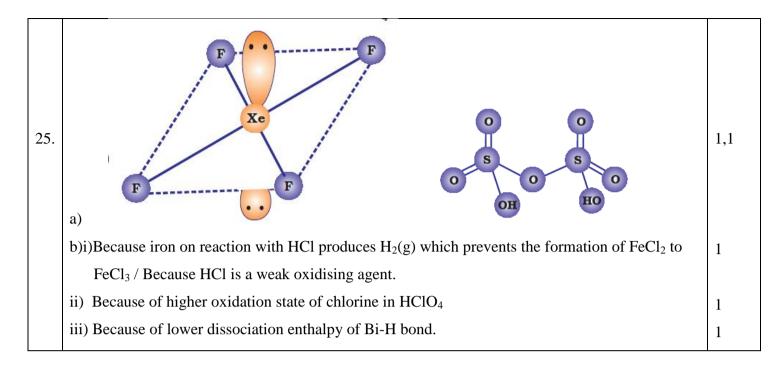
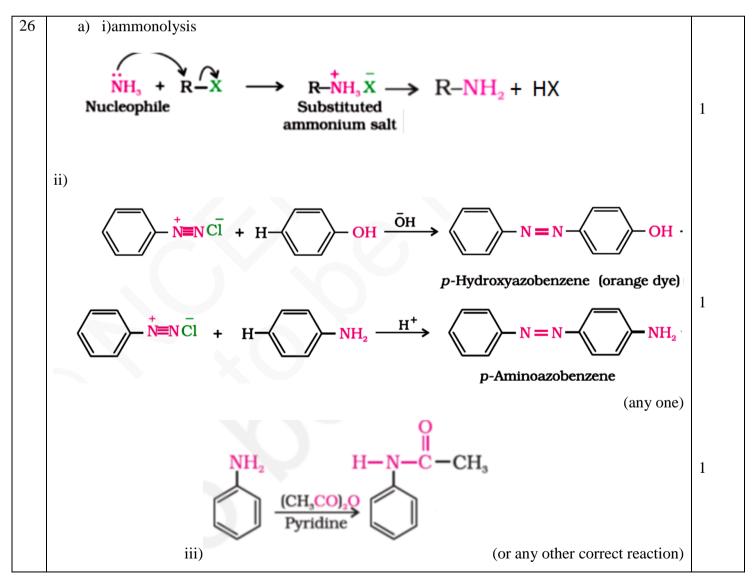
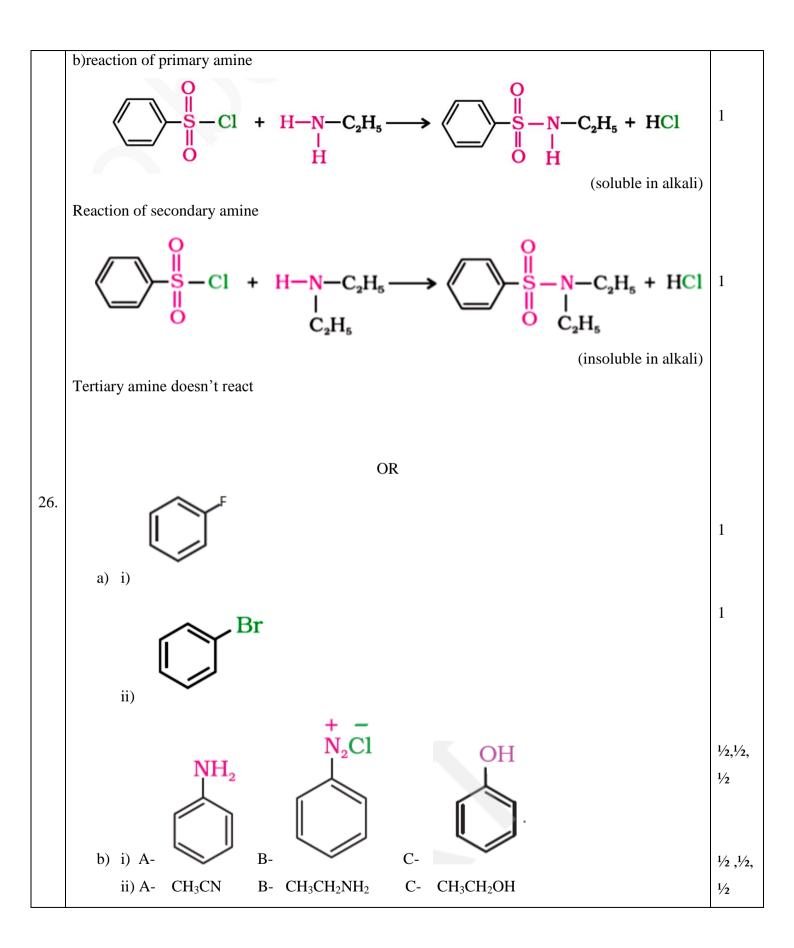

