1/2                    |   |
|          | Production : Hot bodies / vibrations of atoms and molecules (any one)                  | 1/2                    |   |
|          |                                                                                        | 1/                     |   |
|          | (C) X-Kays<br>Production : Rombarding high energy electrons on metal target/ y ray     | <sup>1</sup> /2<br>1/2 | 3 |
|          | tube/inner shell electrons(any one)                                                    | 72                     | 5 |
|          | tuoo, miler shen erectrons(any one).                                                   |                        |   |
|          |                                                                                        |                        |   |
| Set1 Q12 |                                                                                        |                        |   |
| Set2 Q20 | (i) Calculation of angular magnification $1\frac{1}{2}$                                |                        |   |
| Sets Q17 | (ii) Calculation of image of diameter of Moon $1\frac{1}{2}$                           |                        |   |
|          | Angular Magnification                                                                  |                        |   |
|          | f <sub>o</sub>                                                                         | 1                      |   |
|          | $m = \frac{f_{c}}{f_{c}}$                                                              |                        |   |
|          | )e                                                                                     |                        |   |
|          |                                                                                        |                        |   |
|          | $=\frac{15}{10^{-2}}=1500$                                                             | 1/2                    |   |
|          | 10 -2                                                                                  |                        |   |
|          |                                                                                        |                        |   |
|          |                                                                                        |                        |   |
|          |                                                                                        |                        |   |
|          |                                                                                        |                        |   |
|          |                                                                                        |                        |   |
|          |                                                                                        |                        |   |

|                                  | $h_{o} \propto f_{0} \rightarrow f_{0}$<br>$u_{0} \qquad h_{i}$                                                                                                                                                                           | 1⁄2<br>1⁄2 |   |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
|                                  | Angular size of the moon $=\left(\frac{3.48 \times 10^6}{3.8 \times 10^8}\right) = \frac{3.48}{3.8} \times 10^{-2}$ radian<br>$\therefore$ Angular size of the image $=\left(\frac{3.48}{3.8} \times 10^{-2} \times 1500\right) =$ radian | 1⁄2        | 3 |
|                                  | Diameter of the image $=\frac{3.48}{3.8} \times 15 \times focal \ length \ of \ eye \ piece$<br>$=\frac{3.48}{3.8} \times 15 \times 1cm$<br>=13.7 cm<br>(Also accept alternative correct method.)                                         |            |   |
| Set1 Q13<br>Set2 Q21<br>Set3 Q18 | (i)Einstein's Photoelectric equation $\frac{1}{2}$ (ii)Important features $\frac{1}{2} + \frac{1}{2}$ (iii)Derivation of expressions for $\lambda_0$ and work function $\frac{1}{2}$                                                      |            |   |
|                                  | $hv = \varphi_{o+} k_{max}$<br>or $hv = hv_0 + \frac{1}{2}mv_{max}^2$                                                                                                                                                                     | 1⁄2        |   |
|                                  | <ul> <li>Important features</li> <li>(i) k<sub>max</sub> depends linearly on frequency v.</li> <li>(ii) Existence of threshold frequency for the metal surface.</li> <li>(Any other two correct features.)</li> </ul>                     | 1/2<br>1/2 |   |
|                                  | $h\nu = \varphi_{o+} k_{max}$ $\frac{hc}{\lambda_1} = \frac{hc}{\lambda_0^+} k_{max} (i)$                                                                                                                                                 |            |   |
|                                  | $\frac{hc}{\lambda_2} = \frac{hc}{\lambda_0^+} 2k_{max} (ii)$<br>From (i) and (ii)                                                                                                                                                        | 1⁄2        |   |
|                                  | $\frac{2hc}{\lambda_1} - \frac{hc}{\lambda_2} = \frac{hc}{\lambda_0}$                                                                                                                                                                     |            |   |

$$\frac{1}{\lambda_{0}} = \left(\frac{2}{\lambda_{1}} - \frac{1}{\lambda_{2}}\right)$$

$$\lambda_{0} = \frac{\lambda_{1}\lambda_{2}}{2\lambda_{2} - \lambda_{1}}$$
Work function  $\varphi_{0} = \frac{hc}{\lambda_{0}} = \frac{hc(2\lambda_{2} - \lambda_{1})}{\lambda_{1}\lambda_{2}}$ 

$$3$$
Work function  $\varphi_{0} = \frac{hc}{\lambda_{0}} = \frac{hc(2\lambda_{2} - \lambda_{1})}{\lambda_{1}\lambda_{2}}$ 

