Senior School Certificate Examination

March 2017

Marking Scheme - Mathematics 65/1/1, 65/1/2, 65/1/3

General Instructions:

1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the meaning, such answers should be given full weightage.
2. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration - Marking Scheme should be strictly adhered to and religiously followed.
3. Alternative methods are accepted. Proportional marks are to be awarded.
4. In question (s) on differential equations, constant of integration has to be written.
5. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
6. A full scale of marks -0 to 100 has to be used. Please do not hesitate to award full marks if the answer deserves it.
7. Separate Marking Scheme for all the three sets has been given.
8. As per orders of the Hon'ble Supreme Court. The candidates would now be permitted to obtain photocopy of the Answer book on request on payment of the prescribed fee. All examiners/ Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

QUESTION PAPER CODE 65/1/1 EXPECTED ANSWER/VALUE POINTS

 SECTION A

 SECTION A}

1. $\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|} \Rightarrow \mathrm{k}=-1$
2. $\lim _{x \rightarrow 0_{-}} f(x)=\lim _{x \rightarrow 0_{-}} \frac{k x}{|x|}=-k$

$$
\mathrm{k}=-3
$$

3. $\int_{2}^{3} 3^{x} d x=\left[\frac{3^{x}}{\log 3}\right]_{2}^{3}=\frac{18}{\log 3}$
4. $\cos ^{2} 90^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} \gamma=1$
$\cos \gamma= \pm \frac{\sqrt{3}}{2}, \gamma=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$

SECTION B

5. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ be skew symmetric matrix

A is skew symmetric

$$
\begin{array}{ll}
\therefore & A=-A^{\prime} \\
\Rightarrow & a_{i j}=-a_{j i} \forall i, j
\end{array}
$$

For diagonal elements $\mathrm{i}=\mathrm{j}$,
$\Rightarrow \quad 2 \mathrm{a}_{\mathrm{ii}}=0$
$\Rightarrow \quad \mathrm{a}_{\mathrm{ii}}=0 \Rightarrow$ diagonal elements are zero.
6. From the given equation
$2 \sin y \cos y \cdot \frac{d y}{d x}-\sin x y \cdot\left[x \cdot \frac{d y}{d x}+y \cdot 1\right]=0$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=\frac{y \sin x y}{\sin 2 y-x \sin (x y)} \\
& \left.\therefore \quad \frac{d y}{d x}\right|_{x=1, y=\frac{\pi}{4}}=\frac{\pi}{4(\sqrt{2}-1)}
\end{aligned}
$$

7. $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{3}{4 \pi \mathrm{r}^{2}} \\
& \mathrm{~S}=4 \pi \mathrm{r}^{2}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{\mathrm{dS}}{\mathrm{dt}}=8 \pi \mathrm{r} \cdot \frac{\mathrm{dr}}{\mathrm{dt}}
$$

$$
\left.\Rightarrow \quad \frac{\mathrm{dS}}{\mathrm{dt}}\right|_{\mathrm{r}=2}=3 \mathrm{~cm}^{2} / \mathrm{s}
$$

8. $f(x)=4 x^{3}-18 x^{2}+27 x-7$

$$
\begin{aligned}
f^{\prime}(x) & =12 x^{2}-36 x+27 \\
& =3(2 x-3)^{2} \geq 0 \quad \forall x \in R
\end{aligned}
$$

$$
\Rightarrow \mathrm{f}(\mathrm{x}) \text { is increasing on } \mathrm{R}
$$

9. Equation of given line is $\frac{x-5}{1 / 5}=\frac{y-2}{-1 / 7}=\frac{z}{1 / 35}$

Its DR's $\left\langle\frac{1}{5},-\frac{1}{7}, \frac{1}{35}\right\rangle$ or $\langle 7,-5,1\rangle$
Equation of required line is

$$
\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\lambda(7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+\hat{\mathrm{k}})
$$

10. $\mathrm{P}\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E} \cap \mathrm{F})$

$$
\begin{aligned}
& =P(E)-P(E) \cdot P(F) \\
& =P(E)[1-P(F)] \\
& =P(E) P\left(F^{\prime}\right)
\end{aligned}
$$

$\Rightarrow \mathrm{E}$ and F^{\prime} are independent events.
11. Let x necklaces and y bracelets are manufactured
\therefore L.P.P. is
Maximize profit, $P=100 x+300 y$
subject to constraints
$x+y \leq 24$
$\frac{1}{2} \mathrm{x}+\mathrm{y} \leq 16$ or $\mathrm{x}+2 \mathrm{y} \leq 32$
$\mathrm{x}, \mathrm{y}, \geq 1$
12. $\int \frac{d x}{x^{2}+4 x+8}=\int \frac{d x}{(x+2)^{2}+(2)^{2}}$

$$
=\frac{1}{2} \tan ^{-1} \frac{x+2}{2}+C
$$

SECTION C

13. Let $\frac{1}{2} \cos ^{-1} \frac{\mathrm{a}}{\mathrm{b}}=\mathrm{x}$

$$
\begin{aligned}
\text { LHS } & =\tan \left(\frac{\pi}{4}+x\right)+\tan \left(\frac{\pi}{4}-x\right)=\frac{1+\tan x}{1-\tan x}+\frac{1-\tan x}{1+\tan x} \\
& =\frac{2\left(1+\tan ^{2} x\right)}{1-\tan ^{2} x}=\frac{2}{\cos 2 x} \\
& =\frac{2 b}{a}=\text { RHS }
\end{aligned}
$$

14. $\left|\begin{array}{ccc}x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{array}\right|$

$$
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}
$$

$$
=3(x+y)\left|\begin{array}{ccc}
1 & x+y & x+2 y \\
1 & x & x+y \\
1 & x+2 y & x
\end{array}\right|
$$

$$
\begin{aligned}
& =3(x+y)\left|\begin{array}{ccc}
0 & y & y \\
1 & x & x+y \\
0 & 2 y & -y
\end{array}\right| \\
& =-3(x+y)\left(-y^{2}-2 y^{2}\right)=9 y^{2}(x+y)
\end{aligned}
$$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}
$$

OR

Let $\quad D=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$
$C D=A B \Rightarrow\left[\begin{array}{cc}2 \mathrm{x}+5 \mathrm{z} & 2 \mathrm{y}+5 \mathrm{w} \\ 3 \mathrm{x}+8 \mathrm{z} & 3 \mathrm{y}+8 \mathrm{w}\end{array}\right]=\left[\begin{array}{cc}3 & 0 \\ 43 & 22\end{array}\right]$
$2 \mathrm{x}+5 \mathrm{z}=3,3 \mathrm{x}+8 \mathrm{z}=43 ; 2 \mathrm{y}+5 \mathrm{w}=0,3 \mathrm{y}+8 \mathrm{w}=22$.
Solving, we get $\mathrm{x}=-191, \mathrm{y}=-110, \mathrm{z}=77, \mathrm{w}=44$
$\therefore \mathrm{D}=\left[\begin{array}{cc}-191 & -110 \\ 77 & 44\end{array}\right]$
15. $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$
$y=u+v \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$\mathrm{u}=(\sin \mathrm{x})^{\mathrm{x}}$
$\Rightarrow \quad \log u=x \log \sin x$
$\Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=(\sin \mathrm{x})^{\mathrm{x}}[\mathrm{x} \cot \mathrm{x}+\log \sin \mathrm{x}]$

$$
\begin{aligned}
& v=\sin ^{-1} \sqrt{x} \\
\Rightarrow & \frac{d v}{d x}=\frac{1}{2 \sqrt{x-x^{2}}} \\
\therefore \quad & \frac{d y}{d x}=(\sin x)^{x}[x \cot x+\log \sin x]+\frac{1}{2 \sqrt{x-x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& x^{m} \cdot y^{n}=(x+y)^{m+n} \\
\Rightarrow \quad & m \log x+n \log y=(m+n) \log (x+y)
\end{aligned}
$$

$$
\Rightarrow \quad \frac{\mathrm{m}}{\mathrm{x}}+\frac{\mathrm{n}}{\mathrm{y}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{m}+\mathrm{n}}{\mathrm{x}+\mathrm{y}}\left(1+\frac{\mathrm{dy}}{\mathrm{dx}}\right)
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{d y}{d x}=\frac{y}{x} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} y}{d^{2}}=\frac{x \frac{d y}{d x}-y}{x^{2}}=0 \tag{ii}
\end{equation*}
$$

16. $\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)^{2}}=\int \frac{d y}{(y+1)(y+2)^{2}} \quad\left[\right.$ by substituting $\left.x^{2}=y\right]$

$$
=\int \frac{d y}{y+1}-\int \frac{d y}{y+2}-\int \frac{d y}{(y+2)^{2}} \quad \text { (using partial fraction) } \quad 1 \frac{1}{2}
$$

$$
=\log (y+1)-\log (y+2)+\frac{1}{y+2}+C
$$

$$
=\log \left(x^{2}+1\right)-\log \left(x^{2}+2\right)+\frac{1}{x^{2}+2}+C
$$

17. $I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
$=\int_{0}^{\pi} \frac{(\pi-\mathrm{x}) \sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx}$
$\Rightarrow 2 \mathrm{I}=\pi \int_{0}^{\pi} \frac{\sin \mathrm{xdx}}{1+\cos ^{2} \mathrm{x}}$
Put $\cos \mathrm{x}=\mathrm{t}$ and $-\sin \mathrm{xdx}=\mathrm{dt}$

$$
\begin{aligned}
& =-\pi \int_{1}^{-1} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}} \\
& =\pi\left[\tan ^{-1} \mathrm{t}\right]_{-1}^{1}=\frac{\pi^{2}}{2} \\
\Rightarrow \mathrm{I} & =\frac{\pi^{2}}{4}
\end{aligned}
$$

