Marking scheme - 2017
CHEMISTRY (043)/ CLASS XII
FOREIGN 2017 - Set - 56/2/1

Q.NO.	VALUE POINTS	MARKS
1	$\mathrm{P}_{3} \mathrm{Q}_{4}$	1
2	$\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$	1
3	To make the surface available again for more reaction to occur / To remove the product formed from the surface of the catalyst.	1
4	2 - Phenylethanol	1
5	Neopentane / C($\left.\mathrm{CH}_{3}\right)_{4}$	1
6	a. b. ii) H^{+}	1
	OR	
6	a. Etard reaction: (i) $\mathrm{CrO2Cl} 2, \mathrm{CS} 2$ Toluene $\xrightarrow[\text { (ii) } \mathrm{H} 3 \mathrm{O}+]{ }$ b. Wolff-Kishner reduction: $\mathrm{C}=\mathrm{O} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{NH}_{2} \mathrm{NH}_{2}} \mathrm{C}=\mathrm{NNH}_{2} \xrightarrow[\text { heat }]{\mathrm{KOH} / \text { ethylene glycol }}>\mathrm{CH}_{2}+\mathrm{N}_{2}$ or (i) $\mathbf{N H} 2 N H 2$ (ii) $\mathbf{K O H} /$ ethylene glycol , heat	1

\begin{tabular}{|c|c|c|}
\hline 7 \& \begin{tabular}{l}
Properties that depend on the number of solute particles irrespective of their nature relative to the total number of particles present in the solution. \\
Osmotic Pressure
\end{tabular} \& 1
1 \\
\hline 8 \& \begin{tabular}{l}
a. cis/ trans-diamminedichloridoplatinum(II) \\
b.
\[
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2}
\]
\end{tabular} \& 1
1 \\
\hline 9 \& \begin{tabular}{l}
a. Zinc to silver \\
b. Concentration of \(\mathrm{Zn}^{2+}\) ions will increase and \(\mathrm{Ag}^{+}\)ions will decrease.
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 10 \& \begin{tabular}{l}
a. \(\mathrm{Cr}^{3+}\) \\
b. \(\mathrm{Mn}^{3+}\) \\
c. \(\mathrm{Ti}^{4+}\) \\
d. \(\mathrm{Mn}^{3+}\)
\end{tabular} \& \[
\begin{array}{|l|}
\hline 1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}
\] \\
\hline 11 \& \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \\
\hline
\end{tabular}

	$=254.77 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$			1/2
12	a. The particles of the dispersed phase have no affinity for the dispersion medium/solvent repelling (hating) colloidal sols.Example: metal and their sulphides b. The reactant and the catalyst are in the same phase. $\left.\mathrm{CH}_{3} \mathrm{COOCH}_{3}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})---\mathrm{HCl(I)}\right) \quad \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})$ c. oil is dispersed in water/Oil is dispersed phase and water is dispersion medium. Ex-milk (or any other correct example)			$1 / 2+1 / 2$ $1 / 2+1 / 2$ $1 / 2+1 / 2$
	OR			
12		Physisorption	Chemisorption	$(1+1+1)$
	1	Because of van der Waals forces	Caused by chemical bond formation	
	2	Reversible	Irreversible	
	3	Enthalpy of adsorption is low(20-40 kJ/mol)	Enthalpy of adsorption is high(80-240)kJ/mol	
	(Or any other correct difference)			
13	Given : T_{b} of glucose solution $=100.20^{\circ} \mathrm{C}$$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{~m}$$m=0.20 / 0.512$$\mathrm{m}=0.390 \mathrm{~mol} / \mathrm{kg}$$\begin{aligned} & \Delta T_{f}=\mathrm{K}_{f} \cdot \mathrm{~m} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \times 0.390 \mathrm{~mol} / \mathrm{kg} \\ & \Delta \mathrm{~T}_{f}=0.725 \mathrm{~K} \end{aligned}$$\begin{aligned} \text { Freezing point of solution } & =273.15 \mathrm{~K}-0.725 \\ & =272.425 \mathrm{~K} \end{aligned}$			1
				$1 / 2$ $1 / 2$
				1
14	a. Metal is converted into a volatile compound which on strong heating decomposes to give pure metal. b. It selectively prevents one of the sulphide ores from coming to the froth. c. Coke			1
15	a. For bcc structure$a=4 r / \sqrt{3} \quad \text { or } \quad r=\sqrt{3} a / 4$$r=\sqrt{ } 3 \times 400 \mathrm{pm} / 4$			$1 / 2$

