MARKING SCHEME

Q. No.	Expected Answer / Value Points	Marks	Total Marks
$\begin{aligned} & \hline \text { Set1 Q1 } \\ & \text { Set2 Q5 } \\ & \text { Set3 Q4 } \end{aligned}$	It is defined as the opposition to the flow of current in ac circuits offered by a capacitor. Alternatively: $X_{C}=\frac{1}{\omega C}$ S.I Unit : ohm	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
$\begin{aligned} & \hline \text { Set1 Q2 } \\ & \text { Set2 Q1 } \\ & \text { Set3 Q5 } \end{aligned}$	Zero	1	1
Set1 Q3 Set2 Q2 Set3 Q1	Converging (Convex Lens),(Also accept if a student writes it as a diverging Lens or Concave lens (Since hindi translation does not match with English version)	1	1
$\begin{aligned} & \hline \text { Set1 Q4 } \\ & \text { Set2 Q3 } \\ & \text { Set3 Q2 } \end{aligned}$	Side bands are produced due to the superposition of carrier waves of frequency ω_{c} over modulating / audio signal of frequency ω_{m}. Alternatively: (Credit may be given if a student mentions the side bands as $\omega_{c} \pm \omega_{m}$)	1	1
$\begin{aligned} & \hline \text { Set1 Q5 } \\ & \text { Set2 Q4 } \\ & \text { Set3 Q3 } \end{aligned}$	DE : Negative resistance region AB : Where Ohm's law is obeyed.(Also accept BC)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
$\begin{aligned} & \hline \text { Set1 Q6 } \\ & \text { Set2 Q10 } \\ & \text { Set3 Q9 } \end{aligned}$	Determination of ratio (i) accelerating potential 1 (ii) speed (i) $\lambda=\frac{h}{\sqrt{2 m q V}} \Rightarrow V=\frac{h^{2}}{2 m q \lambda^{2}}$ $\begin{gathered} m_{\alpha}=4 m_{p}, q_{\alpha}=2 q_{p} \\ =>\quad \frac{V_{p}}{V_{\alpha}}=\frac{m_{\alpha} q_{\alpha}}{m_{p} q_{p}} \\ =\frac{4 m_{p} \times 2 q_{p}}{m_{p} q_{p}} \\ =8: 1 \end{gathered}$	1/2	

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{aligned}
& \text { (ii) } \lambda=\frac{h}{m v} \Rightarrow v=\frac{h}{m \lambda} \\
& \Rightarrow \quad \frac{V_{p}}{V_{\alpha}}=\frac{m_{\alpha}}{m_{p}}=4
\end{aligned}
$$ \& $1 / 2$

$1 / 2$ \& 2 \\

\hline \[
$$
\begin{array}{|l|}
\hline \text { Set1 Q7 } \\
\text { Set2 Q6 } \\
\text { Set3 Q10 }
\end{array}
$$

\] \& | $\begin{align*} & \text { Showing that the } \mathrm{r} \tag{i}\\ & \frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}} \end{align*}$ |
| :--- |
| Or $m v^{2} r=\frac{1}{4 \pi \epsilon_{0}} e^{2} .$. $m v r=\frac{n h}{2 \pi}$ $\begin{equation*} m^{2} v^{2} r^{2}=\frac{n^{2} h^{2}}{4 \pi^{2}} \tag{ii} \end{equation*}$ |
| Divide (ii) by (i) $\begin{aligned} & \mathrm{mr}=\frac{n^{2} h^{2}}{4 \pi^{2}} \times \frac{4 \pi \epsilon_{0}}{e^{2}} \\ & \therefore r=\frac{n^{2} h^{2}}{4 \pi^{2} m e^{2}} \cdot 4 \pi \epsilon_{0} \end{aligned}$ $\therefore r \propto n^{2}$ |
| (Give full credit to any other correct alternative method) | \& 112 \& 2 \\

\hline $$
\begin{aligned}
& \hline \text { Set1 Q8 } \\
& \text { Set2 Q7 } \\
& \text { Set3 Q6 }
\end{aligned}
$$ \& \mid Distinction between intrinsic \& extrinsic semiconductor

Intrinsic Semiconductor	
(i) \quadWithout any impurity atoms.	(i)Doped with trivalent/ pentavalent impurity atoms. $n_{e} \neq n_{h}$
(ii) $\quad n_{e}=n_{h}$	