OR

$I=\int_{0}^{3 / 2}|x \sin \pi x| d x$
$=\int_{0}^{1} \mathrm{x} \sin \pi \mathrm{x} \cdot \mathrm{dx}-\int_{1}^{3 / 2} \mathrm{x} \sin \pi \mathrm{x} \mathrm{dx}$
$=\left[-x \frac{\cos \pi x}{\pi}+\frac{\sin \pi x}{\pi^{2}}\right]_{0}^{1}-\left[-\frac{x \cos \pi x}{\pi}+\frac{\sin \pi x}{\pi^{2}}\right]_{1}^{3 / 2}$
$=\frac{2}{\pi}+\frac{1}{\pi^{2}}$
18. $x^{2}-y^{2}=C\left(x^{2}+y^{2}\right)^{2} \Rightarrow 2 x-2 y y^{\prime}=2 C\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)$

$$
\begin{aligned}
& \Rightarrow \quad\left(x-y y^{\prime}\right)=\frac{x^{2}-y^{2}}{y^{2}+x^{2}}\left(2 x+2 y y^{\prime}\right) \Rightarrow\left(y^{2}+x^{2}\right)\left(x-y y^{\prime}\right)=\left(x^{2}-y^{2}\right)\left(2 x+2 y y^{\prime}\right) \\
& \Rightarrow \quad\left[-2 y\left(x^{2}-y^{2}\right)-y\left(y^{2}+x^{2}\right)\right] \frac{d y}{d x}=2 x\left(x^{2}-y^{2}\right)-x\left(y^{2}+x^{2}\right) \\
& \Rightarrow \quad\left(y^{3}-3 x^{2} y\right) \frac{d y}{d x}=\left(x^{3}-3 x y^{2}\right) \\
& \Rightarrow \quad\left(y^{3}-3 x^{2} y\right) d y=\left(x^{3}-3 x y^{2}\right) d x
\end{aligned}
$$

Hence $x^{2}-y^{2}=C\left(x^{2}+y^{2}\right)^{2}$ is the solution of given differential equation.
19. $[\vec{a} \vec{b} \quad \vec{c}]=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 0 \\ c_{1} & c_{2} & c_{3}\end{array}\right|=c_{2}-c_{3}$
(a) $\mathrm{c}_{1}=1, \mathrm{c}_{2}=2$
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=2-c_{3}$
$\because \vec{a}, \vec{b}, \vec{c}$ are coplanar $[\vec{a} \vec{b} \vec{c}]=0 \Rightarrow c_{3}=2$
(b) $\mathrm{c}_{2}=-1, \mathrm{c}_{3}=1$
$\left[\begin{array}{l}\vec{a} \vec{b} \\ \mathrm{c}\end{array}\right]=\mathrm{c}_{2}-\mathrm{c}_{3}=-2 \neq 0$
\Rightarrow No value of c_{1} can make $\vec{a}, \vec{b}, \vec{c}$ coplanar
20. $|\vec{a}|=|\vec{b}|=|\vec{c}|$ and $\vec{a} \cdot \vec{b}=0=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$

Let α, β and γ be the angles made by $(\vec{a}+\vec{b}+\vec{c})$ with \vec{a}, \vec{b} and \vec{c} respectively $(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{a}=|\vec{a}+\vec{b}+\vec{c}||\vec{a}| \cos \alpha$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{|\vec{a}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$

Similarly, $\beta=\cos ^{-1}\left(\frac{|\vec{b}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$ and $\gamma=\cos ^{-1}\left(\frac{|\vec{c}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$
using (i), we get $\alpha=\beta=\gamma$

Now $|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|^{2}=3|\vec{a}|^{2}$ (using (i))
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}|\vec{a}|$
$\therefore \alpha=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\beta=\gamma$

21. | x | $\mathrm{P}(\mathrm{x})$ |
| ---: | ---: |
| 0 | p |

1	p
2	k
3	k

$\Sigma \mathrm{p}(\mathrm{x})=1 \Rightarrow 2 \mathrm{p}+2 \mathrm{k}=1 \Rightarrow \mathrm{k}=\frac{1}{2}-\mathrm{p}$

As per problem, $\Sigma \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}=2 \Sigma \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$\Rightarrow \quad \mathrm{p}=\frac{3}{8}$
22. Let H_{1} be the event that 6 appears on throwing a die H_{2} be the event that 6 does not appear on throwing a die E be the event that he reports it is six

$$
\mathrm{P}\left(\mathrm{H}_{1}\right)=\frac{1}{6}, \mathrm{P}\left(\mathrm{H}_{2}\right)=1-\frac{1}{6}=\frac{5}{6}
$$

$$
\mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)=\frac{4}{5}, \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)=\frac{1}{5}
$$

$$
\mathrm{P}\left(\mathrm{H}_{1} / \mathrm{E}\right)=\frac{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)}{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)}
$$

$$
=\frac{4}{9}
$$

Relevant value: Yes, Truthness leads to more respect in society.
23.

Correct graph of 3 lines

Correct shade of 3 lines

$$
\begin{aligned}
& Z=5 x+10 y \\
& \left.Z\right|_{\mathrm{A}(60,0)}=300 \\
& \left.Z\right|_{\mathrm{B}(120,0)}=600 \\
& \left.\mathrm{Z}\right|_{\mathrm{C}(60,30)}=600 \\
& \left.\mathrm{Z}\right|_{\mathrm{D}(40,20)}=400
\end{aligned}
$$

Minimum value of $Z=300$ at $x=60, y=0$

SECTION D

24. $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right] \cdot\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
A B=I \Rightarrow A^{-1}=B=\left[\begin{array}{ccc}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]
$$

Given equations in matrix form are:

$$
\left[\begin{array}{ccc}
1 & 0 & 3 \\
-1 & 2 & -2 \\
2 & -3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
9 \\
4 \\
-3
\end{array}\right]
$$

$$
\mathrm{A}^{\prime} \mathrm{X}=\mathrm{C}
$$

$$
\Rightarrow \quad \mathrm{X}=\left(\mathrm{A}^{\prime}\right)^{-1} \mathrm{C}=\left(\mathrm{A}^{-1}\right)^{\prime} \mathrm{C}
$$

$$
\Rightarrow\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 9 & 6 \\
0 & 2 & 1 \\
1 & -3 & -2
\end{array}\right]\left[\begin{array}{c}
9 \\
4 \\
-3
\end{array}\right]=\left[\begin{array}{l}
0 \\
5 \\
3
\end{array}\right]
$$

$$
\Rightarrow \quad x=0, y=5, z=3
$$

25. Clearly $f^{-1}(y)=g(y):[-5, \infty) \rightarrow R_{+}$and,

$$
f o g(y)=f\left(\frac{\sqrt{y+6}-1}{3}\right)=9\left(\frac{\sqrt{y+6}-1}{3}\right)^{2}+6\left(\frac{\sqrt{y+6}-1}{3}\right)-5=y
$$

and $(\operatorname{gof})(x)=g\left(9 x^{2}+6 x-5\right)=\frac{\sqrt{9 x^{2}+6 x+1}-1}{3}=x$
$\therefore \mathrm{g}=\mathrm{f}^{-1}$
(i) $\mathrm{f}^{-1}(10)=\frac{\sqrt{16}-1}{3}=1$
(ii) $\mathrm{f}^{-1}(\mathrm{y})=\frac{4}{3} \Rightarrow \mathrm{y}=19$

OR

Note: Some short comings have been observed in this question which makes the question unsolvable. So, 6 marks may be given for a genuine attempt.
$\mathrm{a}^{*} \mathrm{~b}=\mathrm{a}-\mathrm{b}+\mathrm{ab} \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}=\mathrm{Q}-[1]$
$b^{*} \mathrm{a}=\mathrm{b}-\mathrm{a}+\mathrm{ba}$
$(\mathrm{a} * \mathrm{~b}) \neq \mathrm{b} * \mathrm{a} \Rightarrow{ }^{*}$ is not commutative.
$(a * b) * c=(a-b+a b) * c$
$=\mathrm{a}-\mathrm{b}-\mathrm{c}+\mathrm{ab}+\mathrm{ac}-\mathrm{bc}+\mathrm{abc}$
$\mathrm{a} *(\mathrm{~b} * \mathrm{c})=\mathrm{a} *(\mathrm{~b}-\mathrm{c}+\mathrm{bc})$
$=\mathrm{a}-\mathrm{b}+\mathrm{c}+\mathrm{ab}-\mathrm{ac}-\mathrm{bc}+\mathrm{abc}$
$(\mathrm{a} * \mathrm{~b}) * \mathrm{c} \neq \mathrm{a} *(\mathrm{~b} * \mathrm{c})$
$\Rightarrow *$ is not associative.

Existence of identity

$a^{*} \mathrm{e}=\mathrm{a}-\mathrm{e}+\mathrm{ae}=\mathrm{a}$
$\mathrm{e}^{*} \mathrm{a}=\mathrm{e}-\mathrm{a}+\mathrm{ea}=\mathrm{a}$
$\Rightarrow \mathrm{e}(\mathrm{a}-1)=0$
$\Rightarrow \mathrm{e}(1+\mathrm{a})=2 \mathrm{a}$
$\Rightarrow \mathrm{e}=0$
$\Rightarrow \mathrm{e}=\frac{2 \mathrm{a}}{1+\mathrm{a}}$
\because e is not unique
$\therefore \quad$ No idendity element exists.

$$
\mathrm{a}^{*} \mathrm{~b}=\mathrm{e}=\mathrm{b} * \mathrm{a}
$$

$\therefore \quad$ No identity element exists.
\Rightarrow Inverse element does not exist.
26.

