CHEMISTRY MARKING SCHEME

FOREIGN-2016

SET -56/2/1/F

\begin{tabular}{|c|c|c|}
\hline Q.no. \& Answers \& Marks \\
\hline 1 \& Like Charged particles cause repulsion/ Brownian motion/ solvation \& 1 \\
\hline 2 \& Because of some crystallization. \& 1 \\
\hline 3 \& Reaction (ii) \& 1 \\
\hline 4 \& \(\mathrm{NO}_{2}\) gas \& 1 \\
\hline 5 \& N,N-dimethylbutanamide \& 1 \\
\hline 6 \& \begin{tabular}{l}
i) \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}\) \\
ii) Tetraamminedichloridocobalt(III) chloride
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 7 \& \begin{tabular}{l}
When reaction is completed \(99.9 \%,[\mathrm{R}]_{\mathrm{n}}=[\mathrm{R}]_{0}-0.999[\mathrm{R}]_{0}\)
\[
\begin{aligned}
k \& =\frac{2.303}{t} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]} \\
\& =\frac{2.303}{t} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]_{0}-0.999[\mathrm{R}]_{0}}=\frac{2.303}{t} \log 10^{3} \\
t \& =6.909 / k
\end{aligned}
\] \\
For half-life of the reaction
\[
\begin{aligned}
t_{1 / 2} \& =0.693 / k \\
\frac{t}{t_{1 / 2}} \& =\frac{6.909}{k} \times \frac{k}{0.693}=10
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
\(1 / 2\) \\
\(1 / 2\) \\
1
\end{tabular} \\
\hline \& OR \& \\
\hline 7 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{R} \rightarrow \mathrm{P} \\
\& \text { Rate }=\frac{\mathrm{d} \mathrm{R}}{\mathrm{~d} t}=k \mathrm{R} \\
\& \text { or } \frac{\mathrm{d} \mathrm{R}}{\mathrm{R}}=-k \mathrm{~d} t
\end{aligned}
\] \\
Integrating this equation, we get
\[
\begin{equation*}
\ln [R]=-k t+1 \tag{4.8}
\end{equation*}
\] \\
Agatn, I is the constant of integration and its value can be determined easily. \\
When \(t=0 . \mathrm{R}=[\mathrm{R}]_{0}\), where \([\mathrm{R}]_{0}\) is the inttal concentration of the reactant. \\
Therefore, equation (4.8) can be written as
\[
\ln [R]_{0}=-k \times 0+1
\] \\
\(\ln \left[\mathrm{R}_{\mathrm{o}}=\mathrm{I}\right.\) \\
Substituting the value of \(I\) in equation (4.8)
\[
\begin{equation*}
\ln [R]=-k t+\ln [R]_{0} \tag{4.9}
\end{equation*}
\] \\
Rearranging this equation
\[
\begin{aligned}
\& \ln \frac{\mathrm{R}}{\mathrm{R}_{0}}=k t \\
\& \text { or } k=\frac{1}{t} \ln \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
k=\frac{2.303}{t} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}
\] \& 1 \\
\hline 8 \& \begin{tabular}{l}
Henry's law states that the mole fraction of gas in the solution is proportional to the partial pressure of the gas over the solution. \\
Applications: solubility of \(\mathrm{CO}_{2}\) gas in soft drinks/solubility of air diluted with helium in blood used by sea divers or any other \\
Solubility of gas in liquid decreases with increase in temperature.
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \\
\hline 9 \& \[
\begin{aligned}
\& \mathrm{X}=\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{3} / \text { Butan-2-one } \\
\& \mathrm{Y}=\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{CH}_{3} / \text { Butan-2-ol }
\end{aligned}
\] \& \begin{tabular}{l}
1 \\
1
\end{tabular} \\
\hline 10 \& \begin{tabular}{l}
i) \\
ii)
\end{tabular} \& \(1+1\) \\
\hline 11 \& \[
\begin{aligned}
\mathrm{k} \& =\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{p}_{\mathrm{i}}}{2 \mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{t}}} \\
\& =\frac{2.303}{300} \log \frac{0.3}{2 \times 0.3-0.5} \\
\& =\frac{2.303}{300} \log 3 \\
\& =\frac{2.303 \times 0.4771}{300} \\
\& =0.0036 \mathrm{~atm}^{-1} \text { or } 0.004 \mathrm{~atm}^{-1} \text { (approx.) }
\end{aligned}
\] \& 1
1
1