(Any other correct distinguishing features.) \& 1
1 \& 2 \\

\hline $$
\begin{aligned}
& \hline \text { Set1 Q9 } \\
& \text { Set2 Q8 } \\
& \text { Set3 Q7 }
\end{aligned}
$$ \& Derivation of the required condition 2 \& \& \\

\hline
\end{tabular}

$\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$ For concave mirror $f<0$ and $u<0$ As object lies between f and $2 f$ (i) At $u=-f$ $\begin{gathered} \frac{1}{v}=-\frac{1}{f}+\frac{1}{f} \\ \Rightarrow v=\alpha \end{gathered}$ At $u=-2 f$ $\begin{aligned} & =>\frac{1}{v}=-\frac{1}{f}+\frac{1}{2 f}=-\frac{1}{2 f} \\ & =>v=-2 f \end{aligned}$ \Rightarrow Hence, image distance $v \geq-2 f$ Since v is negative therefore the image is real. Alternative Method $\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$ For Concave mirror $\begin{aligned} & f<0, u<0 \\ & \because 2 f<u<f \\ & \Rightarrow \frac{1}{2 f}>\frac{1}{u}>\frac{1}{f} \\ & \frac{1}{2 f}-\frac{1}{f}>\frac{1}{u}-\frac{1}{f}>\frac{1}{f}-\frac{1}{f} \\ & \Rightarrow-\frac{1}{2 f}-\frac{1}{v}>0 \\ & \Rightarrow \frac{1}{2 f}<\frac{1}{v}<0 \quad \because \frac{1}{u}-\frac{1}{f}=\frac{1}{-v} \\ & \Rightarrow v<0 \quad \therefore \text { image is real } \end{aligned}$ Also $v>2 f$ image is formed beyond $2 f$. (Any alternative correct method should be given full credit.)	1/2	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Angular size of the moon \(=\left(\frac{3.48 \times 10^{6}}{3.8 \times 10^{8}}\right)=\frac{3.48}{3.8} \times 10^{-2}\) radian \\
\(\therefore\) Angular size of the image \(=\left(\frac{3.48}{3.8} \times 10^{-2} \times 1500\right)=\) radian \\
Diameter of the image \(=\frac{3.48}{3.8} \times 15 \times\) focal length of eye piece
\[
\begin{aligned}
\& =\frac{3.48}{3.8} \times 15 \times 1 \mathrm{~cm} \\
\& =13.7 \mathrm{~cm}
\end{aligned}
\] \\
(Also accept alternative correct method.)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline Set1 Q13 Set2 Q21 Set3 Q18 \& \begin{tabular}{l}
\begin{tabular}{llll}
(i) \& Einstein's Photoelectric equation \& \(1 / 2\) \& \\
(ii) \& Important features \& \(1 / 2+1 / 2\) \\
(iii) \& Derivation of expressions for \(\lambda_{0}\) and work function \& \(11 / 2\)
\end{tabular}
\[
\begin{aligned}
\& h v=\varphi_{o}+k_{\max } \\
\& \text { or } h v=h v_{0}+\frac{1}{2} m v_{\max }^{2}
\end{aligned}
\] \\
Important features \\
(i) \(k_{\max }\) depends linearly on frequency \(v\). \\
(ii) Existence of threshold frequency for the metal surface. \\
(Any other two correct features.)
\[
\begin{align*}
\& h v=\varphi_{o}+k_{\max } \\
\& \frac{h c}{\lambda_{1}}=\frac{h c}{\lambda_{0}}+k_{\max } \tag{i}
\end{align*}
\]
\[
\begin{equation*}
\frac{h c}{\lambda_{2}}=\frac{h c}{\lambda_{0}}+2 k_{\text {max }} \tag{ii}
\end{equation*}
\] \\
From (i) and (ii)
\[
\frac{2 h c}{\lambda_{1}}-\frac{h c}{\lambda_{2}}=\frac{h c}{\lambda_{0}}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$ \& \\
\hline
\end{tabular}

