
	Expected Answer / Value Points	Marks	Total Marks
Set1 Q1 Set2 Q5 Set3 Q4	It is defined as the opposition to the flow of current in ac circuits offered by a capacitor. Alternatively:		
	$X_c = \frac{1}{\omega C}$	1⁄2	
	S.I Unit : ohm	1⁄2	1
Set1 Q2 Set2 Q1 Set3 Q5	Zero	1	1
Set1 Q3 Set2 Q2 Set3 Q1	Converging (Convex Lens),(Also accept if a student writes it as a diverging Lens or Concave lens (Since hindi translation does not match with English version)	1	1
Set1 Q4 Set2 Q3 Set3 Q2	Side bands are produced due to the superposition of carrier waves of frequency ω_c over modulating / audio signal of frequency ω_m .	1	
	<u>Alternatively:</u>		
	(Credit may be given if a student mentions the side bands as $\omega_c \pm \omega_m$)		1
Set1 Q5 Set2 Q4 Set3 Q3	DE : Negative resistance region AB : Where Ohm's law is obeyed.(Also accept BC)	1/2 1/2	1
Set1 Q6 Set2 Q10 Set3 Q9	Determination of ratio (i) accelerating potential 1 (ii) speed 1 (i) $\lambda = \frac{h}{\sqrt{2mqV}} \implies V = \frac{h^2}{2mq\lambda^2}$	1/2	
	$m_{\alpha} = 4m_{p} , q_{\alpha} = 2q_{p}$ $= > \frac{V_{p}}{V_{\alpha}} = \frac{m_{\alpha} q_{\alpha}}{m_{p}q_{p}}$		
	$= \frac{4m_p \times 2q_p}{m_p q_p}$ $= 8:1$		
D		¹ / ₂ 3/15 4:30	

MARKING SCHEME

	(ii) $\lambda = \frac{h}{m\nu} \implies \nu = \frac{h}{m\lambda}$	1⁄2	
	$=> \qquad \frac{V_p}{V_\alpha} = \frac{m_\alpha}{m_p} = 4$	1/2	2
Set1 Q7 Set2 Q6 Set3 Q10	Showing that the radius of orbit varies as n^2 2		
	$\frac{mv^2}{r} = \frac{1}{4\pi \epsilon_0} \frac{e^2}{r^2}$	1⁄2	
	Or $mv^2r = \frac{1}{4\pi\epsilon_0} e^2$ (i)		
	$mvr = \frac{nh}{2\pi}$	1/2	
	$m^2 v^2 r^2 = \frac{n^2 h^2}{4\pi^2}$ (ii)	1/2	
	Divide (ii) by (i)	72	
	$\mathrm{mr} = \frac{n^2 h^2}{4\pi^2} \times \frac{4\pi\epsilon_0}{e^2}$		
	$\therefore r = \frac{n^2 h^2}{4\pi^2 m e^2} \cdot 4\pi \in_0$	1/2	
	$\therefore r \propto n^2$ (Give full credit to any other correct alternative method)		2
Set1 Q8 Set2 Q7 Set3 Q6	Distinction between intrinsic & extrinsic semiconductor 2		
	Intrinsic Semiconductor Extrinsic Semiconductor		
	(i) Without any impurity atoms. (i) Doped with trivalent/ pentavalent impurity atoms.	1	
	(ii) $n_e = n_h$ (ii) $n_e \neq n_h$	1	
	(Any other correct distinguishing features.)		2
Set1 Q9 Set2 Q8 Set3 Q7	Derivation of the required condition 2		
Page	e 2 of 23 Final Draft 17/0		p.m.

Page 2 of 23

$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1/2	
For concave mirror $f < 0$ and $u < 0$ As object lies between f and $2f$ (i) At $u = -f$		
$\frac{1}{v} = -\frac{1}{f} + \frac{1}{f}$		
$=> v = \infty$ $At \ u = -2f$ $=> \frac{1}{v} = -\frac{1}{f} + \frac{1}{2f} = -\frac{1}{2f}$	1/2	
=> v = -2 f	1/2	
=> Hence, image distance $v \ge -2 f$	1/2	2
Since v is negative therefore the image is real.		2
Alternative Method	1⁄2	
$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ For Concave mirror f < 0, u < 0	1/2	
$\because 2f < u < f$		
$\Rightarrow \frac{1}{2f} > \frac{1}{u} > \frac{1}{f}$		
$\frac{1}{2f} - \frac{1}{f} > \frac{1}{u} - \frac{1}{f} > \frac{1}{f} - \frac{1}{f}$		
$\Rightarrow -\frac{1}{2f} - \frac{1}{v} > 0 \qquad \qquad \because \frac{1}{u} - \frac{1}{f} = \frac{1}{-v}$		
$\Rightarrow \frac{1}{2f} < \frac{1}{\nu} < 0$	1⁄2	
$\Rightarrow v < 0$ \therefore image is real	1/2	
Also $v > 2f$ image is formed beyond $2f$. (Any alternative correct method should be given full credit.)		2