	$\begin{aligned} & =1.732 \times 400 \mathrm{pm} / 4 \\ & =173.2 \mathrm{pm} \end{aligned}$ b. (i) Impurity defect (ii) Cationic vacancies are created.	$\begin{aligned} & 1 / 2 \\ & 1 \\ & 1 \end{aligned}$
16	a. Due to steric hindrance and +l effect caused by two alkyl groups in propanone. b. Due to electron withdrawing nature of $-\mathrm{NO}_{2}$ group which increases the acidic strength and decreases the pK_{a} value . c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CHO}$ has one $\alpha-\mathrm{H}$ atom whereas $\alpha-\mathrm{H}$ atom is absent in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHO}$.	$1 / 2+1 / 2$ 1 1
17	a. Ethylene Glycol and Terephthalic acid $\mathrm{HOH}_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}, \quad \mathrm{p}-\mathrm{HOOC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COOH}$ b. Tetrafluoroethene , $\mathrm{CF}_{2}=\mathrm{CF}_{2}$ c. Hexamethylenediamine and adipic acid $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}, \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$	$\begin{gathered} 1 / 2+1 / 2 \\ 1 / 2+1 / 2 \\ 1 / 2+1 / 2 \end{gathered}$
18	a. It is the magnitude of difference in energy between the two sets of d orbital i.e. $t_{2} g$ and e_{g} $\mathrm{t}^{3}{ }_{2 \mathrm{~g}} \mathrm{eg}^{1}$ b. In $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{Ni}^{+2}\left(3 \mathrm{~d}^{8}\right)$ has two unpaired electrons which do not pair up in the presence of weak field ligand $\mathrm{H}_{2} \mathrm{O}$.	1 1 1
19	a. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$ undergoes dehydration. b. Methyl group is introduced at ortho and para positions. c. Phenol is converted to benzene.	$\begin{gathered} 1 / 2+1 / 2 \\ \\ \\ \\ \\ 1 / 2+1 / 2 \\ 1 / 2+1 / 2 \end{gathered}$

20	a. b. C.	1,1,1
21	a. In $\mathrm{CuCl}_{2}, \mathrm{Cu}$ is in +2 oxidation state which is more stable due to high hydration enthalpy as compared to $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ in which Cu is in +1 oxidation state b. Due to lanthanoid contraction c. Because HCl is oxidised to chlorine.	1 1 1
22	a. Neurologically active drugs / chemical compounds used for treatment of stress / anxiety and mild or even severe mental diseases. b. Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / alkylbenzene sulphonate or detergents whose anionic part is involved in cleansing action. c. Disinfectants kill or prevent growth of microbes and are applied on inanimate / non living objects	1 1 1
23	(i)Concerned , caring, socially alert, leadership (or any other 2 values) (ii)starch (iii) α-Helix and β-pleated sheets (iv)Vitamin B/B1 $B_{2} / B_{6} / C$ (any two)	$1 / 2+1 / 2$ 1 $\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
24	$\begin{aligned} & \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{[\mathrm{~A}]_{0}}{[\mathrm{~A}]} \\ &=\frac{2.303}{40} \log \frac{100}{25} \\ &=\frac{2.303}{40} \log 4 \\ &=\frac{2.303}{40} \times 0.6021 \\ & \mathrm{k}=0.0347 \mathrm{~min}^{-1} \\ & \mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

