Marking scheme - 2017
 CHEMISTRY (043)/ CLASS XII

Set 56/1/1

Q.No	Value Points	Marks
1	$\mathrm{MnO}_{4}^{-} / \mathrm{KMnO}_{4}$	1
2	N -Ethyl-N-methylethanamine	1
3	First order	1
4	$\mathrm{BrCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}$	1
5	Both are surface phenomenon / both increase with increase in surface area (or any other correct similarity)	1
6	(i) $\mathrm{NH}_{3}+3 \mathrm{Cl}_{2}$ (excess) $\rightarrow \mathrm{NCl}_{3}+3 \mathrm{HCl}$ (ii) $\mathrm{XeF}_{6}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeO}_{2} \mathrm{~F}_{2}+4 \mathrm{HF}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
	OR	
6	(i) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{3}$ (ii) $4 \mathrm{H}_{3} \mathrm{PO}_{3} \rightarrow 3 \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{PH}_{3}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
7	(i) Properties that are independent of nature of solute and depend on number of moles of solute only. (ii) Number of moles of solute dissolved per kg of the solvent .	
8	(i) (ii)	1
9	$\begin{aligned} & \Lambda^{\circ}{ }_{\text {Снззоон }}=\lambda^{0}{ }_{\text {сннсоо }}+\lambda^{0}{ }_{\text {н+ }} \\ & \quad=40.9+349.6=390.5 \mathrm{~S} \mathrm{~cm} / \mathrm{mol} \\ & \text { Now, } \alpha=\Lambda_{\mathrm{m}} / \Lambda^{\circ}{ }_{\mathrm{m}} \\ & =39.05 / 390.5=0.1 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
10.	(i) (ii)	1