	For loop CBDC		
	$-I_2R_4 + 0 + I_1R_3 = 0 \qquad \dots (ii)$		
	=> from equation (i) $\frac{I_1}{I_2} = \frac{R_1}{R_2}$ From equation (ii)		
	$\frac{I_1}{I_2} = \frac{R_4}{R_3}$	1/2	
	$\therefore \frac{R_1}{R_2} = \frac{R_4}{R_3}$	1⁄2	2
Set1 Q11 Set2 Q19 Set3 Q16	Name of the parts of e.m. spectrum for a,b,c $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Production $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		
	(a) Microwave Production : Klystron/magnetron/Gunn diode (any one)	1/2 1/2	
	(b) Infrared Radiation Production : Hot bodies / vibrations of atoms and molecules (any one)	1/2 1/2	
	(c) X-Rays Production : Bombarding high energy electrons on metal target/ x-ray tube/inner shell electrons(any one).	1/2 1/2	3
Set1 Q12 Set2 Q20 Set3 Q17	(i)Calculation of angular magnification1 1/2(ii)Calculation of image of diameter of Moon1 1/2		
	Angular Magnification $m = \frac{f_o}{f_e}$	1	
	$=\frac{15}{10^{-2}}=1500$	1⁄2	

Page 5 of 23

Final Draft

	Angular size of the moon = $\left(\frac{3.48 \times 10^6}{3.8 \times 10^8}\right) = \frac{3.48}{3.8} \times 10^{-2}$ radian \therefore Angular size of the image = $\left(\frac{3.48}{3.8} \times 10^{-2} \times 1500\right)$ = radian Diameter of the image = $\frac{3.48}{3.8} \times 15 \times focal length of eye piece$ = $\frac{3.48}{3.8} \times 15 \times 1cm$ =13.7cm	1/2 1/2 1/2	3
Set1 Q13	(Also accept alternative correct method.)(i)Einstein's Photoelectric equation1/2	\neg	
Set2 Q21 Set3 Q18	(ii) Important features $\frac{1}{1/2} + \frac{1}{2}$ (iii) Derivation of expressions for λ_0 and work function $\frac{1}{1/2}$ $hv = \varphi_{o+} k_{max}$	1/2	
	or $hv = hv_0 + \frac{1}{2}mv_{max}^2$	72	
	 Important features (i) k_{max} depends linearly on frequency v. (ii) Existence of threshold frequency for the metal surface. (Any other two correct features.) 	1/2 1/2	
	$hv = \varphi_{o+}k_{max}$		
	$\frac{hc}{\lambda_1} = \frac{hc}{\lambda_0^+} k_{max} (i)$		
	$\frac{hc}{\lambda_2} = \frac{hc}{\lambda_0^+} 2k_{max} \text{(ii)}$ From (i) and (ii)	1⁄2	
	$\frac{2hc}{\lambda_1} - \frac{hc}{\lambda_2} = \frac{hc}{\lambda_0}$		
	a 6 of 23 Final Draft	17/03/15 /1-3	

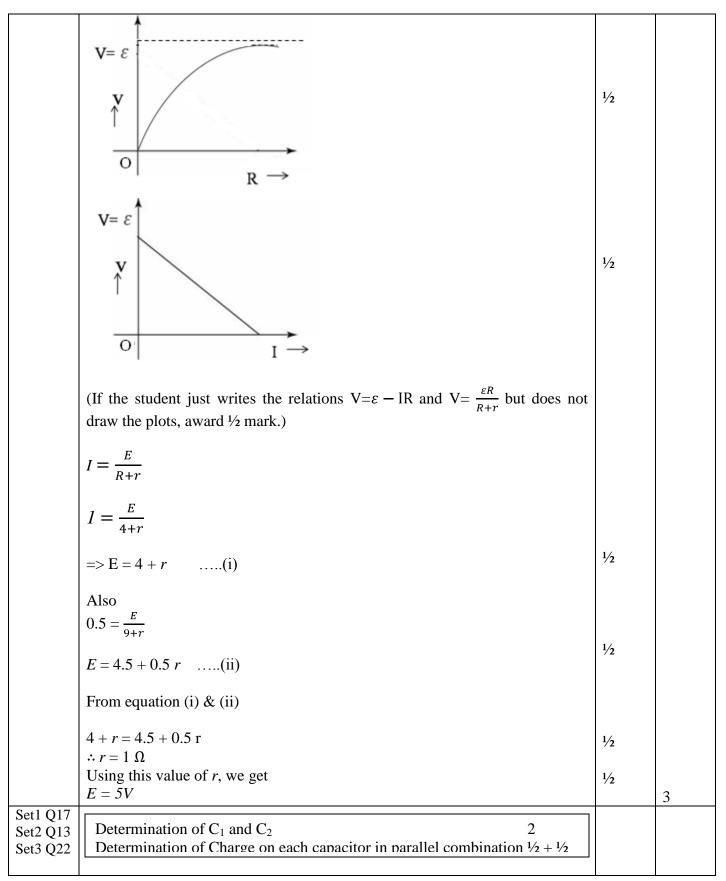
Page 6 of 23

Final Draft

$$\frac{1}{\lambda_{1}} - \left(\frac{2}{\lambda_{1}} - \frac{1}{\lambda_{2}}\right)$$

$$\lambda_{0} = \frac{\lambda_{1}\lambda_{2}}{2\lambda_{2} - \lambda_{1}}$$
Work function $\varphi_{0} = \frac{hc}{\lambda_{0}} = \frac{hc(2\lambda_{2} - \lambda_{1})}{\lambda_{1}\lambda_{2}}$

$$3$$
Work function $\varphi_{0} = \frac{hc}{\lambda_{0}} = \frac{hc(2\lambda_{2} - \lambda_{1})}{\lambda_{1}\lambda_{2}}$

