CHEMISTRY MARKING SCHEME FOREIGN-2016 SET -56/2/1/F

Q.no.	Answers	Marks
1	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
2	Because of some crystallization.	1
3	Reaction (ii)	1
4	NO ₂ gas	1
5	N,N-dimethylbutanamide	1
6	i) $[Co(NH_3)_4Cl_2]Cl$	1
	ii) Tetraamminedichloridocobalt(III) chloride	1
7	When reaction is completed 99.9%, $[R]_n = [R]_0 - 0.999[R]_0$	
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1⁄2
	$= \frac{2.303}{t} \log \frac{[R]_0}{[R]_0 - 0.999[R]_0} = \frac{2.303}{t} \log 10^3$	
	t = 6.909/k	1/2
	For half-life of the reaction	
	$t_{1/2} = 0.693/k$	
	$t = 6.909 \ k$	
	$\frac{t}{t_{1/2}} = \frac{6.909}{k} \times \frac{k}{0.693} = 10$	1
		1
7	OR	
	$\begin{array}{l} \mathbf{R} \rightarrow \mathbf{P} \\ \mathbf{Rate} = \ \frac{\mathbf{d} \ \mathbf{R}}{\mathbf{d}t} = \ k \ \mathbf{R} \\ \\ \mathbf{or} \frac{\mathbf{d} \ \mathbf{R}}{\mathbf{R}} = -k\mathbf{d}t \\ \\ \mathbf{Integrating this equation, we get} \\ \\ \mathbf{In} \ [\mathbf{R}] = -kt + 1 \\ \\ \mathbf{Again, I is the constant of integration and its value can be determined easily. \\ \\ \mathbf{When} \ t = 0, \ \mathbf{R} = [\mathbf{R}]_0, \text{ where } [\mathbf{R}]_0 \text{ is the initial concentration of the} \end{array}$	1⁄2
	reactant. Therefore, equation (4.8) can be written as $\ln [R]_0 = -k \times 0 + I$ $\ln [R]_0 = I$ Substituting the value of I in equation (4.8) $\ln[R] = -kt + \ln[R]_0$ (4.9) Rearranging this equation $\ln \frac{R}{R_0} = kt$ or $k = \frac{1}{t} \ln \frac{[R]_0}{[R]}$	1/2

	a ana [P]	
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	
		1
8	Henry's law states that the mole fraction of gas in the solution is proportional to the partial	1
	pressure of the gas over the solution.	
	Applications: solubility of CO ₂ gas in soft drinks /solubility of air diluted with helium in	1⁄2
	blood used by sea divers or any other	1/
	Solubility of gas in liquid decreases with increase in temperature.	1⁄2
9		
	$X = CH_3 - CO - CH_2 - CH_3$ / Butan-2-one	1
	$Y = CH_3 - CH(OH) - CH_2 - CH_3 / Butan - 2 - ol$	1
10		
10		
	i) ii)	
		1+1
	xe /	
	S S	
	HO F	
11		
11		
	$k = 2.303 \log p_i$	1
	t $2p_i-p_t$	
		1
	$= \frac{2.303}{300} \log \frac{0.3}{2 \times 0.3 - 0.5}$	1
	300 2 Imes 0.3 0.3	
	$= 2.303 \log 3$	
	300	
	$= \frac{2.303 \times 0.4771}{200}$	
	300	
	$= 0.0036 \text{ atm}^{-1} \text{ or } 0.004 \text{ atm}^{-1} \text{ (approx.)}$	1
		I

		1
12	i)Because of the resonance stabilization of the conjugate base i.e enolate anion or diagrammatic representation.	11⁄2
	 iii)Because the carboxyl group gets bonded to the catalyst anhyd.AlCl₃(lewis acid). (note: part ii is deleted because of printing error and mark alloted in part i and part iii) 	11/2
	OR	
12	i) $C_6H_5CH_3$ <u>CrO₃/(CH₃CO)₂O</u> $C_6H_5CH(OCOCH_3)_2$ <u>H₂O</u> C_6H_5CHO	
	ii)CH ₃ COOH <u>Cl₂/P</u> Cl-CH ₂ -COOH	
	iii)CH ₃ COCH ₃ Zn(Hg)/conc.HCl CH ₃ CH ₂ CH ₃	1x3=3
	(Or by any other correct method)	
13	$\mathbf{d} = \frac{\mathbf{z} \times \mathbf{M}}{\mathbf{N}_{\mathrm{A}} \times \mathbf{a}^{3}}$	
	Or	
	d = $\frac{z \times w}{N \times a^3}$ Where w is weight and N is no. of atoms.	1
	d = $\frac{4 \times 200 \text{ g}}{2.5 \times 10^{24} \text{ x} (400 \times 10^{-10} \text{ cm})^3}$	1
	$\mathbf{d} = 5 \mathrm{g} \mathrm{cm}^{-3}$	1
	(or by any other correct method)	
14	i) It is a process in which both adsorption and absorption can take place simultaneously.	
	ii) It is the potential difference between the fixed layer and the diffused/ double layer	1
	of opposite charges around the colloidal particles.	1
	iii) It is the temperature above which the formation of micelles takes place.	1