	$\mathrm{t}_{1 / 2}=\frac{0.693}{0.0347 \mathrm{~min}^{-1}}=19.98 \mathrm{~min}=20 \mathrm{~min}$ b. (i) First order reaction (ii) Zero order reaction	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
	OR	
24	(a) Dividing eqn 4 by eqn 2 $\begin{array}{rl} \frac{2.40 \times 10^{-2}}{6.0 \times 10^{-3}}=k[0.4]^{x}[0.1]^{y} \\ x & k[0.1]^{x}[0.1]^{y} \\ x \end{array}$ Dividing eqn 3 by eqn 1 $\begin{aligned} & \underline{2.88 \times 10^{-1}}=\mathrm{k}[0.3]^{\mathrm{x}}[0.4]^{\mathrm{y}} \\ & 7.2 \times 10^{-2}=\mathrm{k}[0.3]^{\mathrm{x}}[0.2]^{\mathrm{y}} \\ & y=2 \end{aligned}$ order w.r.t. $\mathrm{NO}=1$, order w.r.t O_{2} is 2 (b) Rate law Rate $=\mathrm{k}[\mathrm{NO}]^{1}\left[\mathrm{O}_{2}\right]^{2}$, over all order of the reaction is 3. $\begin{aligned} & \text { c. Rate constant } \begin{array}{l} \text { K rate } \\ {[\mathrm{NO}]^{1}\left[\mathrm{O}_{2}\right]^{2}} \\ k=6.0 \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~min}^{-1} \\ \mathrm{k} .2 \times 10^{-2} \\ \hline \end{array} \end{aligned}$	1 1 $1 / 2,1 / 2$ $1 / 2+1 / 2$ 1
25	a. (i) Thermal stability of hydrides decreases down the group/ Bond dissociation enthalpy decreases down the group. (ii) Because Cl_{2} in presence of moisture liberates nascent oxygen. (iii) Interatomic interactions are weak b.(i) (ii)	1 1 1 1,1

| 26 | ii) | |
| :--- | :--- | :--- | :--- |
| | aii)
 b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
 c. $\mathrm{Add} \mathrm{NaNO}_{2}+\mathrm{HCl}$ to both the compounds at 273K followed by
 addition of phenol. Aniline gives orange dye | 1 |
| (or any other correct test) | | |

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra		16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan		18	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani		19	Mr. Roop Narain Chauhan	
8	Mrs. Preeti Kiran		20	Mr. Mukesh Kumar Kaushik	
9	Ms. Neeru Sofat		21	Ms. Abha Chaudhary	
10	Sh. Pawan Singh Meena		22	Ms. Garima Bhutani 11	Mrs. P. Nirupama Shankar

Marking scheme - 2017

CHEMISTRY (043)/ CLASS XII
FOREIGN 2017-Set - 56/2/2

\begin{tabular}{|c|c|c|}
\hline Q.NO \& VALUE POINTS \& \[
\begin{aligned}
\& \text { MARK } \\
\& \text { S }
\end{aligned}
\] \\
\hline 1 \& 2-Methylbut-3-en-2-ol \& 1 \\
\hline 2 \& Neopentane, \(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}\) \& 1 \\
\hline 3 \& \(\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}\) \& 1 \\
\hline 4 \& \(\mathrm{P}_{3} \mathrm{Q}_{2}\) \& 1 \\
\hline 5 \& To make the surface available again for more reaction to occur / To remove the product formed from the surface of the catalyst. \& 1 \\
\hline 6 \& \begin{tabular}{l}
a. Pentaamminesulphatocobalt(III) chloride \\
b. \(\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]\)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 7 \& \begin{tabular}{l}
a. Zinc to silver \\
b. Concentration of \(\mathrm{Zn}^{2+}\) ions will increase and \(\mathrm{Ag}^{+}\)ions will decrease.
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 8 \& \begin{tabular}{l}
a. \(\mathrm{Cr}^{3+}\) \\
b. \(\mathrm{Mn}^{3+}\) \\
c. \(\mathrm{Ti}^{4+}\) \\
d. \(\mathrm{Mn}^{3+}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2 \\
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \\
\hline 9 \& \begin{tabular}{l}
a.
\[
\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\mathrm{H}^{+}]{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \xrightarrow[\mathrm{CrO3}]{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{COCH}_{3}
\] \\
b.
\[
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{\mathrm{Br} 2 / \mathrm{Red} \mathrm{P}} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{COOH} \xrightarrow{\text { i) aq KOH or } \mathrm{NaOH}} \begin{aligned}
\& \text { ii) } \mathrm{H}^{+} \\
\& \text {(or any other suitable method) }
\end{aligned} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}
\]
\end{tabular} \& 1