	$\begin{aligned} & \frac{1}{\lambda_{0}}=\left(\frac{2}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right) \\ & \lambda_{0}=\frac{\lambda_{1} \lambda_{2}}{2 \lambda_{2}-\lambda_{1}} \end{aligned}$ Work function $\varphi_{o}=\frac{h c}{\lambda_{0}}=\frac{h c\left(2 \lambda_{2}-\lambda_{1}\right)}{\lambda_{1} \lambda_{2}}$	$1 / 2$ $1 / 2$	3
Set1 Q14 Set2 Q22 Set3 Q19	(i) Drawing of trajectory (ii) Explanation of information on the size of nucleus Only a small fraction of the incident α - particles rebound. This shows that the mass of the atom is concentrated in a small volume in the form of nucleus and gives an idea of the size of nucleus. Radius of nucleus $R=R_{0} A^{\frac{1}{3}}$ $\text { Density }=\frac{\text { mass }}{\text { volume }}$ $=\frac{m A}{\frac{4}{3} \pi R^{3}}$ where, m : mass of one nucleon A: Mass number $\begin{aligned} & =\frac{m A}{\frac{4}{3} \pi\left(R_{0} A^{\frac{1}{3}}\right)^{3}} \\ & =\frac{3 m}{4 \pi R_{0}{ }^{3}} \end{aligned}$ => Nuclear matter density is independent of A		3

	 (If the student just writes the relations $\mathrm{V}=\varepsilon-\mathrm{IR}$ and $\mathrm{V}=\frac{\varepsilon R}{R+r}$ but does not draw the plots, award $1 / 2$ mark.) $I=\frac{E}{R+r}$ $l=\frac{E}{4+r}$ $\begin{equation*} \Rightarrow \mathrm{E}=4+r \tag{i} \end{equation*}$ Also $\begin{align*} & 0.5=\frac{E}{9+r} \\ & E=4.5+0.5 r \tag{ii} \end{align*}$ From equation (i) \& (ii) $\begin{aligned} & 4+r=4.5+0.5 \mathrm{r} \\ & \therefore r=1 \Omega \end{aligned}$ Using this value of r, we get $E=5 V$	1/2	3
$\begin{array}{\|l\|} \hline \text { Set1 Q17 } \\ \text { Set2 Q13 } \\ \text { Set3 Q22 } \end{array}$	Determination of C_{1} and $\mathrm{C}_{2} \quad 2$ Determination of Charge on each capacitor in parallel combination $1 / 2+1 / 2$		

	And $0.045=\frac{1}{2}\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)(100)^{2}$ $0.25=\frac{1}{2}\left(C_{1}+C_{2}\right)(100)^{2}$ But is unable to calculate C_{1} and C_{2}, award him/her full 2 marks. Also if the student just writes $Q_{1}=C_{1} V=C_{1}(100) \text { and } Q_{2}=C_{2} V=C_{2}(100)$ Award him/her one mark for this part of the question.]		3
Set1 Q18 Set2 Q14 Set3 Q11	Working Principle 1 Finding the required resistance 1 Finding the resistance G of the Galvanometer 1 Working Principle: A current carrying coil experiences a torque when placed in a magnetic field which tends to rotate the coil and produces an angular deflection. $\begin{aligned} & V=I\left(G+R_{1}\right) \\ & \frac{V}{2}=I\left(G+R_{2}\right) \\ & \Rightarrow 2=\frac{G+R_{1}}{G+R_{2}} \\ & \Rightarrow G=R_{1}-2 R_{2} \end{aligned}$ Let R_{3} be the resistance required for conversion into voltmeter of range 2 V $\begin{aligned} & \therefore 2 V=I_{g}\left(G+R_{3}\right) \\ & \text { Also } V=I_{g}\left(G+R_{l}\right) \\ & \therefore 2=\frac{G+R_{3}}{G+R_{1}} \\ & \therefore R_{3}=G+2 R_{1}=R_{l}-2 R_{2}+2 R_{1}=3 R_{l}-2 R_{2} \end{aligned}$	1	3
$\begin{array}{\|l\|} \hline \text { Set1 Q19 } \\ \text { Set2 Q15 } \\ \text { Set3 Q12 } \end{array}$	Fabrication of photodiode $1 / 2$ Working with suitable diagram $1^{1 / 2}$ Reason 1 It is fabricated with a transparent window to allow light to fall on diode. When the photodiode is illuminated with photons of energy ($h v>E_{g}$) greater than the energy gap of the semiconductor, electron - holes pairs are generated.These gets separated due to the Junction electric field (before they recombine) which produces an emf.	1/2	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Reason: It is easier to observe the change in the current, with change in light intensity, if a reverse bias is applied. \\
Alternatively, \\
The fractional change in the minority carrier current, obtained under reverse bias, is much more than the corresponding fractional change in majority carrier current obtained under forward bias.
\end{tabular} \& \(1 / 2\)