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(i) \(\mathrm{CrO2Cl} 2, \mathrm{CS} 2\) \\
Toluene
\[
\text { (ii) } \mathrm{H} 3 \mathrm{O}+
\] \\
Benzaldehyde
\end{tabular} \& 1 \\
\hline 11 \& \[
\begin{aligned}
\& \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\
\& \text { Here, } \mathrm{m}=\mathrm{w}_{2} \times 1000 / \mathrm{M}_{2} \mathrm{XM}_{1} \\
\& 273.15-269.15=\mathrm{K}_{\mathrm{f}} \times 10 \times 1000 / 342 \times 90 \\
\& \mathrm{~K}_{\mathrm{f}}=12.3 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \\
\& \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\
\& =12.3 \times 10 \times 1000 / 180 \times 90 \\
\& =7.6 \mathrm{~K}
\end{aligned}
\]
\[
\mathrm{T}_{\mathrm{f}}=273.15-7.6=265.55 \mathrm{~K} \quad \text { (or any other correct method) }
\] \& \begin{tabular}{l}
\(1 / 2\) \\
1 \\
\(1 / 2\) \\
1
\end{tabular} \\
\hline 12 \& \begin{tabular}{l}
\[
\begin{aligned}
\text { (i)m } \& =\text { ZIt } \\
\& =\frac{108 \times 2 \times 15 \times 60}{1 \times 96500} \\
\& =2.01 \mathrm{~g}
\end{aligned}
\] \\
(or any other correct method) \\
(ii) Cells that converts the energy of combustion of fuels directly into electrical energy.
\end{tabular} \& \[
\begin{gathered}
\hline 1 / 2 \\
1 \\
1 / 2 \\
1
\end{gathered}
\] \\
\hline 13 \& \begin{tabular}{ll}
(i) \& Coordination isomerism \\
(ii) \& Unpaired electrons in \(\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} / d\)-d transition \\
(iii) \& Pentaamminecarbonatocobalt(III) Chloride
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 14 \& \begin{tabular}{l}
(i) Lyophobic are liquid(dispersion medium)-hating and lyophillic are liquid(dispersion medium)-loving colloids. \\
(ii) Solution is a Homogenous mixture while colloid is heterogenous mixture / does not show Tyndall effect -shows Tyndall effect. \\
(iii) Homogenous catalysis : reactants and catalyst are in same phase Heterogeneous catalysis: reactants and catalyst are not in same phase. (or any other correct difference)
\end{tabular} \& 1
1
1 \\
\hline 15 \& \begin{tabular}{l}
(a)
\[
\begin{aligned}
\& \mathrm{k}=\frac{2.303}{t} \log \frac{[\mathrm{~A}] \mathrm{o}}{[\mathrm{~A}]} \\
\& =\frac{2.303}{300} \log \frac{1.6 \times 10^{-2}}{0.8 \times 10^{-2}} \\
\& =\frac{2.303}{300} \log 2=2.31 \times 10^{-3} \mathrm{~s}^{-1}
\end{aligned}
\] \\
At \(600 \mathrm{~s}, \mathrm{k}=\frac{2.303}{t} \log \frac{[\mathrm{~A}] \mathrm{o}}{[\mathrm{A}]}\)
\[
\begin{aligned}
\& =\frac{2.303}{600} \log \frac{1.6 \times 10^{-2}}{0.4 \times 10^{-2}} \\
\& =2.31 \times 10^{-3} \mathrm{~s}^{-1}
\end{aligned}
\] \\
\(k\) is constant when using first order equation therefore it follows first order kinetics. \\
or
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
In equal time interval, half of the reactant gets converted into product and the rate of reaction is independent of concentration of reactant, so it is a first order reaction. \\
(b)
\[
\begin{aligned}
\& \mathrm{t}_{1 / 2}=0.693 / \mathrm{k} \\
\& =0.693 / 2.31 \times 10^{-3} \\
\& =300 \mathrm{~s}
\end{aligned}
\] \\
(If student writes directly that half life is 300 s , award full marks)
\end{tabular} \& 1 \\
\hline 16 \& \begin{tabular}{l}
(i) 1-Bromopentane \\
(ii) 2-Bromopentane \\
(iii) 2-Bromo-2-methylbutane
\end{tabular} \& \[
\begin{array}{|l|}
\hline 1 \\
1 \\
1 \\
\hline
\end{array}
\] \\
\hline 17 \& \begin{tabular}{l}
(i) The impurities are more soluble in the melt than in the solid state of the metal. \\
(ii) PbS \\
(iii)Impurities like \(\mathrm{SiO}_{2}\) etc are removed by using NaOH solution and pure alumina is obtained.
\end{tabular} \& \[
\begin{array}{|l|}
\hline 1 \\
1 \\
1
\end{array}
\] \\
\hline 18. \& \begin{tabular}{l}
(i) \(\mathrm{A}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr} \quad \mathrm{B}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \quad \mathrm{C}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}\) \\
(ii)A: \(\mathrm{CH}_{3} \mathrm{CHO} \quad \mathrm{B}: \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CHO} \quad \mathrm{C}: \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \times 3 \\
\& 1 / 2 \times 3
\end{aligned}
\] \\
\hline \& OR \& \\
\hline 18 \& \& \begin{tabular}{l}
1 \\
1 \\
1
\end{tabular} \\
\hline 19. \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{CH}_{2}=\mathrm{CHCN}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2+1 / 2 \\
\& 1 / 2+1 / 2
\end{aligned}
\] \\
\hline 20. \& \begin{tabular}{l}
(i) Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / alkylbenzene sulphonate or detergents whose anionic part is involved in cleansing action. \\
(ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. \\
(iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues.
\end{tabular} \& 1
1
1 \\
\hline 21 \& \begin{tabular}{l}
(i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te . \\
(ii) Due to small size of fluoride ion / high charge density of fluoride ion / high charge size ratio of fluoride ion. \\
(iii) Absence of d-orbitals.
\end{tabular} \& \[
\begin{array}{|l|}
\hline 1 \\
1 \\
1
\end{array}
\] \\
\hline 22 \& \begin{tabular}{l}
(i) Due to the resonance, the electron pair of nitrogen atom gets delocalised towards carbonyl group / resonating structures. \\
(ii)Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. \\
(iii)Due to protonation of aniline / formation of anilinium ion
\end{tabular} \& 1