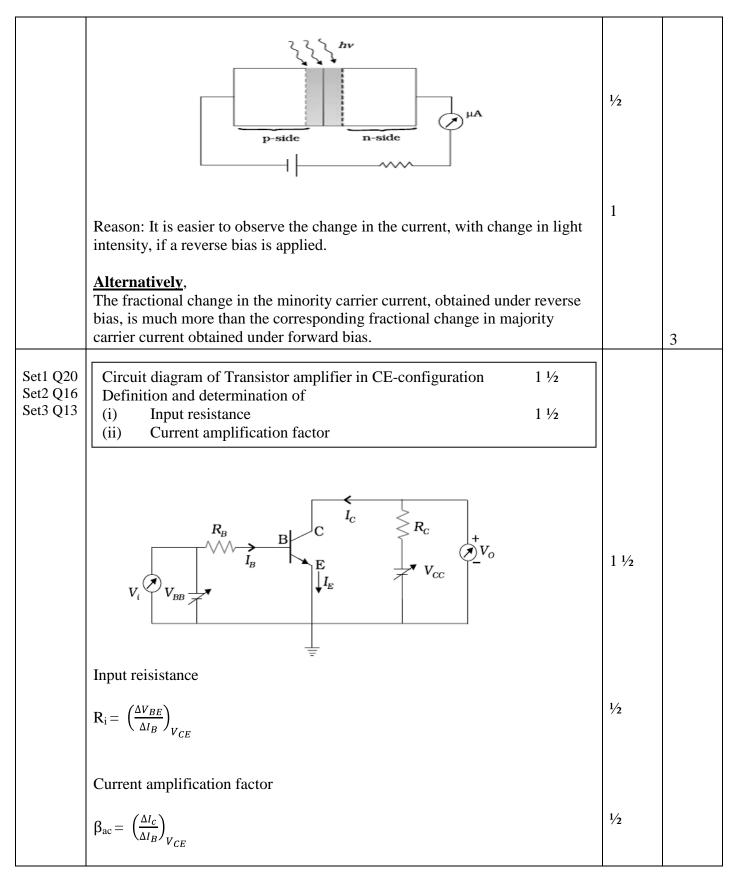

$$3$$
Set | 014
(i) Drawing of trajectory
(ii) Explanation of information on the size of nucleus
$$\frac{1}{2}$$
Set 2 022
(iii) Proving that nuclear density is independent of A = 1 \frac{1}{2}
$$\frac{1}{2}$$

$$\frac{1}{$$

	OR		
	Distinction between nuclear fission and nuclear fusion $\frac{1}{2} + \frac{1}{2}$ Showing release of energy in both processes $\frac{1}{2}$ Calculation of release of energy $1 \frac{1}{2}$		
	The breaking of heavy nucleus into smaller fragments is called nuclear fission; the joining of lighter nuclei to form a heavy nucleus is called nuclear fusion.	¹ / ₂ + ¹ / ₂	
	Binding energy per nucleon, of the daughter nuclei, in both processes, is more than that of the parent nuclei. The difference in binding energy is released in the form of energy. In both processes some mass gets converted into energy.	1/2	
	Alternativey: In both processes, some mass gets converted into energy.		
	Energy Released		
	Q = $[m(_1^2H) + m(_1^3H) - m(_2^4He) - m(n)] \ge 931.5 \text{ MeV}$	1⁄2	
	= [2.014102 + 3.016049 - 4.002603 - 1.008665] x 931.5 MeV	1/2	
	= 0.018883 x 931.5 MeV		
	= 17.59 MeV	1/2	3
Set1 Q15 Set2 Q11 Set3 Q20	Drawing Block diagram of detector1Showing detection of Message signal from Input AM Wave2		
	$\xrightarrow{\text{AM Wave}} \xrightarrow{\text{RECTIFIER}} \xrightarrow{\text{ENVELOPE}} \xrightarrow{m(t)} \xrightarrow{m(t)} \xrightarrow{\text{OUTPUT}} \xrightarrow{(a)} \xrightarrow{(a)} \xrightarrow{(b)} \xrightarrow{(b)} \xrightarrow{(c)} ($	1	
	time time time	1+1	
	AM input wave Rectified wave Output (without RF component)	1	2
	[Note: Award these 3 marks irrespective of the way the student attempts the question.]		3
Set1 Q16 Set2 Q12	Drawing of Plots of Part (i) & (ii)		
Set3 Q21	Drawing of Plots of Part (i) & (ii) $\frac{1}{2} + \frac{1}{2}$ Finding the values of emf and internal resistance $1 + 1$		