CHEMISTRY MARKING SCHEME 2015 SET -56/2/1 F


Qn	Value points	Marks			
	-	1/ 1/			
1	CH ₃ CH ₂ I, because I is a better leaving group.	1/2 , 1/2			
2	Rhombic sulphur	1			
3	3-Methylbut-2-en-1-ol				
4	X ₂ Y ₃				
5	Because of weak van der Waals' forces in physisorption whereas there are strong chemical forces in chemisorption.	1			
6.	i) tris-(ethane-1,2-diamine)chromium(III) chloride	1			
	ii) $K_3[Cr(C_2O_4)_3]$	1			
7.	When solute- solvent interaction is stronger than pure solvent or solute interaction.	1			
	Eg: chloroform and acetone (or any other correct eg)	1⁄2			
	$\Delta mixH = negative$	1⁄2			
	OR				
7.	Azeotropes -binary mixtures having same composition in liquid and vapour phase and boil at	1			
	constant temperature / is a liquid mixture which distills at constant temperature without				
	undergoing change in composition	1⁄2			
	Maximum boiling azeotropes	1⁄2			
	eg: HNO ₃ (68%) and H ₂ O(32%) (or any other correct example)				
8.	(i) CH_3MgBr/H_3O^+	1			
	(ii) PCl ₅ / PCl ₃ / SOCl ₂	1			
9.	a) $Cu^{2+}(aq) + 2 e \longrightarrow Cu(s)$ because of high E^0 value/ more negative ΔG	1/2 , 1/2			
	b) It states that limiting molar conductivity of an electrolyte is equal to the sum of the individual contributions of cations and anions of the electrolyte.	1			
	It is used to calculate the Λm^0 for weak electrolyte / It is used to calculate α and Kc				
	(Any one application)	1			


10	 a) Due to presence of unpaired d-electrons/ comparable energies of 3d and 4s orbitals. b) Mn, due to involvement of 4s and 3d electrons/ presence of maximum unpaired d-electrons. 	1 ½,½		
11	$\Delta T_f = i. K_f m$			
	$= i K_{f} w_{B} x 1000$			
	M _B x w _A			
	$2K = 2 \times 1.86K \text{ kg/mol x } w_{\text{B}} \times 1000$			
	$\overline{58.5 \text{ g/mol x } 37.2 \text{ g}}$ w _B = 1.17g			
12	$n HOH_2C - CH_2OH + n HOOC - COOH$			
	Ethylene glycol (Ethane-1, 2 - diol) i) Terephthalic acid (Benzene-1,4 - di carboxylic acid)	1		
	ii) OH +CH ₂ O	1		
	Phenol and formaldehyde $CH_2 = CH - CH = CH_2$ $C_6H_5CH=CH_2$ 1, 3-Butadiene Styrene iii) (Note: half mark for structure/s and half mark for name/s)	1		
13	i) Fructose	1		
	ii) Acidic amino acid has more number of acidic carboxylic group than basic amino group whereas basic amino acid has more number of basic amino group.	1		
	iii) Vitamin C	1		
14	a) Impure Ni reacts with CO to form volatile Ni(CO) ₄ which when heated at higher	1		
	temperature decomposes to give pure Ni.			
	b) NaCN acts as a leaching agent to form a soluble complex with gold.	1		
	c) It is a mixture of Cu_2S and FeS	1		



20	i)	Because oxygen stabilizes Mn more than F due to multiple bonding	1
	ii)	Because of their ability to show variable oxidation state(or any other correct reason)	1
	iii)	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
01	•\		1
21	i)	CH ₃ CH ₂ CH ₂ OH	1
		Br, Br	
			1
			-
	ii)	Br	
	;;;)		1
22	iii)	CH ₃ CHO	1/2
22	$d = \frac{Z \times M}{N_a x a^3}$		72
	6.23 g cr	$\mathbf{n}^{-3} = \frac{z \times 60 \text{ g/mol}}{6.022 \times 10^{23} \text{ mol}^{-1} \text{ x } (4 \text{ x } 10 - 8 \text{ cm})^3}$	1/2
			/ _
	z=4		1
	fcc		1
23		Concern for students health, Application of knowledge of chemistry to daily life, empathy	1⁄2 , 1⁄2
		caring or any other Through posters, nukkad natak in community, social media, play in assembly (or any other	
	r	elevant answer)	1
	c) V	Vrong choice and overdose may be harmful	1
	d) A	Aspartame, saccharin (or any other correct example)	1/2+1/2
24	a)i) Acti	vation energy-Extra energy required by reactants to form activated complex.	1
	ii) Rate	e constant- rate of reaction when the concentration of reactant is unity.	1
	b)		
			1/
	$k = \frac{2.30}{t}$	$\frac{13}{[A]} \log \left[\frac{A_0}{A} \right]$	1⁄2
	ι		
	k = 2.2	-	1/2
		0 min 75	
	$k = \underline{2.2}$	<u>303 x 0.125</u>	
		10 min	

Sr.	Name	Sr.	Name	
	·	· · · · · · · · · · · · · · · · · · ·		

No.		No.	