1

\hline \& OR \&

\hline 9 \& a.Etard reaction: \& 1

\hline
\end{tabular}

	or (i) $\mathbf{C r O 2 C l} 2, \mathbf{C S} 2$ Toluene (ii) $\mathrm{H} 3 \mathrm{O}+$ Benzaldehyde b.Wolff-Kishner reduction: $\mathrm{C}=\mathrm{O} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{NH}_{2} \mathrm{NH}_{2}} \mathrm{C}=\mathrm{NNH}_{2} \xrightarrow[\text { heat }]{\mathrm{KOH} / \text { ethylene glycol }} \mathrm{CH}_{2}+\mathrm{N}_{2}$ or (i) $\mathbf{N H} 2 \mathrm{NH} 2$ (ii) KOH/ethylene glycol , heat	1
10	The relative lowering of vapour pressure of a solution is equal to the mole fraction of the solute. / The vapour pressure of a solution of a non- volatile solute is equal to the vapour pressure of the pure solvent at that temperature multiplied by its mole fraction. Negative deviation due to formation of Hydrogen bond between chloroform and acetone.	1 $1 / 2+1 / 2$
11	a. Phenol \& Formaldehyde \& HCHO b.Vinyl chloride , $\mathrm{CH}_{2}=\mathrm{CHCl}$ c. 1,3-Butadiene \& styrene $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$ and	$1 / 2+1 / 2$ $1 / 2+1 / 2$ $1 / 2+1 / 2$
12	a. It is the magnitude of difference in energy between the two sets of d orbital i.e. $t_{2} g$ and e_{g} $t^{4}{ }_{2 g} e g^{0}$ b. In $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, \mathrm{CN}^{-}$is a strong field ligand and pairing takes place whereas in $\left[\mathrm{NiCl}_{4}\right]^{2-}$, due to the presence of Cl^{-}, a weak field ligand no pairing occurs / diagrammatic representation	1 1 1

\begin{tabular}{|c|c|c|}
\hline 13. \& \begin{tabular}{l}
a. \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}\) undergoes dehydration. \\
b. Methyl group is introduced at ortho and para positions. \\
c. Phenol is converted to benzene.
\end{tabular} \& \[
1 / 2+1 / 2
\]
\[
1 / 2+1 / 2
\]
\[
1 / 2+1 / 2
\] \\
\hline 14 \& \begin{tabular}{l}
a. \(E u^{2+}\left(4 f^{7}\right)\) is a strong reducing agent because \(\mathrm{Eu}^{3+}\) is more stable than \(E u^{2+}\). \\
b. Dichromate ion changes to chromate ion / \\
\(\mathrm{OH}^{-}\) \\
\(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\) (orange) \(\rightarrow \mathrm{CrO}_{4}{ }^{2-}\) (yellow) \\
c. Due to the irregular variation in ionisation enthalpies (sum of \(1^{\text {st }}\) and \(2^{\text {nd }}\) ionisation enthalpies), heat of sublimation and enthalpy of hydration/ due to irregular electronic configurations from left to right in a period which changes the ionisation potential.
\end{tabular} \& \begin{tabular}{l}
\[
1
\] \\
1
\[
1
\]
\end{tabular} \\
\hline 15 \& \begin{tabular}{l}
a. Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. \\
b. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / detergents whose cationic part is involved in cleansing action. \\
c. Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria.
\end{tabular} \& 1
1
1 \\
\hline 16 \& \[
\begin{aligned}
\& \mathrm{A}=\pi \mathrm{r}^{2} \\
\&=3.14 \times 0.5 \times 0.5 \mathrm{~cm}^{2} \\
\&=0.785 \mathrm{~cm}^{2} \\
\& I=45.5 \mathrm{~cm} \\
\& \rho=\mathrm{R} \times \mathrm{A} / I \\
\& \rho=4.55 \times 10^{3} \Omega \times 0.785 \mathrm{~cm}^{2} / 45.5 \mathrm{~cm} \\
\& \rho=78.5 \Omega \mathrm{~cm} \\
\& \text { conductivity }, \kappa=1 / \rho \\
\&=1 / 78.5 \mathrm{~S} \mathrm{~cm}^{-1}=0.0127 \mathrm{~S} \mathrm{~cm}^{-1}
\end{aligned}
\] \& \(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$