Given $\mathrm{x}+\mathrm{y}=\mathrm{k}$
Area of $\Delta=\frac{1}{2} x \sqrt{y^{2}-x^{2}}$
Let $Z=\frac{1}{4} x^{2}\left(y^{2}-x^{2}\right)$ $=\frac{1}{4} \mathrm{x}^{2}\left[(\mathrm{k}-\mathrm{x})^{2}-\mathrm{x}^{2}\right]$ $=\frac{1}{4}\left[\mathrm{k}^{2} \mathrm{x}^{2}-2 \mathrm{kx}{ }^{3}\right]$
$\frac{\mathrm{dz}}{\mathrm{dx}}=\frac{1}{4}\left[2 \mathrm{k}^{2} \mathrm{x}-6 \mathrm{kx}^{2}\right]=0 \Rightarrow \mathrm{k}-3 \mathrm{x}=0 \Rightarrow \mathrm{x}=\frac{\mathrm{k}}{3}$
$\Rightarrow \mathrm{x}+\mathrm{y}-3 \mathrm{x}=0$ or $\mathrm{y}=2 \mathrm{x}$
$\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}=\frac{1}{4}\left[2 \mathrm{k}^{2}-12 \mathrm{kx}\right]$
$\left.\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx} \mathrm{x}^{2}}\right|_{\mathrm{x}=\frac{\mathrm{k}}{3}}=\frac{1}{4}\left[2 \mathrm{k}^{2}-4 \mathrm{k}^{2}\right]=-\frac{\mathrm{k}^{2}}{2}<0$
\therefore Area will be maximum for $2 \mathrm{x}=\mathrm{y}$
but $\frac{\mathrm{x}}{\mathrm{y}}=\cos \theta \Rightarrow \cos \theta=\frac{\mathrm{x}}{2 \mathrm{x}}=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}$
27.

Equation of $A B$: $y=\frac{3}{2} x+4$
Correct Figure: 1

Equation of BC; $y=4-\frac{x}{2}$
Equation of $\mathrm{AC} ; \mathrm{y}=\frac{1}{2} \mathrm{x}+2 \quad 1 \frac{1}{2}$

$$
\begin{aligned}
\text { Required area } & =\int_{-2}^{0}\left(\frac{3}{2} x+4\right) d x+\int_{0}^{2}\left(4-\frac{x}{2}\right) d x-\int_{-2}^{2}\left(\frac{1}{2} x+2\right) d x \\
& =\left[\frac{3 x^{2}}{4}+4 x\right]_{-2}^{0}+\left[4 x-\frac{x^{2}}{4}\right]_{0}^{2}-\left[\frac{x^{2}}{4}+2 x\right]_{-2}^{2} \\
& =5+7-8 \\
& =4 \text { sq.units }
\end{aligned}
$$

OR

Note: In this problem, two regions are possible instead of a unique one, so full 6 marks may be given for finding the area of either region correctly.

Correct Figure

x-coordinate of points of intersection is $x= \pm 2 \sqrt{3}$
Required area

$$
\begin{aligned}
& =\int_{0}^{2 \sqrt{3}} \frac{x}{\sqrt{3}} \cdot d x+\int_{2 \sqrt{3}}^{4} \sqrt{4^{2}-x^{2}} d x \\
& =\left[\frac{x^{2}}{2 \sqrt{3}}\right]_{0}^{2 \sqrt{3}}+\left[\frac{x \sqrt{16-x^{2}}}{2}+8 \sin ^{-1} \frac{x}{4}\right]_{2 \sqrt{3}}^{4} \\
& =2 \sqrt{3}+8\left(\frac{\pi}{2}-\frac{\pi}{3}\right)-2 \sqrt{3} \\
& =\frac{4 \pi}{3} \text { sq.units }
\end{aligned}
$$

Alternate Solution

Correct figure
y -co-ordinate of point of intersection is $\mathrm{y}=2$

Required Area

$$
\begin{aligned}
& =\sqrt{3} \int_{0}^{2} y d x+\int_{2}^{4} \sqrt{(4)^{2}-y^{2}} d y \\
& =\sqrt{3}\left[\frac{y^{2}}{2}\right]_{0}^{2}+\left[\frac{\mathrm{y} \sqrt{16-y^{2}}}{2}+8 \sin ^{-1} \frac{\mathrm{y}}{4}\right]_{2}^{4} \\
& =2 \sqrt{3}+4 \pi-2 \sqrt{3}-\frac{4 \pi}{3} \\
& =\frac{8 \pi}{3} \text { sq.units }
\end{aligned}
$$

28. The given equation can be written as

$$
\frac{d y}{d x}+\frac{y}{x}=\cos x+\frac{\sin x}{x}
$$

I.F. $=e^{\int \frac{1}{x} d x}=e^{\log x}=x$
\therefore Solution is
$y \cdot x=\int(x \cos x+\sin x) d x+c$
$\Rightarrow y \cdot x=x \sin x+c$
or $y=\sin x+\frac{c}{x}$
when $\mathrm{x}=\frac{\pi}{2}, \mathrm{y}=1$, we get $\mathrm{c}=0$
Required solution is $y=\sin x$
29. Equation of family of planes

$$
\overrightarrow{\mathrm{r}} \cdot[(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}})]=1-4 \lambda
$$

$\Rightarrow \overrightarrow{\mathrm{r}} \cdot[(2+\lambda) \hat{\mathrm{i}}+(-3-\lambda) \hat{\mathrm{j}}+4 \hat{\mathrm{k}}]=1-4 \lambda$
plane (i) is perpendicular to
$\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+8=0$
$2(2+\lambda)-1(-3-\lambda)+1(4)=0 \Rightarrow \lambda=-\frac{11}{3}$
Substituting $\lambda=-\frac{11}{3}$ in equation (i), we get
$\overrightarrow{\mathrm{r}} \cdot\left(-\frac{5}{3} \hat{\mathrm{i}}+\frac{2}{3} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\right)=\frac{47}{3}$
$\left.\begin{array}{ll}\Rightarrow \begin{array}{ll}\overrightarrow{\mathrm{r}} \cdot(-5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+12 \hat{\mathrm{k}})=47 & \text { (vector equation) } \\ \text { or } & -5 \mathrm{x}+2 \mathrm{y}+12 \mathrm{z}-47=0 \\ \text { (cartesian equation) }\end{array}\end{array}\right\}$
(ii)

Line $\frac{x-1}{1}=\frac{y-2}{1 / 2}=\frac{z-4}{1 / 3}$ lies on the plane
\because (i) Point $\mathrm{P}(1,2,4)$ satisfies equation (ii)
and $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=-5+1+4=0$
\Rightarrow Line is perpendicular to the normal of plane
\therefore Plane contains the given line

OR

Equation of line L_{1} passing through $(1,2,-4)$ is
$\frac{x-1}{a}=\frac{y-2}{b}=\frac{z+4}{c}$
$L_{2}: \frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$
$L_{3}: \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
$\because \mathrm{L}_{1} \perp \mathrm{~L}_{2} \Rightarrow 3 \mathrm{a}-16 \mathrm{~b}+7 \mathrm{c}=0$
$\mathrm{L}_{1} \perp \mathrm{~L}_{3} \Rightarrow 3 \mathrm{a}+8 \mathrm{~b}-5 \mathrm{c}=0$

Solving, we get

$$
\frac{\mathrm{a}}{24}=\frac{\mathrm{b}}{36}=\frac{\mathrm{c}}{72} \Rightarrow \frac{\mathrm{a}}{2}=\frac{\mathrm{b}}{3}=\frac{\mathrm{c}}{6}
$$

\therefore Required cartesian equation of line
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
Vector equation

$$
\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})
$$

QUESTION PAPER CODE 65/1/2 EXPECTED ANSWER/VALUE POINTS

 SECTION A

 SECTION A}

1. $\cos ^{2} 90^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} \gamma=1$
$\cos \gamma= \pm \frac{\sqrt{3}}{2}, \gamma=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
2. $\int_{2}^{3} 3^{x} d x=\left[\frac{3^{x}}{\log 3}\right]_{2}^{3}=\frac{18}{\log 3}$
3. $\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|} \Rightarrow \mathrm{k}=-1$
4. $\lim _{x \rightarrow 0_{-}} f(x)=\lim _{x \rightarrow 0_{-}} \frac{k x}{|x|}=-k$

$$
\mathrm{k}=-3
$$

SECTION B

5. $\mathrm{P}\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E} \cap \mathrm{F})$

$$
=P(\mathrm{E})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{~F})
$$

$$
=\mathrm{P}(\mathrm{E})[1-\mathrm{P}(\mathrm{~F})]
$$

$$
=\mathrm{P}(\mathrm{E}) \mathrm{P}\left(\mathrm{~F}^{\prime}\right)
$$

$\Rightarrow \mathrm{E}$ and F^{\prime} are independent events.
6. Let x necklaces and y bracelets are manufactured
\therefore L.P.P. is