Page 8 of 23

Final Draft


Page 9 of 23

	Energy stored in a capacitor		
	$E = \frac{1}{2}CV^2$	1⁄2	
	In series combination		
	$0.045 = \frac{1}{2} \frac{c_1 c_2}{c_1 + c_2} (100)^2$		
	$ = \frac{C_1 C_2}{C_1 + C_2} = 0.09 \text{ x } 10^{-4} \qquad \dots \dots (i) $	1⁄2	
	In Parallel combination		
	$0.25 = \frac{1}{2}(C_1 + C_2) (100)^2$		
	$^{=>}C_1 + C_2 = 0.5 \text{ x } 10^{-4} \qquad \dots \dots (ii)$	1⁄2	
	On simplifying (i) & (ii)		
	$C_1 C_2 = 0.045 \times 10^{-8}$		
	$(C_1 - C_2)^2 = (C_1 + C_2)^2 - 4C_1C_2$		
	$= (0.5 \text{ x } 10^{-4})^2 - 4 \text{ x } 0.045 \text{ x } 10^{-8}$		
	$= 0.25 \text{ x } 10^{-8} - 0.180 \text{ x } 10^{-8}$		
	$(C_1 - C_2)^2 = 0.07 \text{ x } 10^{-8}$		
	$(C_1 - C_2) = 2.6 \times 10^{-5} = 0.26 \times 10^{-4} \dots$ (iii)		
	From (ii) and (iii) we have	1/2	
	$=> C_1 = 0.38 \text{ x } 10^{-4} \text{ F } \& C_2 = 0.12 \text{ x } 10^{-4} \text{ F}$		
	Charges on capacitor C_1 and C_2 in Parallel combination		
	$Q_1 = C_1 V = (0.38 \text{ x } 10^{-4} \text{ x } 100) = 0.38 \text{ x } 10^{-2} \text{ C}$	1⁄2	
	$Q_2 = C_2 V = (0.12 \text{ x } 10^{-4} \text{ x } 100) = 0.12 \text{ x } 10^{-2} \text{ C}$ [Note: If the student writes the relations/ equations $E = \frac{1}{2} CV^2$	1⁄2	
Page	$E = \frac{1}{2} CV^2$ 10 of 23 Final Draft	17/03/15 4:30 p.m.	