\hline
\end{tabular}

	$\begin{array}{r} \mathrm{mol} \\ = \\ = \\ \mathrm{A}= \\ = \\ = \\ I=4 \\ \mathrm{G}^{*}= \\ = \\ \mathrm{K}= \\ = \\ = \\ \mathrm{S} \end{array}$	r conductivity $\Lambda \mathrm{m}=\kappa \times 1000$ $0127 \mathrm{~S} \mathrm{~cm}^{-1} \times 1000 / 0.05 \mathrm{mo}$ $54.77 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ $14 \times 0.5 \times 0.5 \mathrm{~cm}^{2}$ $785 \mathrm{~cm}^{2}$ 5 cm $/ A=45.5 \mathrm{~cm} / 0.785 \mathrm{~cm}^{2}$ $.96 \mathrm{~cm}^{-1}$ / R $\begin{aligned} & 96 \mathrm{~cm}^{-1} / 4.55 \times 10^{3} \Omega=1.27 \\ & =\kappa \times 1000 / \mathrm{C} \\ & \left.1.27 \times 10^{-2} \mathrm{~S} \mathrm{~cm}^{-1}\right] \times 1000 / \mathrm{c} \\ & 54.77 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \end{aligned}$	C cm^{3} $10^{-2} \mathrm{~S} \mathrm{~cm}^{-1}$ $05 \mathrm{~mol} / \mathrm{cm}^{3}$	$1 / 2$ $1 / 2$
17		particles of the dispersed rsion medium/solvent repe xample: metal and their sul e reactant and the catalyst a $\mathrm{OOCH}_{3}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})---\mathrm{HCl(I)} \text { CH }$ is dispersed in water/Oil is rsion medium. ilk	hase have no affinity for the ng (hating) colloidal hides e in the same phase. $\mathrm{OOH}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})$ ispersed phase and water is any other correct example)	$\begin{gathered} 1 / 2+1 / 2 \\ 1 / 2+1 / 2 \\ \\ 1 / 2+1 / 2 \end{gathered}$
		OR		
17		Physisorption	Chemisorption	1+1+1
	1	Because of van der Waals forces	Caused by chemical bond formation	
	2	Reversible	Irreversible	
	3	Enthalpy of adsorption is low($20-40 \mathrm{~kJ} / \mathrm{mol}$)	Enthalpy of adsorption is high (80-240) kJ/mol	
	(Or any other correct difference)			
18	Given : T_{b} of glucose solution $=100.20^{\circ} \mathrm{C}$$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{~m}$			

	$\begin{aligned} & \mathrm{m}=0.20 / 0.512 \\ & \mathrm{~m}=0.390 \mathrm{~mol} / \mathrm{kg} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \cdot \mathrm{~m} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \times 0.390 \mathrm{~mol} / \mathrm{kg} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=0.725 \mathrm{~K} \\ & \\ & \begin{aligned} \text { Freezing point of solution } & =273.15 \mathrm{~K}-0.725 \\ & =272.425 \mathrm{~K} \end{aligned} \end{aligned}$	1 $1 / 2$ $1 / 2$ 1
19	a) Zone Refining - Impurities are more soluble in the melt than in the solid metal. b) Collectors enhance non- wettability of the mineral particles.Ex Pine oil/ fatty acids c) Carbon monoxide (CO)	1 1 1
20	a. For bcc structure $\begin{aligned} & a=4 r / \sqrt{3} \quad \text { or } r=\sqrt{ } 3 a / 4 \\ & r=\sqrt{ } 3 \times 400 \mathrm{pm} / 4 \\ & =1.732 \times 400 \mathrm{pm} / 4 \\ & =173.2 \mathrm{pm} \end{aligned}$ b. (i) Impurity defect (ii) Cationic vacancies are created.	$1 / 2$ $1 / 2$ 1 1
21	a. b. C.	1,1,1
22	a. Due to steric hindrance and +l effect caused by two alkyl groups in propanone. b. Due to electron withdrawing nature of $-\mathrm{NO}_{2}$ group which increases the acidic strength and decreases the pK_{a} value . c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CHO}$ has one $\alpha-\mathrm{H}$ atom whereas $\alpha-\mathrm{H}$ atom is absent in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHO}$.	$1 / 2+1 / 2$ 1 1
23	(i)Concerned , caring, socially alert, leadership (or any other 2 values) (ii)starch	$1 / 2+1 / 2$ 1