1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 23 \& \begin{tabular}{l}
(i)concerned , caring, socially alert, leadership (or any other 2 values) \\
(ii) starch \\
(iii) \(\alpha\)-Helix and \(\beta\)-pleated sheets \\
(iv)Vitamin \(B / B_{1} / B_{2} / B_{6} / C\) (any two)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2+1 / 2 \\
\& 1 \\
\& 1 / 2+1 / 2 \\
\& 1 / 2+1 / 2 \\
\& \hline
\end{aligned}
\] \\
\hline 24 \& \begin{tabular}{l}
a) (i) Due to small size and high ionic charge / availability of d orbitals. \\
(ii) Higher is the oxidation state higher is the acidic character / as the oxidation state of a metal increases, ionic character decreases \\
(iii) Because \(\mathrm{Mn}^{2+}\) has \(\mathrm{d}^{5}\) as a stable configuration whereas \(\mathrm{Cr}^{3+}\) is more stable due to stable \({ }^{3}{ }_{2 \mathrm{~g}}\) \\
b) Similarity-both are stable in +3 oxidation state/ both show contraction/ irregular electronic configuration (or any other suitable similarity) Difference- actinoids are radioactive and lanthanoids are not / actinoids show wide range of oxidation states but lanthanoids don't (or any other correct difference)
\end{tabular} \& 1
1
1
1
1
1 \\
\hline \& OR \& \\
\hline 24 \& \begin{tabular}{l}
a) i) In p block elements the difference in oxidation state is 2 and in transition metals the difference is 1 \\
ii) \(\mathrm{Cu}^{+}\), due to disproportionation reaction / low hydration enthalpy \\
iii) Due to formation of chromate ion / \(\mathrm{CrO}_{4}{ }^{2-}\) ion, which is yellow in colour \\
b) Actinoids are radioactive, actinoids show wide range of oxidation states
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 / 2+1 / 2 \\
\& 1 \\
\& 1+1
\end{aligned}
\] \\
\hline 25 \& \[
\begin{aligned}
\& \text { (a) } \rho=(\mathrm{zxM}) / \mathrm{a}^{3} \times \mathrm{N}_{\mathrm{a}} \\
\& 11.5=\mathrm{z} \mathrm{\times 93} /\left[\left(300 \times 10^{-10}\right)^{3} \times 6.02 \times 10^{23}\right] \\
\& \mathrm{Z}=2.0 \\
\& \text { Body centred cubic(bcc) } \\
\& \text { (b) } \\
\& \hline
\end{aligned}
\] \& \(1 / 2\)
1
\(1 / 2\)
1

$1+1$

\hline \& OR \&

\hline 25 \& | a) $\mathrm{n}=$ given mass / molar mass $=8.1 / 27 \mathrm{~mol}$ |
| :--- |
| Number of atoms $=\frac{8.1}{27} \times 6.022 \times 10^{23}$ |
| Number of atoms in one unit cell= 4 (fcc) |
| Number of unit cells $=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$ $=4.5 \times 10^{22}$ |
| Or |
| 27 g of Al contains $=6.022 \times 10^{23}$ atoms |
| 8.1 g of Al contains $=\left(6.022 \times 10^{23} / 27\right) \times 8.1$ |
| No of unit cells $=$ total no of atoms $/ 4$ $\begin{aligned} & =\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4 \\ & =4.5 \times 10^{22} \end{aligned}$ |
| b) i) Due to comparable size of cation and anion / large size of sodium ion |
| ii) P has 5 valence e^{-}, an extra electron results in the formation of n-type semiconductor. |
| iii)In ferrimagnetism ,domains / magnetic moments are aligned in opposite direction in unequal numbers while in antiferromagnetic the domains align in opposite direction in equal numbers so they cancel magnetic moments completely , net magnetism is zero / diagrammatic representation. | \& | $1 / 2$ |
| :--- |
| $1 / 2$ |
| $1 / 2$ |
| $1 / 2$ |
| $1 / 2$ |
| $1 / 2$ |
| $1 / 2$ |
| $1 / 2$ |
| 1 |
| 1 |
| 1 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 26 \& \begin{tabular}{l}
a) i) \\
ii) \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}\) and \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}\) \\
iii) \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}\) \\
b) i) Add neutral \(\mathrm{FeCl}_{3}\) to both the compounds, phenol gives violet complex. \\
ii) Add anhy \(\mathrm{ZnCl}_{2}\) and conc. HCl to both the compounds, \\
2-methyl propan-2-ol gives turbidity immediately. \\
(or any other correct test)
\end{tabular} \& 1