1 \& 3 \\

\hline | Set1 Q20 |
| :--- |
| Set2 Q16 |
| Set3 Q13 | \& | Circuit diagram of Transistor amplifier in CE-configuration |
| :--- |
| Definition and determination of |
| (i) Input resistance |
| (ii) Current amplification factor |
| Input reisistance $\mathrm{R}_{\mathrm{i}}=\left(\frac{\Delta V_{B E}}{\Delta I_{B}}\right)_{V_{C E}}$ |
| Current amplification factor $\beta_{\mathrm{ac}}=\left(\frac{\Delta I_{c}}{\Delta I_{B}}\right)_{V_{C E}}$ | \& $11 / 2$

$11 / 2$

$1 / 2$ \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
The value of input resistance is determined from the slope of \(I_{B}\) verses \(V_{B E}\) plot at constant \(V_{C E}\). \\
The value of current amplification factor is obtained from the slope of collector \(I c\) verses \(V_{C E}\) plot using different values of \(I_{B}\). \\
(If a student uses typical charateristics to determine these values, full credit of one mark should be given)
\end{tabular} \& \(1 / 2\) \& 3 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1 Q21 } \\
\& \text { Set2 Q17 } \\
\& \text { Set3 Q14 }
\end{aligned}
\] \& \begin{tabular}{l}
Finding the spacing between two slits \\
Effect on wavelength and frequency of reflected and refracted light 2 \\
(a) Angular width of fringes
\[
\theta=N d,
\] \\
where \(d=\) separation between two slits \\
Here \(\theta=0.1^{\circ}=0.1 \times \frac{\pi}{180}\) radian
\[
\begin{aligned}
\therefore d=\frac{600 \times 10^{-9} \times 180}{} \begin{aligned}
\& 0.1 \times \pi \\
\&=3.43 \times 10^{-4} \mathrm{~m} \\
\&=0.34 \mathrm{~m}
\end{aligned} \\
\end{aligned}
\] \\
(b) \\
For Reflected light: \\
Wavelength remains same \\
Frequency remains same \\
For Refracted light: \\
Wavelength decreases \\
Frequency remains same
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3 \\

\hline \[
$$
\begin{aligned}
& \hline \text { Set1 Q22 } \\
& \text { Set2 Q18 } \\
& \text { Set3 Q15 }
\end{aligned}
$$

\] \& | Change in the Brightness of the bulb in cases (i), (ii) \& (iii) $1 / 2+1 / 2+1 / 2$
 $1 / 2+1 / 2+1 / 2$
 Justification |
| :--- |
| (i) Increases $X_{L}=\omega L$ |
| As number of turns decreases, L decreases, hence current through bulb increases. / Voltage across bulb increases. |
| (ii) Decreases |
| Iron rod increases the inductance which increases X_{L}, hence current through the bulb decreases./ Voltage across bulb decreases. |
| (iii) Increases Under this condition $\left(X_{C}=X_{L}\right)$ the current through the bulb will become maximum / increase. | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3 \\

\hline Set1 Q23 Set2 Q23 Set3 Q23 \& | (i) | Name of device and Principle of working | $1 / 2+1$ |
| :--- | :--- | :--- |
| (ii) | Possibility and explanation | $1 / 2$ |
| (iii) | Values displayed by students and teachers | $1+1$ | \& \& \\