1

\hline
\end{tabular}

12	i)Because of the resonance stabilization of the conjugate base i.e enolate anion or diagrammatic representation. iii)Because the carboxyl group gets bonded to the catalyst anhyd. AlCl_{3} (lewis acid). (note: part ii is deleted because of printing error and mark alloted in part i and part iii)	$\begin{aligned} & 11 / 2 \\ & 11 / 2 \end{aligned}$
	OR	
12	i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} \xrightarrow{\mathrm{CrO}_{3} /\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{OCOCH}_{3}\right)_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ ii) $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{Cl} / / \mathrm{Pl}-\mathrm{CH}_{2}-\mathrm{COOH}}$ iii) $\mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\mathrm{Zn}(\mathrm{Hg}) / \text { conc. } \mathrm{HCl}} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (Or by any other correct method)	$1 \times 3=3$
13	$\mathbf{d}=\frac{\mathbf{z} \times \mathbf{M}}{\mathbf{N}_{\mathrm{A}} \times \mathbf{a}^{3}}$ Or $d=\frac{\mathrm{zxw}}{N \times \mathbf{a}^{3}} \quad$ Where w is weight and N is no. of atoms. $\begin{aligned} & \mathrm{d}=\frac{4 \times 200 \mathrm{~g}}{2.5 \times 10^{24} \times\left(400 \times 10^{-10} \mathrm{~cm}\right)^{3}} \\ & \mathrm{~d}=5 \mathrm{~g} \mathrm{~cm}^{-3} \end{aligned}$ (or by any other correct method)	1 1 1
14	i) It is a process in which both adsorption and absorption can take place simultaneously. ii) It is the potential difference between the fixed layer and the diffused/ double layer of opposite charges around the colloidal particles. iii) It is the temperature above which the formation of micelles takes place.	1 1 1

15	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{~m}$ For complete ionisation of $\mathrm{Na}_{2} \mathrm{SO}_{4} \quad \mathrm{i}=3$ $\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}}=3 \times 1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{2 \mathrm{~g}}{142 \mathrm{~g} \mathrm{~mol}^{-1}} \times \frac{1000 \mathrm{~g} \mathrm{~kg}^{-1}}{50 \mathrm{~g}} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=1.57 \end{aligned}$ So, $\quad T_{f}=-1.57^{\circ} \mathrm{C}$ or 271.43 K	$1 / 2$ $1 / 2$ 1 1
16	i)Because of higher oxidation state $(+5)$ / high charge to size ratio / high polarizing power. ii)Because of high interelectronic repulsion. iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F^{-}.	$1 \times 3=3$
17	i)A : $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2} \quad$ B : $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \quad \mathrm{C}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}$ ii)A: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ B : $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ $\mathrm{C}: \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NC}$	$\begin{aligned} & 11 / 2 \\ & 11 / 2 \end{aligned}$
18	(i) Butadiene and acrylonitrile $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} \text { and } \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CN}$ (ii) Vinyl chloride $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$ (iii) Chloroprene	$1 / 2+1 / 2$ $1 / 2+1 / 2$ $1 / 2+1 / 2$
19	i)ii) iii) Peptide linkage / -CO-NH- linkage Water soluble-Vitamin B / C Fat soluble- Vitamin A /D /E /K	1 1 $1 / 2+1 / 2$

\begin{tabular}{|c|c|c|}
\hline 20 \& \begin{tabular}{l}
i) \(\mathrm{dsp}^{3}\), \\
Diamagnetic, low spin \\
ii) The energy used to split degenerate d-orbitals due to the presence of ligands in a definite geometry is called crystal field splitting energy.
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 / 2+1 / 2
\end{aligned}
\] \\
\hline 21 \& \begin{tabular}{l}
i)Iodine is heated with Zr or Ti to form a volatile compound which on further heating decompose to give pure Zr or Ti . \\
or \\
ii)Cryolite lowers the m.p.of alumina mix / acts as a solvent / brings conductivity. \\
(iii) Role of NaCN in the extraction of Ag is to do the leaching of silver ore in the presence of air.
\[
4 \mathrm{Ag}(\mathrm{~s})+8 \mathrm{CN}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}+4 \mathrm{OH}^{-}
\]
\end{tabular} \& 1