Page 10 of 23

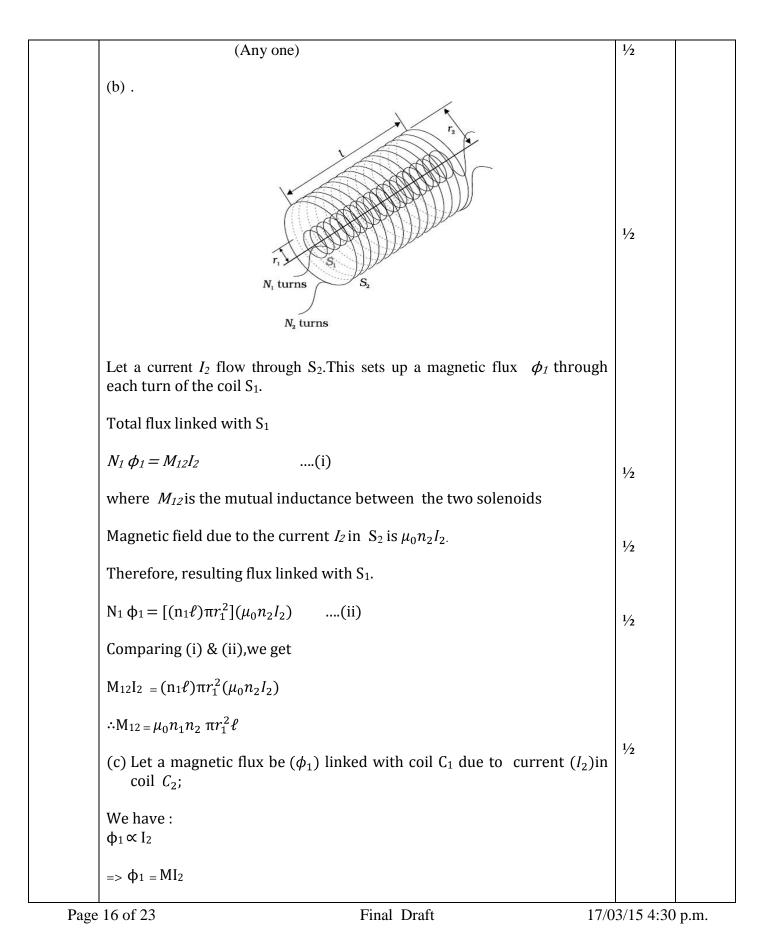
Final Draft

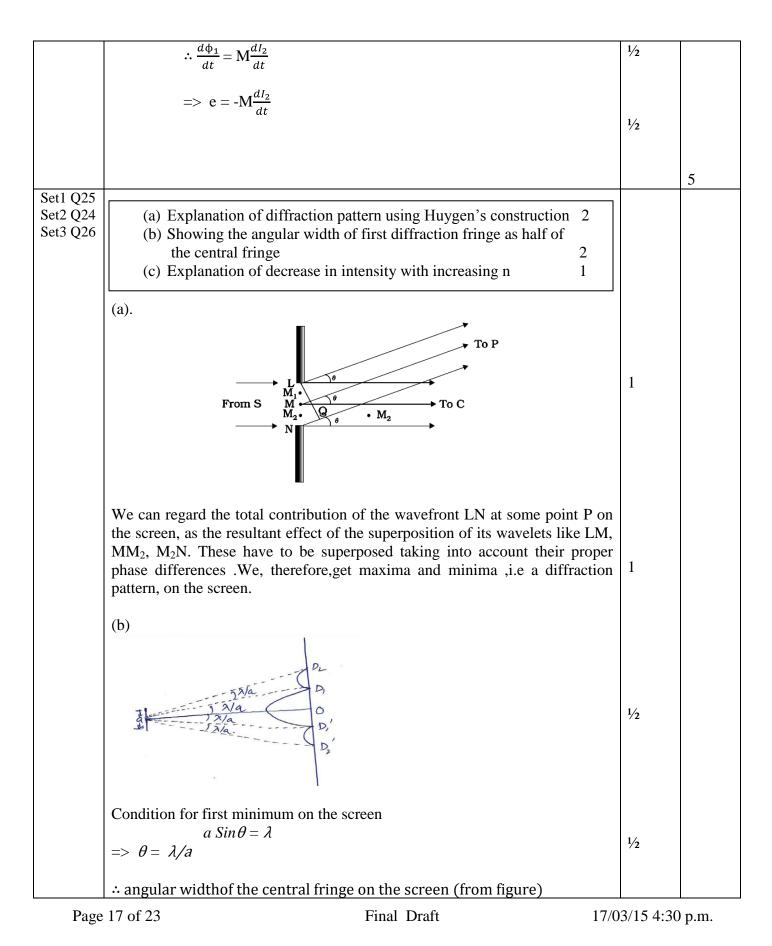
		1	•
	And $0.045 = \frac{1}{2} \left(\frac{C_1 C_2}{C_1 + C_2} \right) (100)^2$		
	$0.25 = \frac{1}{2}(C_1 + C_2)(100)^2$		
	But is unable to calculate C_1 and C_2 , award him/her full 2 marks. Also if the student just writes		
	$Q_1 = C_1 V = C_1(100)$ and $Q_2 = C_2 V = C_2(100)$		3
	Award him/her one mark for this part of the question.]		
Set1 Q18	Working Principle 1		
Set2 Q14	Finding the required resistance1Finding the resistance G of the Galvanometer1		
Set3 Q11			
	Working Principle: A current carrying coil experiences a torque when placed in a magnetic field which tends to rotate the coil and produces an angular		
	deflection.	1	
	$V = I \left(G + R_1 \right)$		
	$\frac{V}{2} = I \left(G + R_2 \right)$	1/2	
	$\frac{1}{2} = I(G + R_2)$	/2	
	$\implies 2 = \frac{G + R_1}{G + R_2}$		
	$=>G=R_1-2R_2$	1⁄2	
	Let R_3 be the resistance required for conversion into voltmeter of range 2V 2V = L(C + R)		
	$ \therefore 2V = I_g (G + R_3) Also V = I_g (G + R_1) $		
	$\therefore 2 = \frac{G + R_3}{G + R_1}$	1/2	
	$\therefore R_3 = G + 2R_1 = R_1 - 2R_2 + 2R_1 = 3R_1 - 2R_2$	1/2	3
Set1 Q19	Estruction of all stadies and 1/		
Set2 Q15 Set3 Q12	Fabrication of photodiode1/2Working with suitable diagram1 1/2		
	Reason 1		
	It is fabricated with a transparent window to allow light to fall on diode.	1⁄2	
	When the photodiode is illuminated with photons of energy $(h\nu > E_g)$ greater than the energy a_g of the semiconductor electron halos mine and		
	than the energy gap of the semiconductor, electron – holes pairs are generated. These gets separated due to the Junction electric field (before they recombine) which produces an emf.	1	
Page	11 of 23 Final Draft 17/0	3/15 4:30) p.m.
2			