\hline
\end{tabular}

	(i) Transformer Working Principle: Mutual induction Whenever an alternative voltage is applied in the primary windings, an emf is induced in the secondary windings. (ii) No, There is no induced emf for a dc voltage in the primary (iii) Inquisitive nature/ Scientific temperament (any one) Conceren for students / Helpfulness / Professional honesty(any one) (Any other relevant values)	$1 / 2$ 1 $1 / 2$ 1 1 1	4
$\begin{array}{\|l} \hline \text { Set1 Q24 } \\ \text { Set2 Q26 } \\ \text { Set3 Q25 } \end{array}$	(a) Statement of Ampere's circuital law (b) Depiction of magnetic field lines and specifying polarity (a) Line integral of magnetic field over a closed loop is equal to the μ_{0} times the total current passing through the surface enlosed by the loop . Alternatively $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I$ (a) (b) Let the current flowing through each turn of the toroid be I. The total number of turns equals $n .(2 \pi r)$ where n is the number of turns per unit length. Applying Ampere's circuital law, for the Amperian loop, for interior points.	1 $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& \therefore \frac{d \phi_{1}}{d t}=\mathrm{M} \frac{d I_{2}}{d t} \\
\& \Rightarrow \mathrm{e}=-\mathrm{M} \frac{d I_{2}}{d t}
\end{aligned}
\] \& 1/2 \& 5 \\
\hline Set1 Q25 Set2 Q24 Set3 Q26 \& \begin{tabular}{l}
(a) Explanation of diffraction pattern using Huygen's construction 2 \\
(b) Showing the angular width of first diffraction fringe as half of the central fringe \\
(c) Explanation of decrease in intensity with increasing \(n\) \\
(a). \\
We can regard the total contribution of the wavefront LN at some point P on the screen, as the resultant effect of the superposition of its wavelets like LM, \(\mathrm{MM}_{2}, \mathrm{M}_{2} \mathrm{~N}\). These have to be superposed taking into account their proper phase differences .We, therefore, get maxima and minima ,i.e a diffraction pattern, on the screen. \\
(b) \\
Condition for first minimum on the screen
\[
a \operatorname{Sin} \theta=\lambda
\]
\[
\Rightarrow \theta=\lambda / a
\] \\
\(\therefore\) angular widthof the central fringe on the screen (from figure)
\end{tabular} \& 1

1
1

$1 / 2$
$1 / 2$ \& \\
\hline \& 17 of 23 Final Draft 17/03/1 \& \& \\
\hline
\end{tabular}

$$
\begin{array}{r}
\angle \mathrm{r}=\angle N C M-\angle N I M \\
=\frac{M N}{M C}-\frac{M N}{M I} \tag{ii}
\end{array}
$$

Using Snell's Law
$n_{1} \sin i=n_{2} \sin r$
For small angles
$n_{1} i^{\theta}=n_{2} r$
Substituting for i and r , we get
$\frac{n_{1}}{O M}+\frac{n_{2}}{M I}=\frac{n_{2}-n_{1}}{M C}$
Here, $O M=-u, M I=+v, M C=+R$
Substituting these, we get
$\Rightarrow \frac{n_{2}}{v}-\frac{n_{1}}{u}=\frac{n_{2-} n_{1}}{R}$
b)

(Alternatively accept this Ray diagram)

Similarly relation for the surface ADC.

	$\begin{equation*} \frac{-n_{2}}{D I_{1}}+\frac{n_{1}}{D I}=\frac{n_{2-} n_{1}}{D C_{2}} \tag{i} \end{equation*}$ Refraction at the first surface ABC of the lens. $\begin{equation*} \frac{n_{1}}{O B}+\frac{n_{2}}{B I_{1}}=\frac{n_{2-} n_{1}}{B C_{1}} \tag{ii} \end{equation*}$ Adding (i)and (ii), and taking $B I_{1} \simeq D I_{1}$, we get $\frac{n_{1}}{O B}+\frac{n_{1}}{D I}=\left(n_{2}-n_{1}\right)\left(\frac{1}{B C_{1}}+\frac{1}{D C_{2}}\right)$ Here, $O B=-u$ $\begin{aligned} & \quad D I=+v \\ & B C_{1}=+R_{1} \\ & D C_{2}=-R_{2} \\ & \Rightarrow \frac{n_{1}}{-u}+\frac{n_{1}}{v}=\left(n_{2}-n_{1}\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \\ & \Rightarrow n_{1}\left(\frac{1}{v}+\frac{1}{u}\right)=\left(n_{2}-n_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\ & \Rightarrow \frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \end{aligned}$	$1 / 2$	5
Set1 Q26 Set2 Q25 Set3 Q24	a) Derivation of the expression for the Electric field E and its limiting value b) Finding the net electric flux a) Electric field intensity at point p due to charge $-q$	1/2	

	$P=X_{e} E$		
	B (i) Net Force on the charge $\frac{Q}{2}$,placed at the centre of the shell,		
Is zero.			
Force on charge '2Q' kept at point A	$1 / 2$		
	$F=E \times 2 Q=\frac{1\left(\frac{3 Q}{2}\right) 2 Q}{4 \pi \varepsilon_{0} r^{2}}=\frac{(K) 3 Q^{2}}{r^{2}}$	$1 / 2$	
	Electric flux through the shell	1	5
$\phi=\frac{Q}{2 \varepsilon_{0}}$			