	(iii) α-Helix and β-pleated sheets (iv)Vitamin $B / B_{1} / B_{2} / B_{6} / C$ (any two)	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
24	a. (i) Thermal stability of hydrides decreases down the group/ Bond dissociation enthalpy decreases down the group. (ii) Because Cl_{2} in presence of moisture liberates nascent oxygen. (iii) Interatomic interactions are weak b. (i) (ii)	1 1 1 $1,1$
	OR	
24	a) Size of nitrogen is smaller than Chlorine. b) $2 \mathrm{~F}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HF}+\mathrm{O}_{2} / \mathrm{HF}$ and O_{2} are produced c) $\mathrm{PH}_{3} /$ Phosphine d) XeF_{2} e) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO}-\rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
25	(A) (B) (C) (D) (E)	$1 \times 5=5$
	OR	

25	a. i) ii) iii) b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ c. Add $\mathrm{NaNO}_{2}+\mathrm{HCl}$ to both the compounds at 273 K followed by addition of phenol. Aniline gives orange dye (or any other correct test)	$\begin{aligned} & 1,1,1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
26.	$\begin{aligned} & \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{[\mathrm{~A}]_{0}}{[\mathrm{~A}]} \\ &= \frac{2.303}{40} \log \frac{100}{25} \\ &=\frac{2.303}{40} \log 4 \\ &=\frac{2.303}{40} \times 0.6021 \\ & \mathrm{k}=0.0347 \mathrm{~min}^{-1} \\ & \mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}} \\ & \mathrm{t}_{1 / 2}=\frac{0.693}{0.0347 \mathrm{~min}^{-1}}=19.98 \mathrm{~min}=20 \mathrm{~min} \end{aligned}$ b. (i) first order reaction (ii) zero order reaction	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1 1 1
	OR	
26		

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra		16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan		18	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani		19	Mr. Roop Narain Chauhan	
8	Mrs. Preeti Kiran		20	Mr. Mukesh Kumar Kaushik	
9	Ms. Neeru Sofat		21	Ms. Abha Chaudhary	
10	Sh. Pawan Singh Meena		22	Ms. Garima Bhutani	
11	Mrs. P. Nirupama Shankar				

Marking scheme - 2017
 CHEMISTRY (043)/ CLASS XII
 FOREIGN 2017-Set-56/2/3

\begin{tabular}{|c|c|c|}
\hline Q.NO \& VALUE POINTS \& MARK S \\
\hline 1 \& \(\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}\) \& 1 \\
\hline 2 \& To make the surface available again for more reaction to occur / To remove the product formed from the surface of the catalyst. \& 1 \\
\hline 3 \& 2-Phenylpropan-2-ol \& 1 \\
\hline 4 \& Neopentane , \(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)_{4}}\) \& 1 \\
\hline 5 \& \(\mathrm{P}_{3} \mathrm{Q}_{2}\) \& 1 \\
\hline 6 \& \begin{tabular}{l}
a. Zinc to silver \\
b. Concentration of \(\mathrm{Zn}^{2+}\) ions will increase and \(\mathrm{Ag}^{+}\)ions will decrease.
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 / 2+1 / 2
\end{aligned}
\] \\
\hline 7 \& \begin{tabular}{l}
a. \(\mathrm{Cr}^{3+}\) \\
b. \(\mathrm{Mn}^{3+}\) \\
c. \(\mathrm{Ti}^{4+}\) \\
d. \(\mathrm{Mn}^{3+}\)
\end{tabular} \& \[
\begin{aligned}
\& \hline 1 / 2 \\
\& 1 / 2 \\
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \\
\hline 8 \& \begin{tabular}{l}
a. \\
b. \\
ii) \(\mathrm{H}^{+}\) \\
(or any other suitable method)
\end{tabular} \& 1