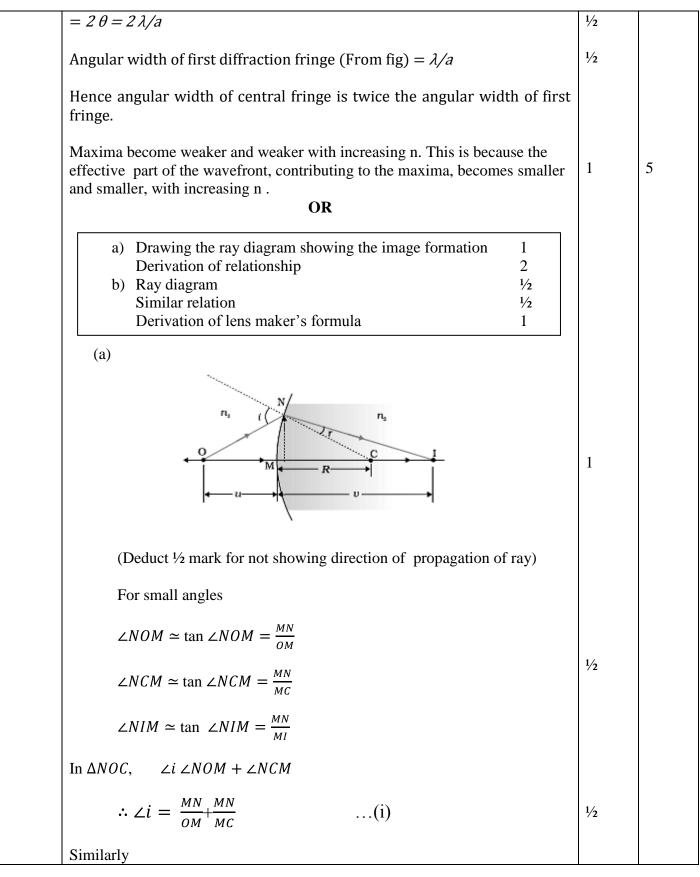
Page 12 of 23

Final Draft

	The value of input resistance is determined from the slope of I_B verses V_{BE} plot at constant V_{CE} .		
	The value of current amplification factor is obtained from the slope of collector I_c verses V_{CE} plot using different values of I_B .	1/2	
Set1 Q21	(If a student uses typical charateristics to determine these values, full credit of one mark should be given)		3
Set1 Q21 Set2 Q17 Set3 Q14	Finding the spacing between two slits1Effect on wavelength and frequency of reflected and refracted light 2		
	(a) Angular width of fringes $\theta = \lambda/d$, where d = separation between two slits	1/2	
	Here $\theta = 0.1^\circ = 0.1 \times \frac{\pi}{180}$ radian $\therefore d = \frac{600 \times 10^{-9} \times 180}{0.1 \times \pi} m$		
	$ \begin{array}{l} 0.1 \times \pi & m \\ = 3.43 \times 10^{-4} m \\ = 0.34m \end{array} $	1⁄2	
	(b) <u>For Reflected light:</u> Wavelength remains same	1/2	
	Frequency remains same <u>For Refracted light:</u> Wavelength decreases Frequency remains same	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	3
	Frequency remains same		
Set1 Q22 Set2 Q18 Set3 Q15	Change in the Brightness of the bulb in cases (i), (ii) & (iii) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Justification $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
	(i) Increases $X_L = \omega L$ As number of turns decreases, <i>L</i> decreases, hence current through bulb increases. / Voltage across bulb increases.	$\frac{1/2}{1/2}$ $\frac{1}{2}$	
	(ii) Decreases Iron rod increases the inductance which increases X_L , hence current through the bulb decreases./ Voltage across bulb decreases.	1/2 1/2	
6-41-002	(iii) Increases Under this condition $(X_C = X_L)$ the current through the bulb will become maximum / increase.	1/2	3
Set1 Q23 Set2 Q23 Set3 Q23	(i)Name of device and Principle of working $\frac{1}{2} + 1$ (ii)Possibility and explanation $\frac{1}{2}$ (iii)Values displayed by students and teachers $1+1$		