1
1
1
1
1

\hline \& OR \&

\hline 26 \& | a) i)Aq. Br_{2} |
| :--- |
| ii) $\mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{O}_{2}$ and OH^{-} |
| b) i) ethanol<phenol<p-nitrophenol |
| ii) propane<propanal<propanol |
| c) | \& 1

1
1
1
1

1

\hline
\end{tabular}

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra		16	Ms. Seema Bhatnagar	
7	Sh. Rakesh Dhawan		18	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani		19	Mr. Azhar Aslam Khan Chauhan	
8	Mrs. Preeti Kiran		20	Mr. Mukesh Kumar Kaushik	
9	Ms. Neeru Sofat		21	Ms. Abha Chaudhary	
10	Sh. Pawan Singh Meena		22	Ms. Garima Bhutani 11	Mrs. P. Nirupama Shankar

Marking scheme - 2017

CHEMISTRY (043)/ CLASS XII

Set 56/1/2

	(ii) $\quad \mathrm{R}-\mathrm{COONa} \xrightarrow[\text { Heat }]{\mathrm{NaOH} \mathrm{\&} \mathrm{CaO}} \mathrm{R}-\mathrm{H}+\mathrm{Na}_{2} \mathrm{CO}_{3}$	1
11	(i) Lyophobic are liquid (dispersion medium) - hating and lyophillic are liquid (dispersion medium) - loving colloids. (ii) Solution is a Homogenous mixture while colloid is heterogenous mixture / does not show Tyndall effect -shows Tyndall effect. (iii) Homogenous catalysis : reactants and catalyst are in same phase -Heterogeneous catalysis: reactants and catalyst are not in same phase. (or any other correct difference)	1 1 1
12	(i) 1-Bromopentane (ii) 2-Bromopentane (iii) 2-Bromo-2-methylbutane	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
13.	(i) Metal is converted into its volatile compound and collected elsewhere. It is then decomposed at high temperature to give pure metal. (ii) The impurities are more soluble in the melt than in the solid state of the metal. (iii) Different components of a mixture are differently adsorbed on an adsorbent.	1 1 1
14	$\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\ & \text { Here, } \mathrm{m}=\mathrm{w}_{2} \times 1000 / \mathrm{M}_{2} \mathrm{XM} \mathrm{M}_{1} \\ & 273.15-269.15=\mathrm{K}_{\mathrm{f}} \times 10 \times 1000 / 342 \times 90 \\ & \mathrm{~K}_{\mathrm{f}}=12.3 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\ & \quad=12.3 \times 10 \times 1000 / 180 \times 90 \\ & =7.6 \mathrm{~K} \\ & \mathrm{~T}_{\mathrm{f}}=273.15-7.6=265.55 \mathrm{~K} \quad \text { (or any other correct method) } \end{aligned}$	$1 / 2$ 1 $1 / 2$ 1
15.	(i) Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions, cationic part has long chain hydrocarbon / detergents whose cationic part is involved in cleansing action. (ii)Narrow spectrum antibiotics are effective mainly against Gram-positive or Gram-negative bacteria (iii) Disinfectants kill or prevent growth of microbes and are applied on inanimate / non living objects	1 1 1
16	$\begin{aligned} & \text { (i)m }=\mathrm{ZIt} \\ &=\frac{108 \times 2 \times 15 \times 60}{1 \times 96500} \\ &=2.01 \mathrm{~g} \\ & \text { method) } \\ & \text { (ii) Cells that converts the energy of combustion of fuels directly into } \\ & \text { electrical energy. } \end{aligned}$	$1 / 2$ 1 $1 / 2$ 1
17	(i) Coordination isomerism (ii) Unpaired electrons in $\left[\mathrm{Ni}_{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} / \text { d-d transition }}^{\text {(iii) }}\right.$ Pentaamminecarbonatocobalt(III) Chloride	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
18	(i) $\mathrm{A}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr} \quad \mathrm{B}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \quad \mathrm{C}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$ (ii) $: \mathrm{CH}_{3} \mathrm{CHO} \quad \mathrm{B}: \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CHO} \quad \mathrm{C}: \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$	$\begin{aligned} & 1 / 2 \times 3 \\ & 1 / 2 \times 3 \end{aligned}$
	OR	
18		1 1 1