$$3$$
Set 014
(i) Drawing of trajectory
(ii) Explanation of information on the size of nucleus
(iii) Proving that nuclear density is independent of A 1 1/2)
$$\frac{1}{\lambda_{0}} = \frac{1}{\lambda_{0}} + \frac{1}{\lambda_{0}} +$$

|                                  | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |   |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|
|                                  | Distinction between nuclear fission and nuclear fusion $\frac{1}{2} + \frac{1}{2}$ Showing release of energy in both processes $\frac{1}{2}$ Calculation of release of energy1 $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |   |
|                                  | The breaking of heavy nucleus into smaller fragments is called nuclear fission; the joining of lighter nuclei to form a heavy nucleus is called nuclear fusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2 + 1/2 |   |
|                                  | Binding energy per nucleon, of the daughter nuclei, in both processes, is more<br>than that of the parent nuclei. The difference in binding energy is released in<br>the form of energy. In both processes some mass gets converted into energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2       |   |
|                                  | <u>Alternativey:</u><br>In both processes, some mass gets converted into energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |   |
|                                  | Energy Released                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |   |
|                                  | Q = $[m(_1^2H) + m(_1^3H) - m(_2^4He) - m(n)] \ge 931.5 \text{ MeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1⁄2       |   |
|                                  | = [ 2.014102 + 3.016049 - 4.002603 - 1.008665] x 931.5 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2       |   |
|                                  | = 0.018883 x 931.5 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |   |
|                                  | = 17.59 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2       | 3 |
| Set1 Q15<br>Set2 Q11<br>Set3 Q20 | Drawing Block diagram of detector1Showing detection of Message signal from Input AM Wave2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |
|                                  | $\xrightarrow{\text{AM Wave}} \xrightarrow{\text{RECTIFIER}} \xrightarrow{\text{ENVELOPE}} \xrightarrow{m(t)} \xrightarrow{m(t)} \xrightarrow{\text{OUTPUT}} \xrightarrow{(a)} \xrightarrow{(b)} \xrightarrow{(c)} ($ | 1         |   |
|                                  | time time time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1+1       |   |
|                                  | AM input wave Rectified wave Output (without RF component)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1         |   |
|                                  | [Note: Award these 3 marks irrespective of the way the student attempts the question.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 3 |
| Set1 Q16<br>Set2 Q12             | Drawing of Plots of Part (i) & (ii) $\frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |   |
| Set3 Q21                         | Finding the values of emf and internal resistance $1+1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |   |



Page 9 of 23

| Energy stored in a capacitor                                                                                                                                                    |     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| $E = \frac{1}{2}CV^2$                                                                                                                                                           | 1⁄2 |  |
| In series combination                                                                                                                                                           |     |  |
| $0.045 = \frac{1}{2} \frac{c_1 c_2}{c_1 + c_2} (100)^2$                                                                                                                         |     |  |
| $ = \frac{c_1 c_2}{c_1 + c_2} = 0.09 \text{ x } 10^{-4} \qquad \dots \dots (i) $                                                                                                | 1⁄2 |  |
| In Parallel combination                                                                                                                                                         |     |  |
| $0.25 = \frac{1}{2}(C_1 + C_2) (100)^2$                                                                                                                                         |     |  |
| $^{=>}C_1 + C_2 = 0.5 \text{ x } 10^{-4} \qquad \dots \dots (ii)$                                                                                                               | 1⁄2 |  |
| On simplifying (i) & (ii)                                                                                                                                                       |     |  |
| $C_1 C_2 = 0.045 \text{ x } 10^{-8}$                                                                                                                                            |     |  |
| $(C_1 - C_2)^2 = (C_1 + C_2)^2 - 4C_1C_2$                                                                                                                                       |     |  |
| $= (0.5 \times 10^{-4})^2 - 4 \times 0.045 \times 10^{-8}$                                                                                                                      |     |  |
| $= 0.25 \text{ x } 10^{-8} - 0.180 \text{ x } 10^{-8}$                                                                                                                          |     |  |
| $(C_1 - C_2)^2 = 0.07 \times 10^{-8}$                                                                                                                                           |     |  |
| $(C_1 - C_2) = 2.6 \times 10^{-5} = 0.26 \times 10^{-4} \dots$ (iii)                                                                                                            |     |  |
| From (ii) and (iii) we have                                                                                                                                                     | 1/2 |  |
| $=> C_1 = 0.38 \text{ x } 10^{-4} \text{ F } \& C_2 = 0.12 \text{ x } 10^{-4} \text{ F}$                                                                                        | / _ |  |
| Charges on capacitor $C_1$ and $C_2$ in Parallel combination                                                                                                                    |     |  |
| $Q_1 = C_1 V = (0.38 \text{ x } 10^{-4} \text{ x } 100) = 0.38 \text{ x } 10^{-2} \text{ C}$                                                                                    | 1⁄2 |  |
| $Q_2 = C_2 V = (0.12 \text{ x } 10^{-4} \text{ x } 100) = 0.12 \text{ x } 10^{-2} \text{ C}$<br>[Note: If the student writes the relations/ equations<br>$E = \frac{1}{2} CV^2$ | 1/2 |  |