Maximize profit, $P=100 x+300 y$
subject to constraints
$x+y \leq 24$
$\frac{1}{2} \mathrm{x}+\mathrm{y} \leq 16$ or $\mathrm{x}+2 \mathrm{y} \leq 32$
$\mathrm{x}, \mathrm{y}, \geq 1$
7. $\int \frac{d x}{x^{2}+4 x+8}=\int \frac{d x}{(x+2)^{2}+(2)^{2}}$

$$
=\frac{1}{2} \tan ^{-1} \frac{x+2}{2}+C
$$

8. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ be skew symmetric matrix

A is skew symmetric
$\therefore \quad \mathrm{A}=-\mathrm{A}^{\prime}$
$\Rightarrow \quad \mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}} \quad \forall \mathrm{i}, \mathrm{j}$
For diagonal elements $\mathrm{i}=\mathrm{j}$,
$\Rightarrow \quad 2 \mathrm{a}_{\mathrm{ii}}=0$
$\Rightarrow \quad \mathrm{a}_{\mathrm{ii}}=0 \Rightarrow$ diagonal elements are zero.
9. From the given equation

$$
\begin{aligned}
& 2 \sin y \cos y \cdot \frac{d y}{d x}-\sin x y \cdot\left[x \cdot \frac{d y}{d x}+y \cdot 1\right]=0 \\
& \Rightarrow \quad \frac{d y}{d x}=\frac{y \sin x y}{\sin 2 y-x \sin (x y)} \\
& \left.\therefore \quad \frac{d y}{d x}\right|_{x=1, y=\frac{\pi}{4}}=\frac{\pi}{4(\sqrt{2}-1)}
\end{aligned}
$$

10. $f(x)=4 x^{3}-18 x^{2}+27 x-7$

$$
f^{\prime}(x)=12 x^{2}-36 x+27
$$

$$
=3(2 x-3)^{2} \geq 0 \quad \forall x \in R
$$

$\Rightarrow f(x)$ is increasing on R
11. Equation of given line $\frac{x-5}{1 / 5}=\frac{y-2}{-1 / 7}=\frac{z}{1 / 35}$

Its DR's $\left\langle\frac{1}{5},-\frac{1}{7}, \frac{1}{35}\right\rangle$ or $\langle 7,-5,1\rangle$
Equation of required line

$$
\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\lambda(7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+\hat{\mathrm{k}})
$$

12. Given curve is $y=5 x-2 x^{3}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=5-6 \mathrm{x}^{2} \\
& \Rightarrow \quad \mathrm{~m}=5-6 \mathrm{x}^{2} \\
& \frac{\mathrm{dm}}{\mathrm{dt}}=-12 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}=-24 \mathrm{x} \\
&\left.\frac{\mathrm{dm}}{\mathrm{dt}}\right|_{\mathrm{x}=3}=-72
\end{aligned}
$$

SECTION C

13. $I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$

$$
\begin{aligned}
& =\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x \\
& \Rightarrow 2 I=\pi \int_{0}^{\pi \sin x d x} \\
& 1+\cos ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& =-\pi \int_{1}^{-1} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}} \\
& =\pi\left[\tan ^{-1} \mathrm{t}\right]_{-1}^{1}=\frac{\pi^{2}}{2} \\
\Rightarrow \mathrm{I} & =\frac{\pi^{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
I & =\int_{0}^{3 / 2}|x \sin \pi x| d x \\
& =\int_{0}^{1} x \sin \pi x \cdot d x-\int_{1}^{3 / 2} x \sin \pi x d x \\
& =\left[-x \frac{\cos \pi x}{\pi}+\frac{\sin \pi x}{\pi^{2}}\right]_{0}^{1}-\left[-\frac{x \cos \pi x}{\pi}+\frac{\sin \pi x}{\pi^{2}}\right]_{1}^{3 / 2} \\
& =\frac{2}{\pi}+\frac{1}{\pi^{2}}
\end{aligned}
$$

14. $x^{2}-y^{2}=C\left(x^{2}+y^{2}\right)^{2} \Rightarrow 2 x-2 y y^{\prime}=2 C\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)$

$$
\begin{aligned}
& \Rightarrow \quad\left(x-y y^{\prime}\right)=\frac{x^{2}-y^{2}}{y^{2}+x^{2}}\left(2 x+2 y y^{\prime}\right) \Rightarrow\left(y^{2}+x^{2}\right)\left(x-y y^{\prime}\right)=\left(x^{2}-y^{2}\right)\left(2 x+2 y^{\prime}\right) \\
& \Rightarrow \quad\left[-2 y\left(x^{2}-y^{2}\right)-y\left(y^{2}+x^{2}\right)\right] \frac{d y}{d x}=2 x\left(x^{2}-y^{2}\right)-x\left(y^{2}+x^{2}\right) \\
& \Rightarrow \quad\left(y^{3}-3 x^{2} y\right) \frac{d y}{d x}=\left(x^{3}-3 x y^{2}\right) \\
& \Rightarrow \quad\left(y^{3}-3 x^{2} y\right) d y=\left(x^{3}-3 x y^{2}\right) d x
\end{aligned}
$$

Hence $\left(x^{2}-y^{2}\right)=C\left(x^{2}+y^{2}\right)^{2}$ is the solution of given differential equation.
15. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}]\end{array}\right]=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 0 \\ c_{1} & c_{2} & c_{3}\end{array}\right|=c_{2}-c_{3}$
(a) $\mathrm{c}_{1}=1, \mathrm{c}_{2}=2$
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=2-c_{3}$
$\because \vec{a}, \vec{b}, \vec{c}$ are coplanar $[\vec{a} \vec{b} \vec{c}]=0 \Rightarrow c_{3}=2$
(b) $\mathrm{c}_{2}=-1, \mathrm{c}_{3}=1$
$[\vec{a} \vec{b} \vec{c}]=c_{2}-c_{3}=-2 \neq 0$
\Rightarrow No value of c_{1} can make $\vec{a}, \vec{b}, \vec{c}$ coplanar
16. Let H_{1} be the event that 6 appears on throwing a die
H_{2} be the event that 6 does not appear on throwing a die
E be the event that he reports it is six

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{H}_{1}\right)= & \frac{1}{6}, \mathrm{P}\left(\mathrm{H}_{2}\right)=1-\frac{1}{6}=\frac{5}{6} \\
\mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right) & =\frac{4}{5}, \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)=\frac{1}{5} \\
\mathrm{P}\left(\mathrm{H}_{1} / \mathrm{E}\right) & =\frac{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)}{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)} \\
& =\frac{4}{9}
\end{aligned}
$$

Relevant value: Yes, Truthness leads to more respect in society.
17. Let $\frac{1}{2} \cos ^{-1} \frac{\mathrm{a}}{\mathrm{b}}=\mathrm{x}$

$$
\begin{aligned}
\text { LHS } & =\tan \left(\frac{\pi}{4}+x\right)+\tan \left(\frac{\pi}{4}-x\right)=\frac{1+\tan x}{1-\tan x}+\frac{1-\tan x}{1+\tan x} \\
& =\frac{2\left(1+\tan ^{2} x\right)}{1-\tan ^{2} x}=\frac{2}{\cos 2 x} \\
& =\frac{2 b}{a}=\text { RHS }
\end{aligned}
$$

18. $\left|\begin{array}{ccc}x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{array}\right|$

$$
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}
$$

$$
=3(x+y)\left|\begin{array}{ccc}
1 & x+y & x+2 y \\
1 & x & x+y \\
1 & x+2 y & x
\end{array}\right|
$$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}
$$

$$
\begin{aligned}
& =3(x+y)\left|\begin{array}{ccc}
0 & y & y \\
1 & x & x+y \\
0 & 2 y & -y
\end{array}\right| \\
& =-3(x+y)\left(-y^{2}-2 y^{2}\right)=9 y^{2}(x+y)
\end{aligned}
$$

OR

Let $\quad D=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$
$C D=A B \Rightarrow\left[\begin{array}{cc}2 \mathrm{x}+5 \mathrm{z} & 2 \mathrm{y}+5 \mathrm{w} \\ 3 \mathrm{x}+8 \mathrm{z} & 3 \mathrm{y}+8 \mathrm{w}\end{array}\right]=\left[\begin{array}{cc}3 & 0 \\ 43 & 22\end{array}\right]$
$2 \mathrm{x}+5 \mathrm{z}=3,3 \mathrm{x}+8 \mathrm{z}=43 ; 2 \mathrm{y}+5 \mathrm{w}=0,3 \mathrm{y}+8 \mathrm{w}=22$.
Solving, we get $\mathrm{x}=-191, \mathrm{y}=-110, \mathrm{z}=77, \mathrm{w}=44$
$\therefore \mathrm{D}=\left[\begin{array}{cc}-191 & -110 \\ 77 & 44\end{array}\right]$
19. $\mathrm{y}=(\sin \mathrm{x})^{\mathrm{x}}+\sin ^{-1} \sqrt{\mathrm{x}}$
$y=u+v \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$\mathrm{u}=(\sin \mathrm{x})^{\mathrm{x}}$
$\Rightarrow \quad \log u=x \log \sin x$
$\Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=(\sin \mathrm{x})^{\mathrm{x}}[\mathrm{x} \cot \mathrm{x}+\log \sin \mathrm{x}]$
$\mathrm{v}=\sin ^{-1} \sqrt{\mathrm{x}}$
$\Rightarrow \quad \frac{d v}{d x}=\frac{1}{2 \sqrt{x-x^{2}}}$
$\therefore \quad \frac{d y}{d x}=(\sin x)^{x}[x \cot x+\log \sin x]+\frac{1}{2 \sqrt{x-x^{2}}}$