	2-methyl propan-2-ol gives turbidity immediately. (or any other correct test)	
	OR	
24	a) i) Aq. Br_{2} ii) $\mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{O}_{2}$ and OH^{-} b) i) ethanol < phenol < p-nitrophenol ii) propane < propanal < propanol c)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1
25	a) (i) Due to small size and high ionic charge / availability of dorbitals. (ii) Higher is the oxidation state higher is the acidic character / as the oxidation state of a metal increases, ionic character decreases (iii) Because Mn^{2+} has d^{5} as a stable configuration whereas Cr^{3+} is more stable due to stable $\mathrm{t}^{3}{ }_{2 \mathrm{~g}}$ b) Similarity-both are stable in +3 oxidation state/ both show contraction/ irregular electronic configuration (or any other suitable similarity) Difference- actinoids are radioactive and lanthanoids are not / actinoids show wide range of oxidation states but lanthanoids don't (or any other correct difference)	1 1 1 1 1 1
	OR	
25	a) i) In p block elements the difference in oxidation state is 2 and in transition metals the difference is 1 ii) Cu^{+}, due to disproportionation reaction / low hydration enthalpy iii) Due to formation of chromate ion / $\mathrm{CrO}_{4}{ }^{2-}$ ion, which is yellow in colour b) Actinoids are radioactive , actinoids show wide range of oxidation states	$\begin{aligned} & 1 \\ & 1 / 2+1 / 2 \\ & 1 \\ & 1+1 \end{aligned}$
26	(a) $\rho=(z \times M) / a^{3} x N_{a}$ $\begin{aligned} & 11.5=z \times 93 /\left[\left(300 \times 10^{-10}\right)^{3} \times 6.02 \times 10^{23}\right] \\ & Z=2.0 \end{aligned}$ Body centred cubic(bcc) (b)	$\begin{aligned} & 1 / 2 \\ & 1 \\ & 1 / 2 \\ & 1 \\ & \\ & 1+1 \end{aligned}$
	OR	
26	a) $\mathrm{n}=$ given mass / molar mass $=8.1 / 27 \mathrm{~mol}$ Number of atoms $=\frac{8.1}{27} \times 6.022 \times 10^{23}$ Number of atoms in one unit cell 4 (fcc) Number of unit cells $=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$ $=4.5 \times 10^{22}$ Or 27 g of Al contains $=6.022 \times 10^{23}$ atoms 8.1 g of Al contains $=\left(6.022 \times 10^{23} / 27\right) \times 8.1$ No of unit cells $=$ total no of atoms $/ 4$ $\begin{aligned} & =\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4 \\ & =4.5 \times 10^{22} \end{aligned}$ b) i) Due to comparable size of cation and anion / large size of sodium ion ii) P has 5 valence e^{-}, an extra electron results in the formation of n-type semiconductor.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \\ & 1 \end{aligned}$

	iii) In ferrimagnetism ,domains / magnetic moments are aligned in opposite direction in unequal numbers while in antiferromagnetic the domains align in opposite direction in equal numbers so they cancel magnetic moments completely ,net magnetism is zero / diagrammatic representation.	1

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra		16	Ms. Seema Bhatnagar	
7	Sh. Rakesh Dhawan		18	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani		19	Mr. Roop Narain Chauhan	
8	Mrs. Preeti Kiran		20	Mr. Mukesh Kumar Kaushik	
9	Ms. Neeru Sofat		21	Ms. Abha Chaudhary	
10	Sh. Pawan Singh Meena		22	Ms. Garima Bhutani	