Page 10 of 23

|                      | And $0.04F = \frac{1}{C_1 C_2} (100)^2$                                                                                                                                                |     |   |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|                      | And $0.045 = \frac{1}{2} \left( \frac{1}{C_1 + C_2} \right) (100)$                                                                                                                     |     |   |
|                      | $0.25 = \frac{1}{2}(C_1 + C_2)(100)^2$                                                                                                                                                 |     |   |
|                      | But is unable to calculate $C_1$ and $C_2$ , award him/her full 2 marks.                                                                                                               |     |   |
|                      | Also if the student just writes                                                                                                                                                        |     |   |
|                      | $Q_1 = C_1 V = C_1(100)$ and $Q_2 = C_2 V = C_2(100)$                                                                                                                                  |     | 3 |
|                      | Award him/her one mark for this part of the question.]                                                                                                                                 |     |   |
|                      |                                                                                                                                                                                        |     |   |
| Set1 Q18             | Working Principle   1     Finding the required registeries   1                                                                                                                         |     |   |
| Set2 Q14             | Finding the resistance G of the Galvanometer 1                                                                                                                                         |     |   |
| Set3 Q11             |                                                                                                                                                                                        |     |   |
|                      | Working Principle: A current carrying coil experiences a torque when placed<br>in a magnetic field which tends to rotate the coil and produces an angular                              |     |   |
|                      | deflection.                                                                                                                                                                            | 1   |   |
|                      | $V = I\left(G + R_1\right)$                                                                                                                                                            |     |   |
|                      | $\frac{V}{2} = I \left( G + R_2 \right)$                                                                                                                                               | 1/2 |   |
|                      | $\implies 2 = \frac{G + R_1}{G + R_2}$                                                                                                                                                 |     |   |
|                      | $=>G=R_1-2R_2$                                                                                                                                                                         | 1⁄2 |   |
|                      | Let $R_3$ be the resistance required for conversion into voltmeter of range 2V<br>$\therefore 2V = I_g (G + R_3)$                                                                      |     |   |
|                      | Also $V = I_g (G + R_1)$                                                                                                                                                               | 1/2 |   |
|                      | $\therefore 2 = \frac{1}{G + R_1}$                                                                                                                                                     | /2  |   |
| 0.1.010              | $\therefore R_3 = G + 2R_1 = R_1 - 2R_2 + 2R_1 = 3R_1 - 2R_2$                                                                                                                          | 1⁄2 | 3 |
| Set1 Q19<br>Set2 Q15 | Eabrication of photodiode $\frac{1}{2}$                                                                                                                                                |     |   |
| Set3 Q12             | Working with suitable diagram $1\frac{1}{2}$                                                                                                                                           |     |   |
|                      | Reason 1                                                                                                                                                                               |     |   |
|                      |                                                                                                                                                                                        |     |   |
|                      | It is fabricated with a transparent window to allow light to fall on diode.                                                                                                            | 1/2 |   |
|                      | When the photodiode is illuminated with photons of energy $(h\nu > E_{\sigma})$ greater                                                                                                |     |   |
|                      | than the energy gap of the semiconductor, electron – holes pairs are generated. These gets separated due to the Junction electric field (before they recombine) which produces an emf. | 1   |   |
|                      |                                                                                                                                                                                        |     |   |



Page 12 of 23

17/03/15 4:30 p.m.