OR

$$
\begin{aligned}
& x^{m} \cdot y^{n}=(x+y)^{m+n} \\
\Rightarrow & m \log x+n \log y=(m+n) \log (x+y) \\
\Rightarrow & \frac{m}{x}+\frac{n}{y} \cdot \frac{d y}{d x}=\frac{m+n}{x+y}\left(1+\frac{d y}{d x}\right) \\
\Rightarrow & \frac{d y}{d x}=\frac{y}{x} \quad \ldots \text { (i) } \\
& \frac{d^{2} y}{d x^{2}}=\frac{x \frac{d y}{d x}-y}{x^{2}}=0 \quad \ldots \text { (ii) (using (i)) }
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} \\
0 \\
\mathrm{q} \\
4 \mathrm{p} \\
9 \mathrm{p}
\end{gathered}
$$

Area of $\triangle \mathrm{ABC}=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$

$$
\begin{aligned}
& =\frac{1}{2} \text { magnitude of }\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 1 \\
3 & 3 & -4
\end{array}\right| \\
& =\frac{1}{2}|9 \hat{i}+7 \hat{j}+12 \hat{\mathrm{k}}|=\frac{\sqrt{274}}{2} \text { Sq.units }
\end{aligned}
$$

Correct graph of 3 lines

Correct shade of 3 lines

$$
\begin{aligned}
& \left.\mathrm{Z}\right|_{\mathrm{A}(10,0)}=40 \\
& \left.\mathrm{Z}\right|_{\mathrm{B}(30,0)}=120 \\
& \left.\mathrm{Z}\right|_{\mathrm{C}(20,30)}=110 \\
& \left.\mathrm{Z}\right|_{\mathrm{D}(10,40)}=80
\end{aligned}
$$

Maximum value of $\mathrm{Z}=120$ at $(30,0)$
23. $\int \frac{2 x d x}{\left(x^{2}+1\right)\left(x^{4}+4\right)}=\int \frac{d y}{(y+1)\left(y^{2}+4\right)} \quad\left[\right.$ put $\left.x^{2}=y \Rightarrow 2 x d x=d y\right]$

$$
\begin{aligned}
& \frac{1}{(y+1)\left(y^{2}+4\right)}=\frac{1}{5(y+1)}+\frac{\frac{1}{5}-\frac{1}{5} y}{y^{2}+4} \\
& \begin{aligned}
\therefore \int \frac{d y}{(y+1)\left(y^{2}+4\right)} & =\frac{1}{5} \log |y+1|+\frac{1}{10} \tan ^{-1} \frac{y}{2}-\frac{1}{10} \log \left(y^{2}+4\right)+C \\
& =\frac{1}{5} \log \left(x^{2}+1\right)+\frac{1}{10} \tan ^{-1} \frac{x^{2}}{2}-\frac{1}{10} \log \left(x^{4}+4\right)+C
\end{aligned}
\end{aligned}
$$

SECTION D

24.

Equation of AB: $y=\frac{3}{2} x+4$
Correct Figure:

Equation of BC; $y=4-\frac{x}{2}$
Equation of AC; $y=\frac{1}{2} x+2$

$$
\begin{align*}
\text { Required area } & =\int_{-2}^{0}\left(\frac{3}{2} x+4\right) d x+\int_{0}^{2}\left(4-\frac{x}{2}\right) d x-\int_{-2}^{2}\left(\frac{1}{2} x+2\right) d x \tag{1}\\
& =\left[\frac{3 x^{2}}{4}+4 x\right]_{-2}^{0}+\left[4 x-\frac{x^{2}}{4}\right]_{0}^{2}-\left[\frac{x^{2}}{4}+2 x\right]_{-2}^{2} \\
& =5+7-8 \\
& =4 \text { sq.units }
\end{align*}
$$

OR

Note: In this problem, two regions are possible instead of a unique one, so full 6 marks may be given for finding the area of either region correctly.

Correct Figure

x-coordinate of points of intersection is $x= \pm 2 \sqrt{3}$
Required area

$$
\begin{aligned}
& =\int_{0}^{2 \sqrt{3}} \frac{x}{\sqrt{3}} \cdot d x+\int_{2 \sqrt{3}}^{4} \sqrt{4^{2}-x^{2}} d x \\
& =\left[\frac{x^{2}}{2 \sqrt{3}}\right]_{0}^{2 \sqrt{3}}+\left[\frac{x \sqrt{16-x^{2}}}{2}+8 \sin ^{-1} \frac{x}{4}\right]_{2 \sqrt{3}}^{4} \\
& =2 \sqrt{3}+8\left(\frac{\pi}{2}-\frac{\pi}{3}\right)-2 \sqrt{3} \\
& =\frac{4 \pi}{3} \text { sq.units }
\end{aligned}
$$

Alternate Solution

Correct figure
y-coordinate of point of intersection is $y=2$
Required Area

$$
\begin{aligned}
& =\sqrt{3} \int_{0}^{2} y d x+\int_{2}^{4} \sqrt{(4)^{2}-y^{2}} d y \\
& =\sqrt{3}\left[\frac{y^{2}}{2}\right]_{0}^{2}+\left[\frac{y \sqrt{16-y^{2}}}{2}+8 \sin ^{-1} \frac{y}{4}\right]_{2}^{4} \\
& =2 \sqrt{3}+4 \pi-2 \sqrt{3}-\frac{4 \pi}{3} \\
& =\frac{8 \pi}{3} \text { sq.units }
\end{aligned}
$$

25. The given equation can be written as

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{y}{x}=\cos x+\frac{\sin x}{x} \\
& \text { I.F. }=e^{\int \frac{1}{x} d x}=e^{\log x}=x
\end{aligned}
$$

\therefore Solution is
$y \cdot x=\int(x \cos x+\sin x) d x+c$
$\Rightarrow \mathrm{yx}=\mathrm{x} \sin \mathrm{x}+\mathrm{c}$
or $y=\sin x+\frac{c}{x}$
when $\mathrm{x}=\frac{\pi}{2}, \mathrm{y}=1$, we get $\mathrm{c}=0$
Required solution is $y=\sin x$
26. Equation of family of planes

$$
\begin{align*}
& \overrightarrow{\mathrm{r}} \cdot[(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}})]=1-4 \lambda \\
& \Rightarrow \overrightarrow{\mathrm{r}} \cdot[(2+\lambda) \hat{\mathrm{i}}+(-3-\lambda) \hat{\mathrm{j}}+4 \hat{\mathrm{k}}]=1-4 \lambda \tag{i}
\end{align*}
$$

plane (i) is perpendicular to
$\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+8=0$
$2(2+\lambda)-1(-3-\lambda)+1(4)=0 \Rightarrow \lambda=-\frac{11}{3}$
Substituting $\lambda=-\frac{11}{3}$ in equation (i), we get
$\overrightarrow{\mathrm{r}} \cdot\left(-\frac{5}{3} \hat{\mathrm{i}}+\frac{2}{3} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\right)=\frac{47}{3}$
$\Rightarrow \overrightarrow{\mathrm{r}} \cdot(-5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+12 \hat{\mathrm{k}})=47$ (vector equation)
or $-5 \mathrm{x}+2 \mathrm{y}+12 \mathrm{z}-47=0$ (cartesian equation)
(ii)
and $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=-5+1+4=0$
\Rightarrow Line is perpendicular to the normal of plane \therefore Plane contains the given line

Equation of line L_{1} passing through $(1,2,-4)$ is
$\frac{x-1}{a}=\frac{y-2}{b}=\frac{z+4}{c}$
$L_{2}: \frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$
$L_{3}: \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
$\because \mathrm{L}_{1} \perp \mathrm{~L}_{2} \Rightarrow 3 \mathrm{a}-16 \mathrm{~b}+7 \mathrm{c}=0$

Solving, we get
$\frac{\mathrm{a}}{24}=\frac{\mathrm{b}}{36}=\frac{\mathrm{c}}{72} \Rightarrow \frac{\mathrm{a}}{2}=\frac{\mathrm{b}}{3}=\frac{\mathrm{c}}{6}$
\therefore Required cartesian equation of line
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
Vector equation
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$
27. Clearly $\mathrm{f}^{-1}(\mathrm{y})=\mathrm{g}(\mathrm{y}):[-5, \infty) \rightarrow \mathrm{R}_{+}$and,
$f o g(y)=f\left(\frac{\sqrt{y+6}-1}{3}\right)=9\left(\frac{\sqrt{y+6}-1}{3}\right)^{2}+6\left(\frac{\sqrt{y+6}-1}{3}\right)-5=y$
and $(\operatorname{gof})(x)=g\left(9 x^{2}+6 x-5\right)=\frac{\sqrt{9 x^{2}+6 x+1}-1}{3}=x$
$\therefore \mathrm{g}=\mathrm{f}^{-1}$
(i) $\mathrm{f}^{-1}(10)=\frac{\sqrt{16}-1}{3}=1$
(ii) $\mathrm{f}^{-1}(\mathrm{y})=\frac{4}{3} \Rightarrow \mathrm{y}=19$

OR

Note: Some short comings have been observed in this question which makes the question unsolvable.
So, 6 marks may be given for a genuine attempt.
$\mathrm{a}^{*} \mathrm{~b}=\mathrm{a}-\mathrm{b}+\mathrm{ab} \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}=\mathrm{Q}-[1]$
$b^{*} \mathrm{a}=\mathrm{b}-\mathrm{a}+\mathrm{ba}$
$\left(\mathrm{a}^{*} \mathrm{~b}\right) \neq \mathrm{b} * \mathrm{a} \Rightarrow{ }^{*}$ is not commutative.