Marking scheme - 2017
 CHEMISTRY (043)/ CLASS XII

Set 56/1/3

\begin{tabular}{|c|c|c|}
\hline Q.No \& Value Points \& Marks \\
\hline 1 \& \begin{tabular}{l}
i) No effect \\
ii) Decreases
\end{tabular} \& \\
\hline 2 \& Both are surface phenomenon / both increase with increase in surface area (or any other correct similarity) \& 1 \\
\hline 3 \& \(\mathrm{MnO}_{4}^{-} / \mathrm{KMnO}_{4}\) \& 1 \\
\hline 4 \& \(\mathrm{BrCH}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}_{2}\) \& 1 \\
\hline 5 \& \(\mathrm{N}, \mathrm{N}\)-Dimethylethanamine \& 1 \\
\hline 6 \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \\
\hline 7. \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& 1

1

\hline 8 \& | (i) If the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass |
| :--- |
| (ii) Extent of dissociation or association or ratio of the observed colligative property to calculated colligative property | \&

\hline 9 \& $$
\begin{aligned}
& \Lambda^{\circ}{ }_{\text {сннаоон }}=\lambda^{\circ}{ }^{\circ} \text { снзсоо }+\lambda^{\circ} \mathrm{H}+ \\
& \quad=40.9+349.6=390.5 \mathrm{~S} \mathrm{~cm} / \mathrm{mol} \\
& \text { Now, } \alpha=\Lambda_{\mathrm{m}} / \Lambda^{\circ}{ }^{\mathrm{m}} \\
& =39.05 / 390.5=0.1
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& \hline
\end{aligned}
$$
\]

\hline 10 \& | (i) $\mathrm{F}_{2}+2 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{~F}^{-}+\mathrm{Cl}_{2}$ |
| :--- |
| (ii) $2 \mathrm{XeF}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Xe}+4 \mathrm{HF}+\mathrm{O}_{2}$ | \& \[

$$
\begin{aligned}
& \hline 1 \\
& 1 \\
& \hline
\end{aligned}
$$
\]

\hline \& OR \&

\hline 10 \& | (i) $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ |
| :--- |
| (ii) $\mathrm{PCl}_{5} \xrightarrow{\wedge} \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ | \& \[

1
\]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 11 \& \begin{tabular}{l}
(i) Due to the resonance, the electron pair of nitrogen atom gets delocalised towards carbonyl group / resonating structures. \\
(ii) Because of +1 effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. \\
(iii) Due to protonation of aniline / formation of anilinium ion
\end{tabular} \& 1
1
1
1 \\
\hline 12 \& \begin{tabular}{l}
(i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te . \\
(ii) Due to small size of fluoride ion / high charge density of fluoride ion / high charge size ratio of fluoride ion. \\
(iii) Absence of d-orbitals.
\end{tabular} \& \[
\begin{aligned}
\& \hline 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 13 \& \begin{tabular}{l}
(i) Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / detergents whose anionic part is involved in cleansing action. \\
(ii) Limited spectrum antibiotics are effective against a single organism or disease. \\
(iii) Tranquilizers are class of chemicals used for treatment of stress or mild or severe mental diseases.
\end{tabular} \& 1
1
1
1 \\
\hline 14 \& \begin{tabular}{l}
(i) \\
(ii) \\
\(+\mathrm{HCHO}\) \\
(iii) \(\mathrm{CF}_{2}=\mathrm{CF}_{2}\)
\end{tabular} \& 1

1
1
1

\hline 15 \& | (i) $\mathrm{A}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr} \quad \mathrm{B}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \quad \mathrm{C}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$ |
| :--- |
| (ii)A: $\mathrm{CH}_{3} \mathrm{CHO} \quad \mathrm{B}: \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CHO} \quad \mathrm{C}: \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$ | \& \[

$$
\begin{aligned}
& 1 / 2 \times 3 \\
& 1 / 2 \times 3
\end{aligned}
$$
\]