|                      | The value of input resistance is determined from the slope of L verses $V_{}$                                                                 |                 |   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|
|                      | plot at constant $V_{CE}$ .                                                                                                                   |                 |   |
|                      | The value of current amplification factor is obtained from the slope of collector $Ic$ verses $V_{CE}$ plot using different values of $I_B$ . | 1⁄2             |   |
|                      | (If a student uses typical charateristics to determine these values, full credit of one mark should be given)                                 |                 | 3 |
| Set1 Q21             |                                                                                                                                               |                 |   |
| Set2 Q17<br>Set3 Q14 | Finding the spacing between two slits1Effect on wavelength and frequency of reflected and refracted light 2                                   |                 |   |
|                      | (a) Angular width of fringes<br>$\theta = \lambda/d$ ,<br>where $d$ = separation between two slits                                            | 1⁄2             |   |
|                      | Here $\theta = 0.1^\circ = 0.1 \text{ x} \frac{\pi}{180}$ radian                                                                              |                 |   |
|                      | $\therefore d = \frac{600 \times 10^{-9} \times 180}{0.1 \times \pi} m$<br>= 3.43 x 10 <sup>-4</sup> m<br>= 0.34m                             | 1/2             |   |
|                      | (b)                                                                                                                                           |                 |   |
|                      | (U)<br>For Pofloctod light:                                                                                                                   |                 |   |
|                      | <u>For Kenetieu light.</u><br>Wavelength remains same                                                                                         | 1⁄2             |   |
|                      | Frequency remains some                                                                                                                        | 1⁄2             |   |
|                      | For Defracted light:                                                                                                                          |                 |   |
|                      | <u>For Kerracted light.</u><br>Wavelength decreases                                                                                           | 1⁄2             |   |
|                      | Frequency remains some                                                                                                                        | 1/2             | 3 |
|                      | Frequency remains same                                                                                                                        |                 |   |
| Set1 Q22             |                                                                                                                                               |                 |   |
| Set2 Q18             | Change in the Brightness of the bulb in cases (1), (11) & (11) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$                                      |                 |   |
| Sets Q15             | Justification $\frac{1}{\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}}{\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}}$              |                 |   |
|                      | (i) Increases                                                                                                                                 | 1/              |   |
|                      | $X_L = \omega L$                                                                                                                              | <sup>1</sup> /2 |   |
|                      | As number of turns decreases, L decreases, nence current through                                                                              | <sup>1</sup> /2 |   |
|                      | (ii) Depresses                                                                                                                                | 72              |   |
|                      | (II) Decreases                                                                                                                                | 1/2             |   |
|                      | current through the hulb decreases / Voltage across hulb decreases                                                                            | $\frac{1}{2}$   |   |
|                      | (iii) Increases                                                                                                                               | /2              |   |
|                      | Under this condition $(X_c = X_t)$ the current through the hulb will                                                                          | 1/2             | 3 |
|                      | become maximum / increase.                                                                                                                    | , -             |   |
| Set1 Q23             |                                                                                                                                               |                 |   |
| Set2 Q23             | (i) Name of device and Principle of working $\frac{1}{2} + 1$                                                                                 |                 |   |
| Set3 Q23             | (11) Possibility and explanation $\frac{1}{2}$                                                                                                |                 |   |
|                      | (111) Values displayed by students and teachers 1+1                                                                                           |                 |   |

|                                  | (i) Transformer<br>Working Principle: Mutual induction                                                                                                                                                                                                                                                                                        | 1⁄2       |      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
|                                  | Whenever an alternative voltage is applied in the primary windings,<br>an emf is induced in the secondary windings.                                                                                                                                                                                                                           | 1         |      |
|                                  | (ii) No, There is no induced emf for a dc voltage in the primary                                                                                                                                                                                                                                                                              | 1⁄2       |      |
|                                  | <ul> <li>(iii) Inquisitive nature/ Scientific temperament (any one)<br/>Conceren for students / Helpfulness / Professional honesty(any one)<br/>(Any other relevant values)</li> </ul>                                                                                                                                                        | 1<br>1    | 4    |
| Set1 Q24<br>Set2 Q26<br>Set3 Q25 | <ul> <li>(a) Statement of Ampere's circuital law 1</li> <li>Expression for the magnetic field 1 1<sup>1</sup>/<sub>2</sub></li> <li>(b) Depiction of magnetic field lines and specifying polarity 1<sup>1</sup>/<sub>2</sub> + 1<sup>1</sup>/<sub>2</sub></li> <li>Showing the solenoid as bar magnet 1 1<sup>1</sup>/<sub>2</sub></li> </ul> |           |      |
|                                  | (a) Line integral of magnetic field over a closed loop is equal to the $\mu_0$ times<br>the total current passing through the surface enlosed by the loop.<br>Alternatively<br>$\oint \vec{B} \cdot \vec{dl} = \mu_0 I$                                                                                                                       | 1         |      |
|                                  | ј 21.00 рој 1<br>в                                                                                                                                                                                                                                                                                                                            |           |      |
|                                  |                                                                                                                                                                                                                                                                                                                                               |           |      |
|                                  |                                                                                                                                                                                                                                                                                                                                               | 1/2       |      |
|                                  | (b)                                                                                                                                                                                                                                                                                                                                           |           |      |
|                                  | Let the current flowing through each turn of the toroid be <i>I</i> . The total number of turns equals $n.(2\pi r)$ where <i>n</i> is the number of turns per unit length. Applying Ampere's circuital law, for the Amperian loop, for interior points.                                                                                       |           |      |
| Page                             | 14 of 23 Final Draft 17/0                                                                                                                                                                                                                                                                                                                     | 3/15 4:30 | p.m. |