$$
\begin{aligned}
(a * b) * c & =(a-b+a b) * c \\
& =a-b-c+a b+a c-b c+a b c \\
a *(b * c) & =a *(b-c+b c) \\
& =a-b+c+a b-a c-b c+a b c
\end{aligned}
$$

$$
(\mathrm{a} * \mathrm{~b}) * \mathrm{c} \neq \mathrm{a} *(\mathrm{~b} * \mathrm{c})
$$

\Rightarrow * is not associative.
Existence of identity

$$
\begin{array}{ll}
a * e=a-e+a e=a & e * a=e-a+e a=a \\
\Rightarrow e(a-1)=0 & \Rightarrow e(1+a)=2 a \\
\Rightarrow e=0 & \Rightarrow e=\frac{2 a}{1+a}
\end{array}
$$

$\because \mathrm{e}$ is not unique
$\therefore \quad$ No idendity element exists.

$$
\mathrm{a} * \mathrm{~b}=\mathrm{e}=\mathrm{b} * \mathrm{a}
$$

$\therefore \quad$ No identity element exists.
\Rightarrow Inverse element does not exist.
28. Let side of square base be xcm and height of the box be ycm .

$$
x^{2} y=1024 \Rightarrow y=\frac{1024}{x^{2}}
$$

cost of the box. $C=5 \times 2 x^{2}+2.5 \times 4 x y$

$$
\begin{aligned}
&=10 x^{2}+\frac{10240}{\mathrm{x}} \\
& \Rightarrow \quad \frac{\mathrm{dC}}{\mathrm{dx}}=20 \mathrm{x}-\frac{10240}{\mathrm{x}^{2}} \\
& \frac{\mathrm{dC}}{\mathrm{dx}}=0 \Rightarrow \mathrm{x}=8
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \mathrm{C}}{\mathrm{dx}^{2}}=20+\frac{20480}{\mathrm{x}^{3}} \\
& \left.\frac{\mathrm{~d}^{2} \mathrm{C}}{\mathrm{dx}^{2}}\right|_{\mathrm{x}=8}>0 \Rightarrow \mathrm{C} \text { is minimum at } \mathrm{x}=8 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad$ Minimum cost $\mathrm{C}=₹ 1920$
29. Here $|\mathrm{A}|=1200$

Co-factors are

$$
\left.\begin{array}{l}
\mathrm{C}_{11}=75, \mathrm{C}_{21}=150,=\mathrm{C}_{31}=75 \\
\mathrm{C}_{12}=110, \mathrm{C}_{22}=-100, \mathrm{C}_{32}=30 \\
\mathrm{C}_{13}=72, \quad \mathrm{C}_{23}=0, \quad \mathrm{C}_{33}=-24
\end{array}\right\}
$$

Given equation in matrix from is:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right]\left[\begin{array}{c}
\frac{1}{x} \\
\frac{1}{y} \\
\frac{1}{z}
\end{array}\right]=\left[\begin{array}{c}
2 \\
5 \\
-4
\end{array}\right]} \\
& \Rightarrow \mathrm{AX}=\mathrm{B} \\
& \Rightarrow \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \\
& \Rightarrow\left[\begin{array}{c}
\frac{1}{\mathrm{x}} \\
\frac{1}{\mathrm{y}} \\
\frac{1}{\mathrm{z}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{-1}{3} \\
\frac{1}{5}
\end{array}\right] \\
& \Rightarrow \mathrm{x}=2, \mathrm{y}=-3, \mathrm{z}=5
\end{aligned}
$$

QUESTION PAPER CODE 65/1/3 EXPECTED ANSWER/VALUE POINTS

 SECTION A

 SECTION A}

1. $\cos ^{2} 90^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} \gamma=1$
$\cos \gamma= \pm \frac{\sqrt{3}}{2}, \gamma=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
2. $\int_{2}^{3} 3^{x} d x=\left[\frac{3^{x}}{\log 3}\right]_{2}^{3}=\frac{18}{\log 3}$
3. $\lim _{x \rightarrow 0_{-}} f(x)=\lim _{x \rightarrow 0_{-}} \frac{k x}{|x|}=-k$

$$
\mathrm{k}=-3
$$

4. $\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|} \Rightarrow \mathrm{k}=-1$

SECTION B

5. $\mathrm{P}\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E} \cap \mathrm{F})$

$$
=P(\mathrm{E})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{~F})
$$

$$
=\mathrm{P}(\mathrm{E})[1-\mathrm{P}(\mathrm{~F})]
$$

$$
=\mathrm{P}(\mathrm{E}) \mathrm{P}\left(\mathrm{~F}^{\prime}\right)
$$

$\Rightarrow \mathrm{E}$ and F^{\prime} are independent events.
6. Let x necklaces and y bracelets are manufactured L.P.P. is

Maximize profit, $P=100 x+300 y$
subject to constraints
$x+y \leq 24$
$\frac{1}{2} \mathrm{x}+\mathrm{y} \leq 16$ or $\mathrm{x}+2 \mathrm{y} \leq 32$

$$
\frac{1}{2} \times 3=1 \frac{1}{2}
$$

$\mathrm{x}, \mathrm{y}, \geq 1$
7. $\int \frac{d \mathrm{x}}{\mathrm{x}^{2}+4 \mathrm{x}+8}=\int \frac{\mathrm{dx}}{(\mathrm{x}+2)^{2}+(2)^{2}}$

$$
=\frac{1}{2} \tan ^{-1} \frac{x+2}{2}+C
$$

8. Equation of given line is $\frac{x-5}{1 / 5}=\frac{y-2}{-1 / 7}=\frac{z}{1 / 35}$

Its DR's $\left\langle\frac{1}{5},-\frac{1}{7}, \frac{1}{35}\right\rangle$ or $\langle 7,-5,1\rangle$
Equation of required line

$$
\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\lambda(7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+\hat{\mathrm{k}})
$$

9. $f(x)=4 x^{3}-18 x^{2}+27 x-7$

$$
f^{\prime}(x)=12 x^{2}-36 x+27
$$

$$
=3(2 x-3)^{2} \geq 0 \quad \forall x \in R
$$

$\Rightarrow f(x)$ is increasing on R
10. $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{3}{4 \pi \mathrm{r}^{2}} \\
& \mathrm{~S}=4 \pi \mathrm{r}^{2}
\end{aligned}
$$

$\left.\Rightarrow \quad \frac{\mathrm{dS}}{\mathrm{dt}}\right|_{\mathrm{r}=2}=3 \mathrm{~cm}^{2} / \mathrm{s}$

$$
\Rightarrow \quad \frac{\mathrm{dS}}{\mathrm{dt}}=8 \pi \mathrm{r} \cdot \frac{\mathrm{dr}}{\mathrm{dt}}
$$

11. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ be skew symmetric matrix

A is skew symmetric

$$
\begin{array}{ll}
\therefore & A=-A^{\prime} \\
\Rightarrow & a_{i j}=-a_{j i} \quad \forall i, j
\end{array}
$$

For diagonal elements $\mathrm{i}=\mathrm{j}$,
$\Rightarrow \quad 2 \mathrm{a}_{\mathrm{ii}}=0$
$\Rightarrow \quad \mathrm{a}_{\mathrm{ii}}=0 \Rightarrow$ diagonal elements are zero.
12. $y=\sin ^{-1}\left(6 x \sqrt{1-9 x^{2}}\right),-\frac{1}{3 \sqrt{2}}<x<\frac{1}{3 \sqrt{2}}$
put $3 x=\sin \theta=\Rightarrow \theta=\sin ^{-1} 3 x$
$y=\sin ^{-1}(\sin 2 \theta)$

$$
=2 \theta=2 \sin ^{-1} 3 x
$$

$\therefore \frac{d y}{d x}=\frac{6}{\sqrt{1-9 \mathrm{x}^{2}}}$

SECTION C

13. $\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}\end{array}\right]=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 0 \\ c_{1} & c_{2} & c_{3}\end{array}\right|=c_{2}-c_{3}$
(a) $\mathrm{c}_{1}=1, \mathrm{c}_{2}=2$
$\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \mathrm{c}\end{array}\right]=2-\mathrm{c}_{3}$
$\because \vec{a}, \vec{b}, \vec{c}$ are coplanar $[\vec{a} \vec{b} \vec{c}]=0 \Rightarrow c_{3}=2$
(b) $\mathrm{c}_{2}=-1, \mathrm{c}_{3}=1$
$[\vec{a} \vec{b} \vec{c}]=c_{2}-c_{3}=-2 \neq 0$
\Rightarrow No value of c_{1} can make $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$ coplanar
14. $|\vec{a}|=|\vec{b}|=|\vec{c}|$ and $\vec{a} \cdot \vec{b}=0=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$

Let α, β and γ be the angles made by $(\vec{a}+\vec{b}+\vec{c})$ with \vec{a}, \vec{b} and \vec{c} respectively $(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{a}=|\vec{a}+\vec{b}+\vec{c}||\vec{a}| \cos \alpha$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{|\vec{a}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$
Similarly, $\beta=\cos ^{-1}\left(\frac{|\vec{b}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$ and $\gamma=\cos ^{-1}\left(\frac{|\vec{c}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$
using (i), we get $\alpha=\beta=\gamma$
Now $|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|^{2}=3|\vec{a}|^{2}$ (using (i))
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}|\vec{a}|$
$\therefore \alpha=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\beta=\gamma$