15		
	$\Delta T_{\rm f} = i K_{\rm f} m$	1/2
	For complete ionisation of Na_2SO_4 i=3	1⁄2
	$\Delta T_{f} = T_{f}^{0} T_{f} = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142 \text{ g mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$ $\Delta T_{f} = 1.57$	1
	So, $T_f = -1.57^{\circ}C$ or 271.43K	1
16	i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power.	
	ii)Because of high interelectronic repulsion. iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F ⁻ .	1x3=3
17	i)A : $C_6H_5CONH_2$ B : $C_6H_5NH_2$ C : $C_6H_5NHCOCH_3$	$1^{1/2}$
	ii)A: $C_6H_5NO_2$ B: $C_6H_5NH_2$ C: C_6H_5 -NC	11/2
18	(i) Butadiene and acrylonitrile $CH_2 = CH - CH = CH_2$ and $CH_2=CH-CN$	1/2+1/2
	(ii) Vinyl chloride CH ₂ =CH-Cl	1/2+1/2
	(iii) Chloroprene	
	Cl	1/2+1/2
	$\mathbf{CH}_2 = \mathbf{C} - \mathbf{CH} = \mathbf{CH}_2$	
19	i) $i = 1$	1
	Dentide linkage / CO NUL linkage	1
	ii) Peptide Inkage / -CO-INH- Inkage iii) Water soluble-Vitamin B / C Fat soluble- Vitamin A /D /E /K	1/2+1/2

ii)Because higher doses may have harmful effects and act as poison which cause even death.	1
ueam.	1
iii)Tranquilizers are a class of chemical compounds used for treatment of stress or even mental diseases.	1
ex. chlordiazepoxide, equanil,veronal, serotonin,valium (or any other two examples)	1/2+1/2
a)	
Given $E^{o}_{Cell} = +0.30V$; $F = 96500C \text{ mol}^{-1}$	
n = 6 (from the given reaction)	
$\Delta_{\rm r} {\rm G}^{\rm O} = - {\rm n} {\rm x} {\rm F} {\rm x} {\rm E}^{\rm o}_{\rm Cell}$	1⁄2
$\Delta_{\rm r} {\rm G}^{\rm O} = -6 \ {\rm x} \ 96500 \ {\rm C} \ {\rm mol}^{-1} \ {\rm x} \ 0.30 {\rm V}$	
= - 173,700 J / mol or - 173.7 kJ / mol	1
$\log Kc = \underline{n E^{o}_{Cell}}$	
0.059	1⁄2
$\log \text{ Kc} = \frac{6 \times 0.30}{0.059}$	
log Kc = 30.5	1
b)A Because E° value of A shows that on coating ,A acts as anode and Fe acts as a cathode and hance A origination for the former to Fe and provent correction (on E°), is positive and hance	1
A oxidises itself to prevent corrosion of Fe/E° value is more negative. (or any other correct reason) OR	1
	mental diseases. ex. chlordiazepoxide, equanil, veronal, serotonin, valium (or any other two examples) a) Given $E^{o}_{cell} = + 0.30V$; $F = 96500C \text{ mol}^{-1}$ n = 6 (from the given reaction) $\Delta_r G^{O} = -n x F x E^{o}_{cell}$ $\Delta_r G^{O} = -6 x 96500 C \text{ mol}^{-1} x 0.30V$ = -173,700 J/ mol or -173.7 kJ / mol $\log \text{Kc} = \frac{n E^{o}_{cell}}{0.059}$ $\log \text{Kc} = \frac{6 x 0.30}{0.059}$ $\log \text{Kc} = 30.5$ b)A Because E ^o value of A shows that on coating ,A acts as anode and Fe acts as a cathode and hence A oxidises in prefence to Fe and prevent corrosion / or E^{o}_{cell} is positive and hence A oxidises itself to prevent corrosion of Fe/E ^o value is more negative. (or any other correct reason)

24 a)
$$\Lambda_{m} = \frac{\kappa}{c}$$

 $= \frac{3.905 \text{ sc} \text{ m}^{-1} \text{ s} 1000 \text{ cm}^{-3}}{0.001 \text{ mol } \text{L}^{-1}} \text{ s} 1000 \text{ cm}^{-3}}$
 $\Lambda_{m} = 39.05 \text{ scm}^{2}\text{mol}^{-1}$
 $a = \frac{\Lambda_{m}}{\Lambda_{n}}$
 $= \frac{39.05 \text{ scm}^{2}\text{mol}^{-1}$
 $a = 0.1$
b)Secondary battery or rechargeable battery
 $Pb(s) + PbO_{2}(s) + 2SO_{4}^{-2}(aq) + 4H^{-}(aq) \longrightarrow 2PbSO_{4}(s) + 2H_{2}O(1)$
1
25 a)
i)Because of higher oxidation state (+7) of Mn.
ii)Because it has one unpaired electron in 3d orbital in its +2 oxidation
state / or it has incompletely filled d-orbital in +2 oxidation state.
iii)Because of comparable energies of 5f, 6d and 7s orbitals.
b)
 $2MnO_{2} + 4KOH + O_{2} \rightarrow 2K_{2}MnO_{4} + 2H_{2}O$
 $3MnO_{4}^{-2} + 4H^{+} \longrightarrow 2MnO_{4}^{-1} + MnO_{2} + 2H_{2}O$
 $1+1$

Name	Signature	Name	Signature
Dr. (Mrs.) Sangeeta Bhatia		Sh. S.K. Munjal	
Dr. K.N. Uppadhya		Sh. D.A. Mishra	
Prof. R.D. Shukla		Sh. Rakesh Dhawan	
Dr. (Mrs.) Sunita Ramrakhiani		Ms. Nirmala Venkateswaran	
Sh. S. Vallabhan, Principal		Mrs. Deepika Arora	
Mr. K.M. Abdul Raheem		Ms. Minakshi Gupta	
Mrs. Sushma Sachdeva		Sh. Mukesh Kaushik	
Ms. Seema Bhatnagar		Mr. Roop Narayan	
Sh. Pawan Singh Meena		Ms. Garima Bhutani	
Sh. Praveen Kumar Agrawal			