|      | $\oint \vec{B}.  \vec{dl} = \mu_0(n2\pi rI)$                                                                                                                                                                                                 |            |        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|
|      | $\oint Bdlcos0 = \mu_0 n  2\pi r I$                                                                                                                                                                                                          | 1/2        |        |
|      | $=>B \ge 2\pi r = \mu_0 n \ 2\pi r I$                                                                                                                                                                                                        |            |        |
|      | $B = \mu_0 n I$                                                                                                                                                                                                                              | 1⁄2        |        |
|      | (b)                                                                                                                                                                                                                                          |            |        |
|      |                                                                                                                                                                                                                                              | 1/2 + 1/2  |        |
|      | The solenoid contains N loops, each carrying a current I. Therefore, each loop acts as a magnetic dipole. The magnetic moment for a current I, flowing in loop of area (vector) $\mathbf{A}$ is given by $\mathbf{m} = \mathbf{I}\mathbf{A}$ | 1/2<br>1/2 |        |
|      | The magnetic moments of all loops are aligned along the same direction.<br>Hence, net magnetic moment equals N1A.                                                                                                                            | 1⁄2        | 5      |
|      | OR                                                                                                                                                                                                                                           |            |        |
|      | <ul> <li>(a) Definition of mutual inductance and S.I. unit</li> <li>(b) Derivation of expression for the mutual inductance of two long coaxial solenoids</li> <li>(c) Finding out the expression for the induced emf</li> </ul>              |            |        |
|      | (a) $\phi = MI$<br>Mutual inductance of two coils is equal to the magnetic flux linked with one coil when a unit current is passed in the other coil.                                                                                        | 1          |        |
|      | Alternatively,                                                                                                                                                                                                                               |            |        |
|      | $e = -M \frac{dI}{dt}$                                                                                                                                                                                                                       |            |        |
|      | Mutual inductance is equal to the induced emf set up in one coil when the rate<br>of change of current flowing through the other coil is unity.                                                                                              |            |        |
|      | SI unit : henry / (Weber ampere <sup>-1</sup> ) / (volt second ampere <sup>-1</sup> )                                                                                                                                                        |            |        |
| Page | 15 of 23 Final Draft 17/                                                                                                                                                                                                                     | 03/15 4:30 | ) p.m. |



$$\begin{array}{c|c} \vdots \frac{d\Phi_{3}}{dt} = M\frac{dt_{2}}{dt} \\ \Rightarrow e = -M\frac{dt_{2}}{dt} \\ \Rightarrow e = -M\frac{dt_{2}}{dt} \\ \end{array}$$

Page 17 of 23

Final Draft

17/03/15 4:30 p.m.



Page 18 of 23







Page 21 of 23

17/03/15 4:30 p.m.



|  | $P = X_e E$                                                                                          | 1/2 |   |
|--|------------------------------------------------------------------------------------------------------|-----|---|
|  | B (i) Net Force on the charge $\frac{Q}{2}$ , placed at the centre of the shell, Is zero.            | 1/2 |   |
|  | Force on charge '2Q' kept at point A                                                                 |     |   |
|  | $F = E \times 2Q = \frac{1\left(\frac{3Q}{2}\right)2Q}{4\pi\varepsilon_0 r^2} = \frac{(K)3Q^2}{r^2}$ | 1/2 |   |
|  | Electric flux through the shell                                                                      |     |   |
|  | $\phi = \frac{Q}{2\varepsilon_0}$                                                                    | 1   | 5 |
|  |                                                                                                      |     | 1 |