15. | x | $\mathrm{P}(\mathrm{x})$ |
| ---: | ---: |
| 0 | p |

1	p
2	k
3	k

$\Sigma \mathrm{p}(\mathrm{x})=1 \Rightarrow 2 \mathrm{p}+2 \mathrm{k}=1 \Rightarrow \mathrm{k}=\frac{1}{2}-\mathrm{p}$

x_{i}	p_{i}	$\mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}$
0	p	0	0
1	p	p	p
2	$\frac{1}{2}-\mathrm{p}$	$1-2 \mathrm{p}$	$2-4 \mathrm{p}$
3	$\frac{1}{2}-\mathrm{p}$	$\frac{3}{2}-3 \mathrm{p}$	$\frac{9}{2}-9 \mathrm{p}$
		$\frac{5}{2}-4 \mathrm{p}$	$\frac{13}{2}-12 \mathrm{p}$

As per problem, $\Sigma \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}=2 \Sigma \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$\Rightarrow \mathrm{p}=\frac{3}{8}$
16. Let H_{1} be the event that 6 appears on throwing a die H_{2} be the event that 6 does not appear on throwing a die E be the event that he reports it is six

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{H}_{1}\right)= & \frac{1}{6}, \mathrm{P}\left(\mathrm{H}_{2}\right)=1-\frac{1}{6}=\frac{5}{6} \\
\mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right) & =\frac{4}{5}, \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)=\frac{1}{5} \\
\mathrm{P}\left(\mathrm{H}_{1} / \mathrm{E}\right) & =\frac{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)}{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)} \\
& =\frac{4}{9}
\end{aligned}
$$

Relevant value: Yes, Truthfulness leads to more respect in society.
17. $\left|\begin{array}{ccc}x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{array}\right|$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$

$$
=3(x+y)\left|\begin{array}{ccc}
1 & x+y & x+2 y \\
1 & x & x+y \\
1 & x+2 y & x
\end{array}\right|
$$

$$
\begin{aligned}
& =3(x+y)\left|\begin{array}{ccc}
0 & y & y \\
1 & x & x+y \\
0 & 2 y & -y
\end{array}\right| \\
& =-3(x+y)\left(-y^{2}-2 y^{2}\right)=9 y^{2}(x+y)
\end{aligned}
$$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}
$$

Let $\quad D=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$
$\mathrm{CD}=\mathrm{AB} \Rightarrow\left[\begin{array}{cc}2 \mathrm{x}+5 \mathrm{z} & 2 \mathrm{y}+5 \mathrm{w} \\ 3 \mathrm{x}+8 \mathrm{z} & 3 \mathrm{y}+8 \mathrm{w}\end{array}\right]=\left[\begin{array}{cc}3 & 0 \\ 43 & 22\end{array}\right]$
$2 \mathrm{x}+5 \mathrm{z}=3,3 \mathrm{x}+8 \mathrm{z}=43 ; 2 \mathrm{y}+5 \mathrm{w}=0,3 \mathrm{y}+8 \mathrm{w}=22$
Solving, we get $\mathrm{x}=-191, \mathrm{y}=-110, \mathrm{z}=77, \mathrm{w}=44$
$\therefore \mathrm{D}=\left[\begin{array}{cc}-191 & -110 \\ 77 & 44\end{array}\right]$
18. $\mathrm{y}=(\sin \mathrm{x})^{\mathrm{x}}+\sin ^{-1} \sqrt{\mathrm{x}}$

$$
\begin{aligned}
& y=u+v \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x} \\
& u=(\sin x)^{x} \\
& \Rightarrow \quad \log u=x \log \sin x
\end{aligned}
$$

$$
\Rightarrow \quad \frac{d u}{d x}=(\sin x)^{x}[x \cot x+\log \sin x]
$$

$$
\mathrm{v}=\sin ^{-1} \sqrt{\mathrm{x}}
$$

$$
\Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}-\mathrm{x}^{2}}}
$$

$$
\therefore \quad \frac{d y}{d x}=(\sin x)^{x}[x \cot x+\log \sin x]+\frac{1}{2 \sqrt{x-x^{2}}}
$$

OR

$$
\begin{aligned}
& x^{m} \cdot y^{n}=(x+y)^{m+n} \\
\Rightarrow & m \log x+n \log y=(m+n) \log (x+y) \\
\Rightarrow & \frac{m}{x}+\frac{n}{y} \cdot \frac{d y}{d x}=\frac{m+n}{x+y}\left(1+\frac{d y}{d x}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad \frac{d y}{d x} & =\frac{y}{x} \\
\frac{d^{2} y}{d x^{2}} & =\frac{x \frac{d y}{d x}-y}{x^{2}}=0 \quad \ldots \text { (i) }
\end{aligned}
$$

19. $I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$

$$
\begin{aligned}
& =\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x \\
& \Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{\sin x d x}{1+\cos ^{2} x}
\end{aligned}
$$

Put $\cos \mathrm{x}=\mathrm{t}$ and $-\sin \mathrm{xdx}=\mathrm{dt}$
$I=\int_{0}^{3 / 2}|x \sin \pi x| d x$

$$
=\int_{0}^{1} \mathrm{x} \sin \pi \mathrm{x} \cdot \mathrm{dx}-\int_{1}^{3 / 2} \mathrm{x} \sin \pi \mathrm{x} \mathrm{dx}
$$

$$
=\left[-x \frac{\cos \pi x}{\pi}+\frac{\sin \pi x}{\pi^{2}}\right]_{0}^{1}-\left[-\frac{x \cos \pi x}{\pi}+\frac{\sin \pi x}{\pi^{2}}\right]_{1}^{3 / 2}
$$

$$
=\frac{2}{\pi}+\frac{1}{\pi^{2}}
$$

20.

Correct graph of 3 lines

Correct shade of 3 lines
$Z=20 x+10 y$
$\left.\mathrm{Z}\right|_{\mathrm{A}(2,13)}=170$
$\left.Z\right|_{\mathrm{B}(2,0)}=40$
$\left.\mathrm{Z}\right|_{\mathrm{D}(4,12)}=200$
$\left.Z\right|_{C(8,0)}=160$
Maximum value of $\mathrm{Z}=200$ at $\mathrm{x}=4, \mathrm{y}=12$
21. $x^{2}-y^{2}=c x \Rightarrow \frac{x^{2}-y^{2}}{x}=c$
$\Rightarrow \frac{x\left(2 x-2 y \frac{d y}{d x}\right)-\left(x^{2}-y^{2}\right)}{x^{2}}=0$
$\Rightarrow \quad 2 x^{2}-2 x y \frac{d y}{d x}-x^{2}+y^{2}=0$
$\Rightarrow \quad \frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
Hence proved.
22. $\int \frac{(3 \sin x-2) \cos x}{13-\cos ^{2} x-7 \sin x} d x=\int \frac{(3 \sin x-2) \cos x}{\sin ^{2} x-7 \sin x+12} d x$
put $\sin x=y, \cos x d x=d y$

$$
\begin{aligned}
& =\int \frac{(3 y-2) d y}{y^{2}-7 y+12} \\
& =\int \frac{(3 y-2) d y}{(y-4)(y-3)}
\end{aligned}
$$

$$
\begin{aligned}
& =\int\left(\frac{10}{y-4}-\frac{7}{y-3}\right) d y \\
& =10 \log |y-4|-7 \log |y-3|+C \\
& =10 \log |\sin x-4|-7 \log |\sin x-3|+C
\end{aligned}
$$

23. $\cos \left(\tan ^{-1} \mathrm{x}\right)=\sin \left(\cot ^{-1} \frac{3}{4}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \cos \left(\cos ^{-1} \frac{1}{\sqrt{1+\mathrm{x}^{2}}}\right)=\sin \left(\sin ^{-1} \frac{4}{5}\right) \\
& \Rightarrow \quad \frac{1}{\sqrt{1+\mathrm{x}^{2}}}=\frac{4}{5} \\
& \Rightarrow \quad x= \pm \frac{3}{4}
\end{aligned}
$$

SECTION D

24.

Equation of $A B: y=\frac{3}{2} x+4$
Correct Figure: 1

Equation of BC; $y=4-\frac{x}{2}$
Equation of $A C ; y=\frac{1}{2} x+2$

$$
\begin{aligned}
\text { Required area } & =\int_{-2}^{0}\left(\frac{3}{2} x+4\right) d x+\int_{0}^{2}\left(4-\frac{x}{2}\right) d x-\int_{-2}^{2}\left(\frac{1}{2} x+2\right) d x \\
& =\left[\frac{3 x^{2}}{4}+4 x\right]_{-2}^{0}+\left[4 x-\frac{x^{2}}{4}\right]_{0}^{2}-\left[\frac{x^{2}}{4}+2 x\right]_{-2}^{2} \\
& =5+7-8 \\
& =4 \text { sq.units }
\end{aligned}
$$

OR

Note: In this problem, two regions are possible instead of a unique, so full 6 marks may be given for finding the area of either region correctly.