1

\hline \& OR \&

\hline 8 \& | a.Etard reaction: |
| :--- |
| or | \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(i) \(\mathrm{CrO2Cl} 2, \mathrm{Cs} 2\) \\
\(\xrightarrow[\text { (ii) } \mathrm{H} 3 \mathrm{O}+]{ }\) \\
Toluene \\
Benzaldehyde \\
b. Wolff-Kishner reduction:
\[
\mathrm{C}=\mathrm{O} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{NH}_{2} \mathrm{NH}_{2}} \mathrm{C}=\mathrm{NNH}_{2} \xrightarrow[\text { heat }]{\mathrm{KOH} / \text { ethylene glycol }} \mathrm{CH}_{2}+\mathrm{N}_{2}
\] \\
or \\
(i) \(\mathbf{N H} 2 \mathrm{NH} 2\)
\(\qquad\) \(\mathrm{CH}_{2}+\mathrm{N}_{2}\) \\
(ii) KOH/ethylene glycol , heat
\end{tabular} \& 1 \\
\hline 9 \& The increase in boiling point of the solvent in a solution when a non-volatile solute is added. Because it depends upon molality / the number of solute particles rather than their nature/ \(\Delta T_{\mathrm{b}} \propto \mathrm{m}\) \& 1
1 \\
\hline 10 \& \begin{tabular}{l}
a. Tetraamminechloridonitrito-N-cobalt(III) chloride \\
b. \(\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}\)
\end{tabular} \& 1 \\
\hline 11 \& \begin{tabular}{l}
a. In \(\mathrm{CuCl}_{2}, \mathrm{Cu}\) is in +2 oxidation state which is more stable due to high hydration enthalpy as compared to \(\mathrm{Cu}_{2} \mathrm{Cl}_{2}\) in which Cu is in +1 oxidation state \\
b. Due to lanthanoid contraction \\
c. Because HCl is oxidised to chlorine.
\end{tabular} \& 1

1
1

\hline 12 \& a. Drugs that reduce or abolish pain without causing impairment of consciousness, mental confusion or paralysis. b. Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / alkylbenzene sulphonate or detergents whose anionic part is involved in cleansing action. c. Antacids are chemical compounds which are used for the treatment of excess acid produced in the stomach. \& 1
1
1

\hline 13 \& $$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^{2} \\
&=3.14 \times 0.5 \times 0.5 \mathrm{~cm}^{2} \\
&=0.785 \mathrm{~cm}^{2} \\
& I=45.5 \mathrm{~cm} \\
& \rho=\mathrm{R} \times \mathrm{A} / I \\
& \rho=4.55 \times 10^{3} \Omega \times 0.785 \mathrm{~cm}^{2} / 45.5 \mathrm{~cm} \\
& \rho=78.5 \Omega \mathrm{~cm} \\
& \text { conductivity }, \mathrm{K}=1 / \rho
\end{aligned}
$$ \& $1 / 2$

$1 / 2$
$1 / 2$

\hline
\end{tabular}

15	a. b. C.	1,1,1
16	Given : T_{b} of glucose solution $=100.20^{\circ} \mathrm{C}$ $\begin{aligned} & \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{~m} \\ & \mathrm{~m}=0.20 / 0.512 \\ & \mathrm{~m}=0.390 \mathrm{~mol} / \mathrm{kg} \end{aligned}$ $\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \cdot \mathrm{~m} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \times 0.390 \mathrm{~mol} / \mathrm{kg} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=0.725 \mathrm{~K} \end{aligned}$ $\begin{aligned} \text { Freezing point of solution } & =273.15 \mathrm{~K}-0.725 \\ & =272.425 \mathrm{~K} \end{aligned}$	1 $1 / 2$ $1 / 2$ 1
17	a.(i) Vapour phase refining/ van Arkel method (ii) Zone refining (iii) Electrolytic refining b.(i) Froth floation process (ii) Magnetic separation (iii) Leaching	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$
18	a. For bcc structure $a=4 r / \sqrt{ } 3 \quad \text { or } \quad r=\sqrt{ } 3 a / 4$ $\begin{aligned} & \mathrm{r}=\sqrt{ } 3 \times 400 \mathrm{pm} / 4 \\ & =1.732 \times 400 \mathrm{pm} / 4 \\ & =173.2 \mathrm{pm} \end{aligned}$ b. (i) Impurity defect (ii) Cationic vacancies are created.	$1 / 2$ $1 / 2$ 1 1
19	a. Due to steric hindrance and +1 effect caused by two alkyl groups in propanone. b. Due to electron withdrawing nature of $-\mathrm{NO}_{2}$ group which increases the acidic strength and decreases the pK_{a} value . c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CHO}$ has one $\alpha-\mathrm{H}$ atom whereas $\alpha-\mathrm{H}$ atom is absent in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHO}$.	$1 / 2+1 / 2$ 1 1
20	a. Chloroprene, $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Cl})-\mathrm{CH}=\mathrm{CH}_{2}$ b. 1,3- Butadiene \& Acrylonitrile $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} \quad \& \mathrm{CH}_{2}=\mathrm{CHCN}$	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$