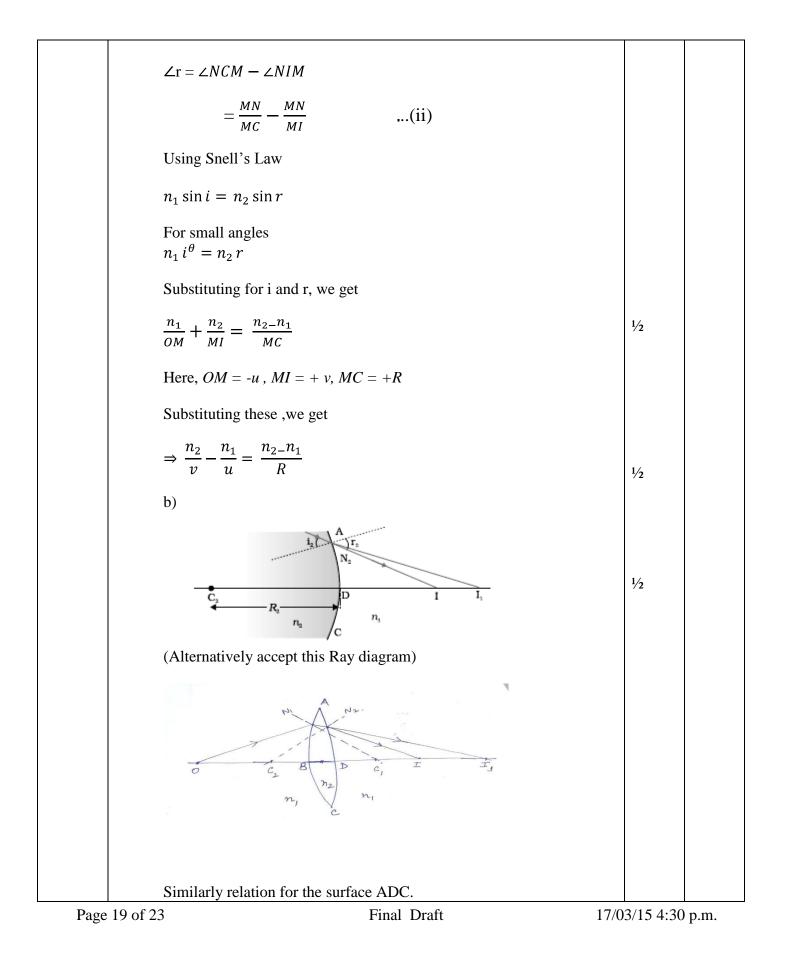

Page 13 of 23

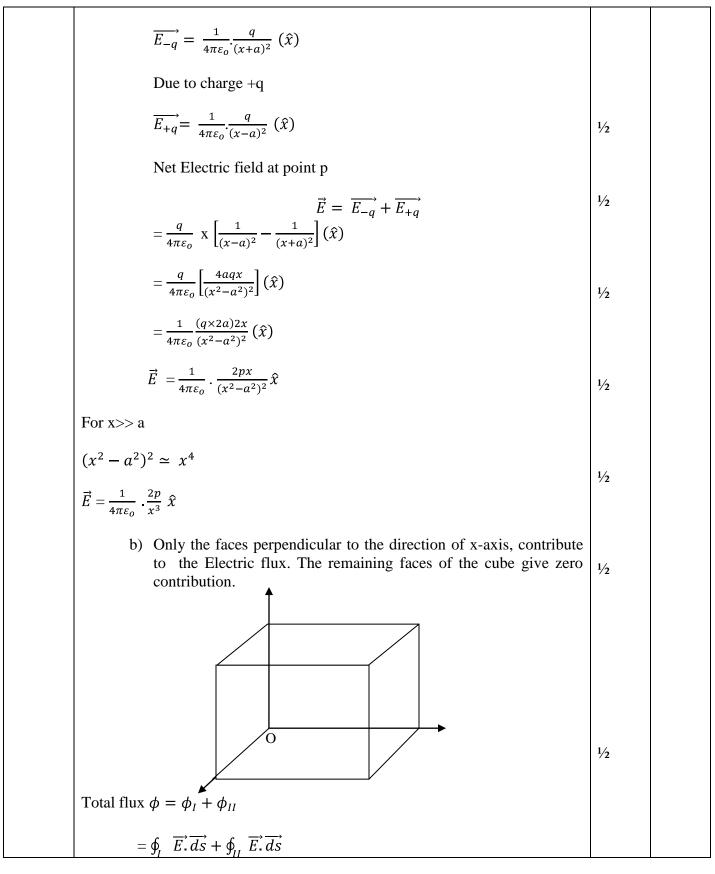

	(i) Transformer	1⁄2	
	Working Principle: Mutual induction Whenever an alternative voltage is applied in the primary windings, an emf is induced in the secondary windings.	1	
	(ii) No, There is no induced emf for a dc voltage in the primary	1⁄2	
	 (iii) Inquisitive nature/ Scientific temperament (any one) Conceren for students / Helpfulness / Professional honesty(any one) (Any other relevant values) 	1 1	4
Set1 Q24 Set2 Q26 Set3 Q25	(a) Statement of Ampere's circuital law1Expression for the magnetic field1 1/2(b) Depiction of magnetic field lines and specifying polarity1/2 + 1/2Showing the solenoid as bar magnet1 1/2		
	(a) Line integral of magnetic field over a closed loop is equal to the μ_0 times the total current passing through the surface enlosed by the loop. Alternatively $\oint \vec{B} \cdot \vec{dl} = \mu_0 I$	1	
	· · · · · · · · · · · · · · · · · · ·		
	(a) $3 \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2}$	1/2	
	Let the current flowing through each turn of the toroid be <i>I</i> . The total number of turns equals $n.(2\pi r)$ where <i>n</i> is the number of turns per unit length. Applying Ampere's circuital law, for the Amperian loop, for interior points.		