Correct Figure

x-coordinate of points of intersection is $x= \pm 2 \sqrt{3}$
Required area

$$
\begin{aligned}
& =\int_{0}^{2 \sqrt{3}} \frac{x}{\sqrt{3}} \cdot d x+\int_{2 \sqrt{3}}^{4} \sqrt{4^{2}-x^{2}} d x \\
& =\left[\frac{x^{2}}{2 \sqrt{3}}\right]_{0}^{2 \sqrt{3}}+\left[\frac{x \sqrt{16-x^{2}}}{2}+8 \sin ^{-1} \frac{x}{4}\right]_{2 \sqrt{3}}^{4} \\
& =2 \sqrt{3}+8\left(\frac{\pi}{2}-\frac{\pi}{3}\right)-2 \sqrt{3} \\
& =\frac{4 \pi}{3} \text { sq.units }
\end{aligned}
$$

Other Possible Solution

Correct figure
y-co-ordinate of point of intersection is $y=2$
Required Area

$$
\begin{aligned}
& =\sqrt{3} \int_{0}^{2} y d x+\int_{2}^{4} \sqrt{(4)^{2}-y^{2}} d y \\
& =\sqrt{3}\left[\frac{y^{2}}{2}\right]_{0}^{2}+\left[\frac{y \sqrt{16-y^{2}}}{2}+8 \sin ^{-1} \frac{y}{4}\right]_{2}^{4} \\
& =2 \sqrt{3}+4 \pi-2 \sqrt{3}-\frac{4 \pi}{3} \\
& =\frac{8 \pi}{3} \text { sq.units }
\end{aligned}
$$

25. Equation of family of planes

$$
\overrightarrow{\mathrm{r}} \cdot[(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}})]=1-4 \lambda
$$

$\Rightarrow \overrightarrow{\mathrm{r}} \cdot[(2+\lambda) \hat{\mathrm{i}}+(-3-\lambda) \hat{\mathrm{j}}+4 \hat{\mathrm{k}}]=1-4 \lambda$
plane (i) is perpendicular to
$\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+8=0$
$2(2+\lambda)-1(-3-\lambda)+1(4)=0 \Rightarrow \lambda=-\frac{11}{3}$
Substituting $\lambda=-\frac{11}{3}$ in equation (i), we get
$\overrightarrow{\mathrm{r}} \cdot\left(-\frac{5}{3} \hat{\mathrm{i}}+\frac{2}{3} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\right)=\frac{47}{3}$
$\Rightarrow \overrightarrow{\mathrm{r}} \cdot(-5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+12 \hat{\mathrm{k}})=47$ (vector equation)
or $-5 \mathrm{x}+2 \mathrm{y}+12 \mathrm{z}-47=0$ (cartesian equation)
(ii)

Line $\frac{x-1}{1}=\frac{y-2}{1 / 2}=\frac{z-4}{1 / 3}$ lies on the plane
\because (i) Point $\mathrm{P}(1,2,4)$ satisfies equation (ii)
and $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=-5+1+4=0$
\Rightarrow Line is perpendicular to the normal of plane $\quad \therefore$ Plane contains the given line

OR

Equation of line L_{1} passing through $(1,2,-4)$ is
$\frac{x-1}{a}=\frac{y-2}{b}=\frac{z+4}{c}$
$L_{2}: \frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$
$L_{3}: \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
$\because \mathrm{L}_{1} \perp \mathrm{~L}_{2} \Rightarrow 3 \mathrm{a}-16 \mathrm{~b}+7 \mathrm{c}=0$
$\mathrm{L}_{1} \perp \mathrm{~L}_{3} \Rightarrow 3 \mathrm{a}+8 \mathrm{~b}-5 \mathrm{c}=0$
Solving, we get
$\frac{a}{24}=\frac{b}{36}=\frac{c}{72} \Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{6}$
\therefore Required cartesian equation of line
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
Vector equation
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$
26. Clearly $f^{-1}(y)=g(y):[-5, \infty) \rightarrow R_{+}$and,
$f 0 g(y)=f\left(\frac{\sqrt{y+6}-1}{3}\right)=9\left(\frac{\sqrt{y+6}-1}{3}\right)^{2}+6\left(\frac{\sqrt{y+6}-1}{3}\right)-5=y$
and $(\operatorname{gof})(x)=g\left(9 x^{2}+6 x-5\right)=\frac{\sqrt{9 x^{2}+6 x+1}-1}{3}=x$
$\therefore \mathrm{g}=\mathrm{f}^{-1}$
(i) $\mathrm{f}^{-1}(10)=\frac{\sqrt{16}-1}{3}=1$
(ii) $f^{-1}(y)=\frac{4}{3} \Rightarrow y=19$

OR

Note: Some short comings have been observed in this question which makes the question unsolvable.
So, 6 marks may be given for a genuine attempt.
$\mathrm{a}^{*} \mathrm{~b}=\mathrm{a}-\mathrm{b}+\mathrm{ab} \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}=\mathrm{Q}-[1]$
$b^{*} \mathrm{a}=\mathrm{b}-\mathrm{a}+\mathrm{ba}$
$\left(\mathrm{a}^{*} \mathrm{~b}\right) \neq \mathrm{b} * \mathrm{a} \Rightarrow *$ is not commutative.
$(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=(\mathrm{a}-\mathrm{b}+\mathrm{ab}) * \mathrm{c}$

$$
=a-b-c+a b+a c-b c+a b c
$$

$a *(b * c)=a *(b-c+b c)$

$$
=\mathrm{a}-\mathrm{b}+\mathrm{c}+\mathrm{ab}-\mathrm{ac}-\mathrm{bc}+\mathrm{abc}
$$

$\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*} \mathrm{c} \neq \mathrm{a} *(\mathrm{~b} * \mathrm{c})$
$\Rightarrow *$ is not associative.

Existence of identity

$$
\begin{array}{ll}
a * e=a-e+a e=a & e^{*} a=e-a+e a=a \\
\Rightarrow e(a-1)=0 & \Rightarrow e(1+a)=2 a \\
\Rightarrow e=0 & \Rightarrow e=\frac{2 a}{1+a}
\end{array}
$$

$\because \mathrm{e}$ is not unique
$\therefore \quad$ No idendity element exists.

$$
\mathrm{a}^{*} \mathrm{~b}=\mathrm{e}=\mathrm{b}^{*} \mathrm{a}
$$

$\therefore \quad$ No identity element exists.
$\Rightarrow \quad$ Inverse element does not exist.

$$
\begin{aligned}
& 27 . \\
& \text { Given } \mathrm{x}+\mathrm{y}=\mathrm{k} \\
& \text { Area of } \Delta=\frac{1}{2} \mathrm{x} \sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}} \\
& \text { Let } Z=\frac{1}{4} x^{2}\left(y^{2}-x^{2}\right) \\
& =\frac{1}{4} \mathrm{x}^{2}\left[(\mathrm{k}-\mathrm{x})^{2}-\mathrm{x}^{2}\right] \\
& =\frac{1}{4}\left[\mathrm{k}^{2} \mathrm{x}^{2}-2 \mathrm{kx}^{3}\right] \\
& \frac{\mathrm{dz}}{\mathrm{dx}}=\frac{1}{4}\left[2 \mathrm{k}^{2} \mathrm{x}-6 \mathrm{kx}^{2}\right]=0 \Rightarrow \mathrm{k}-3 \mathrm{x}=0 \Rightarrow \mathrm{x}=\frac{\mathrm{k}}{3} \quad 1 \frac{1}{2} \\
& \Rightarrow \mathrm{x}+\mathrm{y}-3 \mathrm{x}=0 \text { or } \mathrm{y}=2 \mathrm{x} \\
& \frac{\mathrm{~d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}=\frac{1}{4}\left[2 \mathrm{k}^{2}-12 \mathrm{kx}\right]
\end{aligned}
$$

$$
\left.\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}\right|_{\mathrm{x}=\frac{\mathrm{k}}{3}}=\frac{1}{4}\left[2 \mathrm{k}^{2}-4 \mathrm{k}^{2}\right]=-\frac{\mathrm{k}^{2}}{2}<0
$$

\therefore Area will be maximum for $2 \mathrm{x}=\mathrm{y}$

$$
\text { but } \frac{x}{y}=\cos \theta \Rightarrow \cos \theta=\frac{x}{2 x}=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}
$$

28. $|\mathrm{A}|=-16$

Co-factors are

$$
\left.\begin{array}{l}
\mathrm{C}_{11}=-4, \mathrm{C}_{21}=4, \mathrm{C}_{31}=4 \\
\mathrm{C}_{12}=-5, \mathrm{C}_{22}=1, \mathrm{C}_{32}=-3 \\
\mathrm{C}_{13}=7, \mathrm{C}_{23}=-11, \mathrm{C}_{33}=1
\end{array}\right\}
$$

given equations can be written as
$\mathrm{A}^{\prime} \mathrm{X}=\mathrm{C} \Rightarrow \mathrm{X}=\left(\mathrm{A}^{-1}\right)^{\prime} \mathrm{C}$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{-1}{16}\left[\begin{array}{ccc}-4 & -5 & 7 \\ 4 & 1 & -11 \\ 4 & -3 & 1\end{array}\right]\left[\begin{array}{c}13 \\ 4 \\ 8\end{array}\right]=\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$
$\Rightarrow \mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=-3$
29. Given equation can be written as
$\Rightarrow \frac{d y}{d x}+(\cot x) y=2 x+x^{2} \cot x$
I.F. $=e^{\int \cot x d x}=e^{\log \sin x}=\sin x$

Solution is, $\quad \mathrm{y} \times \sin \mathrm{x}=\int\left(2 \mathrm{x} \sin \mathrm{x}+\mathrm{x}^{2} \cos \mathrm{x}\right) \mathrm{dx}$
$\Rightarrow \quad y \sin x=x^{2} \sin x+C$
when $\mathrm{x}=\frac{\pi}{2}, \mathrm{y}=0$, we get $\mathrm{c}=\frac{-\pi^{2}}{4}$
\therefore Required solution is, $4 y \sin x=4 x^{2} \sin x-\pi^{2}$
or, $y=x^{2}-\pi^{2} / 4 \operatorname{cosec} x$