	c. 3-Hydroxybutanoic acid \& 3-Hydroxypentanoic acid $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH} \& \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$	$1 / 2+1 / 2$
21	a) It is the magnitude of difference in energy between the two sets of d orbital i.e. $\mathrm{t}_{2} \mathrm{~g}$ and e_{g} $\mathrm{t}^{4}{ }_{2 \mathrm{~g}} \mathrm{eg}^{0}$ b) $\mathrm{sp}^{3} \mathrm{~d}^{2}$, paramagnetic	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 / 2+1 / 2 \end{aligned}$
22	a. Methanol and 2-methyl-2-iodopropane are formed. b. 2-Methoxy acetophenone and 4-Methoxy acetophenone are formed c. o-Bromophenol and p-Bromophenol are formed. (Award full marks if the student writes only equation)	1
23	(i)Concerned , caring, socially alert, leadership (or any other 2 values) (ii)starch (iii) α-Helix and β-pleated sheets (iv)Vitamin B/B $B_{1} / B_{2} / B_{6} / C$ (any two)	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
24	(A) (B) (C)	$1 \times 5=5$

	(D) (E)	
	OR	
24	a. i) ii) iii) b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ c. Add $\mathrm{NaNO}_{2}+\mathrm{HCl}$ to both the compounds at 273 K followed by addition of phenol. Aniline gives orange dye (or any other correct test)	$1,1,1$ 1 1
25.	$\begin{aligned} & \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{[\mathrm{~A}]_{0}}{[\mathrm{~A}]} \\ &=\frac{2.303}{40} \log \frac{100}{25} \\ &=\frac{2.303}{40} \log 4 \\ &=\frac{2.303}{40} \times 0.6021 \\ & \mathrm{k}=0.0347 \mathrm{~min}^{-1} \\ & t_{1 / 2}=\frac{0.693}{k} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

	$\mathrm{t}_{1 / 2}=\frac{0.693}{0.0347 \mathrm{~min}^{-1}}=19.98 \mathrm{~min}=20 \mathrm{~min}$ b. (i) first order reaction (ii) zero order reaction	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
	OR	
25	(a) Dividing eqn 4 by eqn 2 $\begin{array}{rl} \frac{2.40 \times 10^{-2}}{6.0 \times 10^{-3}}=k[0.4]^{x}[0.1]^{y} \\ x & k[0.1]^{x}[0.1]^{y} \\ x \end{array}$ Dividing eqn 3 by eqn 1 $\begin{aligned} & \frac{2.88 \times 10^{-1}}{7.2 \times 10^{-2}}=k[0.3]^{x}[0.4]^{y} \\ & y=2[0.3]^{x}[0.2]^{y} \\ & \end{aligned}$ order w.r.t. $\mathrm{NO}=1$, order w.r.t O_{2} is 2 (b) Rate law Rate $=\mathrm{k}[\mathrm{NO}]^{1}\left[\mathrm{O}_{2}\right]^{2}$, The overall order of the reaction is 3 . $\begin{aligned} & \text { c. rate constant } k= \frac{\text { rate }}{}=\frac{7.2 \times 10^{-2}}{0.3 \times(0.2)^{2}} \\ & {[\mathrm{NO}]^{1}\left[\mathrm{O}_{2}\right]^{2} } \\ & k=6.0 \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~min}^{-1} \end{aligned}$	1 1 $1 / 2,1 / 2$ $1 / 2+1 / 2$ 1
26.	a. (i) Thermal stability of hydrides decreases down the group/ Bond dissociation enthalpy decreases down the group. (ii) Because Cl_{2} in presence of moisture liberates nascent oxygen. (iii) Interatomic interactions are weak	1 1 1

		1,1
	OR	
26	a) Size of nitrogen is smaller than Chlorine. b) $2 \mathrm{~F}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HF}+\mathrm{O}_{2} / \mathrm{HF}$ and O_{2} are produced c) PH_{3} /Phosphine d) XeF_{2} e) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO}-\rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra		16	Ms. Seema Bhatnagar	
7	Sh. Rakesh Dhawan		18	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani		19	Mr. Roop Narain Chauhan	
8	Mrs. Preeti Kiran		20	Mr. Mukesh Kumar Kaushik	
9	Ms. Neeru Sofat		21	Ms. Abha Chaudhary	
10	Sh. Pawan Singh Meena		22	Ms. Garima Bhutani	