\hline \& OR \&

\hline 15 \& \& | 1 |
| :--- |
| 1 |
| 1 |

\hline 16 \& | (i) The impurities are more soluble in the melt than in the solid state of the metal. |
| :--- |
| (ii) PbS |
| (iii) Impurities like SiO_{2} etc are removed by using NaOH solution and pure alumina is obtained. | \& \[

$$
\begin{aligned}
& \hline 1 \\
& 1 \\
& 1
\end{aligned}
$$
\]

\hline 17 \& | (i) | 1-Bromopentane |
| :--- | :--- |
| (ii) | 2-Bromopentane |
| (iii) | 2-Bromo-2-methylbutane | \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}
$$
\]

\hline 18 \& (a) $\mathrm{k}=\frac{2.303}{t} \log \frac{[\mathrm{~A}] \mathrm{o}}{[\mathrm{A}]}$ \& 1/2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\(k\) is constant when using first order equation therefore it follows first order kinetics. \\
or \\
In equal time interval, half of the reactant gets converted into product and the rate of reaction is independent of concentration of reactant, so it is a first order reaction. \\
(b)
\[
\begin{aligned}
\& \mathrm{t}_{1 / 2}=0.693 / \mathrm{k} \\
\& =0.693 / 2.31 \times 10^{-3} \\
\& =300 \mathrm{~s}
\end{aligned}
\] \\
(If student writes directly that half life is 300 s , award full marks)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$

$1 / 2$

\hline 19. \& | (i) Multimolecular colloid : a large number of atoms or smaller molecules of a substance aggregate together to form species having size in the colloidal range. |
| :--- |
| Macromolecular: Large sized molecules whose particle size lies in the colloidal range. |
| (ii) Sol are solid dispersed in liquid while gel are liquid dispersed in solid |
| (iii) In O/W emulsion, water acts as dispersion medium while in W/O oil acts as dispersion medium | \& 1

1
1

\hline 20 \& | (i)Optical isomerism |
| :--- |
| (ii) $d^{2} s p^{3}$, diamagnetic |
| (iii)Triamminetrichloridochromium(III) | \& \[

$$
\begin{aligned}
& 1 \\
& 1 / 2+1 / 2 \\
& 1 \\
& \hline
\end{aligned}
$$
\]

\hline 21 \& | $\begin{aligned} & \text { (i)m }=\mathrm{Zlt} \\ &=\frac{108 \times 2 \times 15 \times 60}{1 \times 96500} \\ &=2.01 \mathrm{~g} \\ & \text { method) } \end{aligned}$ |
| :--- |
| (or any other correct |
| (ii) Cells that converts the energy of combustion of fuels directly into electrical energy. | \& \[

$$
\begin{gathered}
1 / 2 \\
1 \\
1 / 2 \\
1
\end{gathered}
$$
\]

\hline 22 \& | $\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\ & \text { Here, } \mathrm{m}=\mathrm{w}_{2} \times 1000 / \mathrm{M}_{2} \times \mathrm{M}_{1} \\ & 273.15-269.15=\mathrm{K}_{\mathrm{f}} \times 10 \times 1000 / 342 \times 90 \\ & \mathrm{~K}_{\mathrm{f}}=12.3 \mathrm{Kkg} / \mathrm{mol} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\ & \quad=12.3 \times 10 \times 1000 / 180 \times 90 \\ & =7.6 \mathrm{~K} \\ & \mathrm{~T}_{\mathrm{f}}=273.15-7.6=265.55 \mathrm{~K} \end{aligned}$ |
| :--- |
| (or any other correct method) | \& | $1 / 2$ |
| :--- |
| 1 $1 / 2$ |
| 1 |

\hline 23 \& | (i)concerned , caring, socially alert, leadership (or any other 2 values) |
| :--- |
| (ii) starch |
| (iii) α-Helix and β-pleated sheets |
| (iv)Vitamin $B / B_{1} / B_{2} / B_{6} / C$ (any two) | \& \[

$$
\begin{aligned}
& 1 / 2+1 / 2 \\
& 1 \\
& 1 / 2+1 / 2 \\
& 1 / 2+1 / 2
\end{aligned}
$$
\]