$\oint \vec{B} \cdot \vec{dl} = \mu_0 (n2\pi rI)$ $\oint Bdlcos0 = \mu_0 n 2\pi rI$	1/2	
$=>B \ge 2\pi r = \mu_0 n \ 2\pi r I$		
$B = \mu_0 n I$	1⁄2	
(b)		
	1/2 + 1/2	
The solenoid contains N loops, each carrying a current I. Therefore, each loop acts as a magnetic dipole. The magnetic moment for a current I, flowing in loop of area (vector) \mathbf{A} is given by $\mathbf{m} = \mathbf{I}\mathbf{A}$	1⁄2 1⁄2	
The magnetic moments of all loops are aligned along the same direction. Hence, net magnetic moment equals N1A.	1/2	5
OR		
 (a) Definition of mutual inductance and S.I. unit (b) Derivation of expression for the mutual inductance of two long coaxial solenoids (c) Finding out the expression for the induced emf 		
(a) $\phi = MI$ Mutual inductance of two coils is equal to the magnetic flux linked with one coil when a unit current is passed in the other coil.	1	
Alternatively,		
$e = -M \frac{dI}{dt}$		
Mutual inductance is equal to the induced emf set up in one coil when the rate of change of current flowing through the other coil is unity.		
SI unit : henry / (Weber ampere ⁻¹) / (volt second ampere ⁻¹)		
age 15 of 23 Final Draft 17/0	3/15 4:30) n m

Page 15 of 23

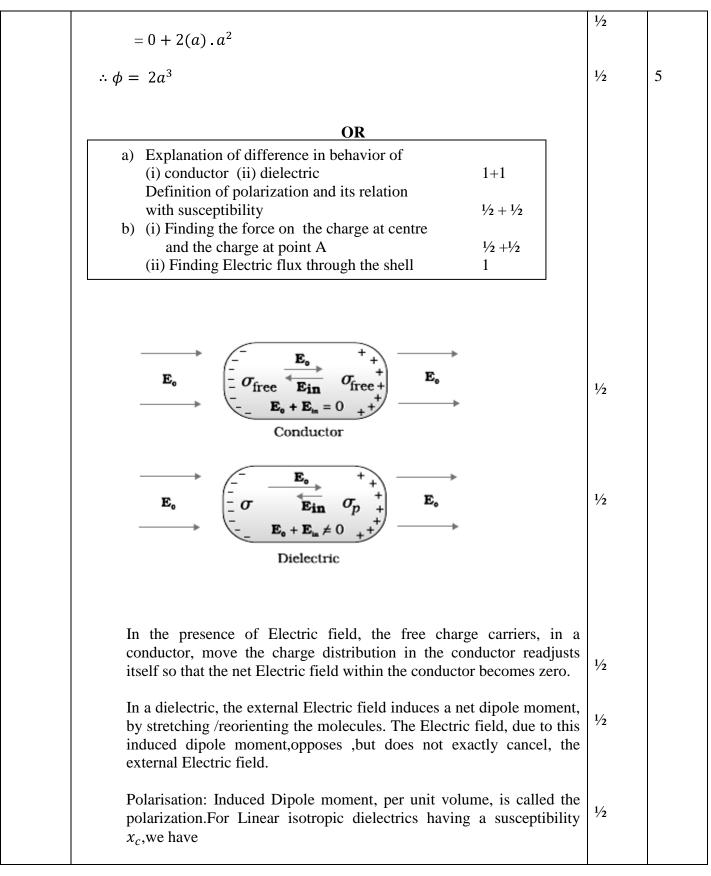
Final Draft





Page 18 of 23

Final Draft



			- 1
	$\frac{-n_2}{DI_1} + \frac{n_1}{DI} = \frac{n_2 - n_1}{DC_2} \qquad \dots (i)$	1/2	
	Refraction at the first surface ABC of the lens.		
	$\frac{n_1}{OB} + \frac{n_2}{BI_1} = \frac{n_2 - n_1}{BC_1} \qquad \dots (ii)$		
	Adding (i)and (ii), and taking $BI_1 \simeq DI_1$, we get		
	$\frac{n_1}{OB} + \frac{n_1}{DI} = (n_2 - n_1) \left(\frac{1}{BC_1} + \frac{1}{DC_2} \right)$	1⁄2	
	Here, $OB = -u$		
	DI = + v		
	$BC_1 = +R_1$		
	$DC_2 = -R_2$		
	$\Rightarrow \frac{n_1}{-u} + \frac{n_1}{v} = (n_2 - n_1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$		
	$\Rightarrow n_1\left(\frac{1}{\nu} + \frac{1}{u}\right) = (n_2 - n_1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$		
	$\Rightarrow \frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1⁄2	5
Set1 Q26 Set2 Q25 Set3 Q24	 a) Derivation of the expression for the Electric field E and its limiting value b) Finding the net electric flux 		
	a)		
	$-q \qquad 0 \qquad +q \qquad \overrightarrow{E_{-q}} \qquad \overrightarrow{E_{+q}}$ $-q \qquad 2a \qquad $	1⁄2	
	Electric field intensity at point p due to charge –q		
Page	20 of 23 Final Draft	17/03/15 4:3	80 p.m.

Page 21 of 23

Final Draft

$P = X_e E$	1⁄2	
B (i) Net Force on the charge $\frac{Q}{2}$, placed at the centre of the shell, Is zero.	1/2	
Force on charge '2Q' kept at point A		
$F = E \times 2Q = \frac{1(\frac{3Q}{2})2Q}{4\pi\varepsilon_0 r^2} = \frac{(K)3Q^2}{r^2}$	1/2	
Electric flux through the shell		
$\phi = \frac{Q}{2\varepsilon_0}$	1	5