1
1
1

\hline 22 \& | i) |
| :--- |
| ii) |
| iii) |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{ONO}$ | \& $1 \times 3=3$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 23 \& \begin{tabular}{l}
(i)Caring ,dutiful, Concerned, compassionate (or any other two values) \\
ii)Because higher doses may have harmful effects and act as poison which cause even death. \\
iii)Tranquilizers are a class of chemical compounds used for treatment of stress or even mental diseases. \\
ex. chlordiazepoxide, equanil,veronal, serotonin, valium (or any other two examples)
\end{tabular} \& \begin{tabular}{l}
\(1 / 2+1 / 2\) \\
1 \\
1
\[
1 / 2+1 / 2
\]
\end{tabular} \\
\hline 24 \& \begin{tabular}{l}
a) \\
Given \(\mathrm{E}^{\mathrm{o}}{ }_{\text {ell }}=+0.30 \mathrm{~V} ; \quad \mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}\)
\[
\begin{aligned}
\mathrm{n} \& =6 \quad \text { (from the given reaction) } \\
\Delta_{\mathrm{r}} \mathrm{G}^{\mathrm{O}} \& =-\mathrm{n} \times \mathrm{F} \mathrm{x} \mathrm{E}_{\text {Cell }}^{\mathrm{o}} \\
\Delta_{\mathrm{r}} \mathrm{G}^{\mathrm{O}} \& =-6 \times 96500 \mathrm{C} \mathrm{~mol}^{-1} \times 0.30 \mathrm{~V} \\
\& =-173,700 \mathrm{~J} / \mathrm{mol} \mathrm{or}-173.7 \mathrm{~kJ} / \mathrm{mol} \\
\operatorname{log~Kc} \& =\frac{\mathrm{n} \mathrm{E}_{\text {Cell }}^{\mathrm{o}}}{0.059} \\
\log \mathrm{Kc} \& =\frac{6 \times 0.30}{0.059} \\
\log \mathrm{Kc} \& =30.5
\end{aligned}
\] \\
b)A \\
Because \(\mathrm{E}^{\mathrm{o}}\) value of A shows that on coating, A acts as anode and Fe acts as a cathode and hence A oxidises in prefence to Fe and prevent corrosion / or \(\mathrm{E}_{\text {cell }}^{\mathrm{o}}\) is positive and hence A oxidises itself to prevent corrosion of \(\mathrm{Fe} / \mathrm{E}^{\mathrm{o}}\) value is more negative.
\end{tabular} \& \(1 / 2\)

1
1
1
$1 / 2$

1
1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 25 \& \begin{tabular}{l}
a) \\
i) Cr , because of maximum no. of unpaired electrons cause strong metallic bonding. \\
ii)Mn, because it attains stable half -filled \(3 \mathrm{~d}^{5}\) configuration in +2 oxidation state. \\
iii) Zn , because of no unpaired electron in d-orbital. \\
b)
\[
\begin{gathered}
2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{H}^{+} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{KCl} \longrightarrow \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{NaCl}
\end{gathered}
\]
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2+1 / 2 \\
\& 1 / 2+1 / 2 \\
\& 1 / 2+1 / 2 \\
\& 1+1
\end{aligned}
\] \\
\hline 26 \& \begin{tabular}{l}
a) \\
i) \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}+\mathrm{CH}_{3}-\mathrm{OH}\) \\
i) \\
ii) \\
b) .i) \\
ii).
\end{tabular} \& 1
1
1
1
1

1
1
1

\hline \& OR \&

\hline
\end{tabular}

Name	Signature	Name	Signature
Dr. (Mrs.) Sangeeta Bhatia		Sh. S.K. Munjal	
Dr. K.N. Uppadhya		Sh. D.A. Mishra	
Prof. R.D. Shukla		Sh. Rakesh Dhawan Venkateswaran	
Dr. (Mrs.) Sunita Ramrakhiani		Mrs. Deepika Arora	
Sh. S. Vallabhan, Principal		Ms. Minakshi Gupta	
Mr. K.M. Abdul Raheem		Sh. Mukesh Kaushik	
Mrs. Sushma Sachdeva		Mr. Roop Narayan	
Ms. Seema Bhatnagar			
Sh. Pawan Singh Meena			
Sh. Praveen Kumar Agrawal			