\hline
\end{tabular}

24	(a) $\rho=(z x M) / a^{3} x N_{a}$ $\begin{aligned} & 11.5=z \times 93 /\left[\left(300 \times 10^{-10}\right)^{3} \times 6.02 \times 10^{23}\right] \\ & Z=2.0 \end{aligned}$ Body centred cubic(bcc) (b)	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 \\ 1 / 2 \\ 1 \\ \\ 1+1 \end{array}$
	OR	
24	a) $\mathrm{n}=$ given mass / molar mass $=8.1 / 27 \mathrm{~mol}$ Number of atoms $=\frac{8.1}{27} \times 6.022 \times 10^{23}$ Number of atoms in one unit cell= 4 (fcc) Number of unit cells $=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$ $=4.5 \times 10^{22}$ Or 27 g of Al contains $=6.022 \times 10^{23}$ atoms 8.1 g of Al contains $=\left(6.022 \times 10^{23} / 27\right) \times 8.1$ No of unit cells $=$ total no of atoms $/ 4$ $\begin{aligned} & =\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4 \\ & =4.5 \times 10^{22} \end{aligned}$ b) i) Due to comparable size of cation and anion / large size of sodium ion ii) P has 5 valence e^{-}, an extra electron results in the formation of n-type semiconductor. iii) In ferrimagnetism ,domains / magnetic moments are aligned in opposite direction in unequal numbers while in antiferromagnetic the domains align in opposite direction in equal numbers so they cancel magnetic moments completely , net magnetism is zero / diagrammatic representation.	$1 / 2$ $1 / 2$ 1 1
25	a) i) ii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$ iii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$ b) i) Add neutral FeCl_{3} to both the compounds, phenol gives violet complex. ii) Add anhy ZnCl_{2} and conc. HCl to both the compounds, 2-methyl propan-2-ol gives turbidity immediately. (or any other correct test)	1 1 1 1 1
	OR	
25	a) i) Aq. Br_{2} ii) $\mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{O}_{2}$ and OH^{-} b) i) ethanol < phenol < p-nitrophenol ii) propane < propanal < propanol c)	1 1 1 1 1

26	a) (i) Due to small size and high ionic charge / availability of d orbitals. (ii) Higher is the oxidation state higher is the acidic character / as the oxidation state of a metal increases, ionic character decreases (iii) Because Mn^{2+} has d^{5} as a stable configuration whereas Cr^{3+} is more stable due to stable ${ }^{3}{ }_{2 g}$ b) Similarity-both are stable in +3 oxidation state/ both show contraction/ irregular electronic configuration (or any other suitable similarity) Difference- actinoids are radioactive and lanthanoids are not / actinoids show wide range of oxidation states but lanthanoids don't (or any other correct difference)	1 1 1 1 1 1
	OR	
26	a) i) In p block elements the difference in oxidation state is 2 and in transition metals the difference is 1 ii) Cu^{+}, due to disproportionation reaction / low hydration enthalpy iii) Due to formation of chromate ion / $\mathrm{CrO}_{4}{ }^{2-}$ ion, which is yellow in colour b) Actinoids are radioactive, actinoids show wide range of oxidation states.	$\begin{aligned} & 1 \\ & 1 / 2+1 / 2 \\ & 1 \\ & \\ & 1+1 \end{aligned}$

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra		17	Mr. Seema Bhatnagar	
6	Sh. Rakesh Dhawan		18	Dr. Azhar Aslam Khan	
7	Dr. (Mrs.) Sunita Ramrakhiani		19	Mr. Roop Narain Chauhan	
8	Mrs. Preeti Kiran		20	Mr. Mukesh Kumar Kaushik	
9	Ms. Neeru Sofat		21	Ms. Abha Chaudhary	
10	Sh. Pawan Singh Meena		22	Ms. Garima Bhutani	
11	Mrs. P. Nirupama Shankar				

