
CHEMISTRY MARKING SCHEME DELHI -2015 SET -56/1/1/D

Qu es.	Value points	Marks
1	3	1
2	2, 5 - dinitrophenol	1
3	CH ₃ -CH ₂ -Br	1/2 +1/2
	Because it is a primary halide / (1 ⁰) halide	
4	BaCl ₂ because it has greater charge / +2 charge	1/2 +1/2
5	X_2Y_3	1
6.	Elements which have partially filled d-orbital in its ground states or any one of its oxidation states.	1
	 Variable oxidation states Form coloured ion 	1/2 +1/2
7.	Or any other two correct characteristics 1) Diamminedichloridoethylenediaminechromium(III) chloride	1+ 1
/.		1+1
	2) $[Co(NH_3)_5(ONO)]^{2+}$	
8.	(i)LiAlH ₄ / NaBH ₄ /H ₂ , Pt	1
	(ii)KMnO ₄ , KOH	1
9	When vapour pressure of solution is higher than that predicted by Raoult's law /	1
	the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than	
	those between the solute-solute and solvent-solvent molecules/A-A or B-B molecules. Eg. ethanol-acetone/ethanol-cyclohexane/CS ₂ -acetone or any other correct example	1/2
	$\Delta_{ m mix}$ H is positive OR	1/2
9.	(a)Azeotropes are binary mixtures having the same composition in the liquid and vapour phase	1
	and boil at a constant temperature.	
	(b) Minimum boiling azeotrope	1/2
	eg - ethanol + water or any other example	1/2
10	$(i)Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	1/2
	Reaction with higher E^0 value $/$ ΔG^0 negative (ii) Molar conductivity of a solution at infinite dilution or when concentration approaches	1/2 1/2
	zero	
	Number of ions per unit volume decreases	1/2

_		
11	$ \Delta T_f = i K_f m $ $ \Delta T_f = i K_f \frac{w_b x 1000}{M_b x w_a} $	1/2
	$1.62 \text{ K} = \text{ i } \text{ x } 4.9 \text{K kg mol}^{-1} \text{ x } \frac{3.9 \text{ g}}{122 \text{ gmol}^{-1}} \text{ x } \frac{1000}{49 \text{ kg}}$	1
	i = 0.506	1/2
	Or by any other correct method	
	As i<1, therefore solute gets associated.	1
12	(i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure metal gets deposited on cathode from anode.	1
	(ii) Silica acts as flux to remove iron oxide which is an impurity as slag or $FeO + SiO_2 \rightarrow FeSiO_3$ (iii) Wrought iron	1 1
13	$d = \frac{z \times M}{a^3 N_A}$	1/2
	$z = \frac{d a^3 N_A}{M}$	
	$z = 2.7 \text{ g cm}^{-3} \text{ x } 6.022 \text{ x} 10^{23} \text{ mol}^{-1} \text{ x } (4.05 \text{ x } 10^{-8} \text{cm})^3$	
	$z = \frac{2.7 \text{ g cm}^{-3} \text{ x } 6.022 \text{ x} 10^{23} \text{ mol}^{-1} \text{ x } (4.05 \text{ x } 10^{-8} \text{cm})^{3}}{27 \text{ g mol}^{-1}}$	1
	= 3.999 ≈ 4	1/2
	Face centered cubic cell/ fcc	1
14	(i) 5f orbital electrons have poor shielding effect than 4f	1
	(ii)due to d-d transition / or the energy of excitation of an electron from lower d orbital to higher d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital.	1
	(iii) $2 \text{ MnO}_4^- + 6 \text{ H}^+ + 5 \text{ NO}_2^- \rightarrow 2 \text{ Mn}^{2+} + 3 \text{ H}_2\text{O} + 5 \text{ NO}_3^-$	1
15	(i)	
	H ₂ N CI PI NH ₁	
	cis-isomer trans-isomer	1
	(ii)t ₂ g ³ e g ¹	1
	(iii) sp ³ , diamagnetic	1/2+1/2

16	The cell reaction : Fe(s) + $2H^+$ (aq) \rightarrow Fe ²⁺ (aq) + H ₂ (g)	
	$E_{cell}^{o} = E_{c}^{o} - E_{a}^{o}$ = $[0-(-0.44)]V=0.44V$	
	$E_{cell} = E_{cell}^{o} - \underline{0.059} \log [Fe^{2+}]$ $2 [H^{+}]^{2}$	1
	$E_{cell} = 0.44 \text{ V} - \frac{0.059}{2} \log \frac{(0.001)}{(0.01)^2}$	
	$= 0.44 \text{ V} - \frac{0.059}{2} \log (10)$	1
	= 0.44 V - 0.0295 V	
	=≈ 0.410 V	1
17	(i) mutual coagulation (ii)strong interaction between dispersed phase and dispersion medium or solvated layer (iii)CO acts as a poison for catalyst	1 1 1
18	(i)Hexamethylene diamine NH ₂ (CH ₂) ₆ NH ₂ and adipic acid HOOC- (CH ₂) ₄ - COOH (ii)3 hydroxybutanoic acid CH ₃ CH(OH)CH ₂ COOH and 3 hydroxypentanoic acid CH ₃ CH ₂ CH(OH)CH ₂ COOH (iii)Chloroprene H ₂ C=C(Cl)CH=CH ₂ IUPAC names are accepted	1/2 1/2 1/2 1/2 1/2 1/2
	Note: ½ mark for name /s and ½ mark for structure / s	72
19	(i)CH ₃ CH ₂ CH ₃ (ii) C ₆ H ₅ COONa + CHI ₃ (iii)CH ₄	1 1/2, 1/2 1
20	(i) $C_6H_5OH + NaOH \rightarrow C_6H_5ONa$ <u>CH_3X</u> $C_6H_5OCH_3$	
	Or $C_6H_5OH + Na \rightarrow C_6H_5ONa$ $CH_3X \rightarrow C_6H_5OCH_3$	
	$C_0\Pi_5\Pi_5\Pi_5\Pi_5\Pi_5\Pi_5\Pi_5\Pi_5\Pi_5\Pi_5\Pi_5\Pi_5\Pi_5\Pi$	1
	(ii)CH ₃ CH(OH)CH ₃ CrO ₃ or Cu/573K CH ₃ COCH ₃ (i)CH ₂ MgX (ii)H ₂ O (CH ₃) ₂ C(OH)CH ₃	1
	(iii) $C_6H_5NH_2$ NaNO ₂ + HCl $C_6H_5N_2Cl$ H ₂ O warm C_6H_5OH 273K	1

20	OR	
	a)	
	(i) $CH_3-CH_2-\overset{\cdots}{O}-H + H^+ \longrightarrow CH_3-CH_2-\overset{+}{O}-H$	1/2
	(ii) $CH_3CH_2 = \overset{\circ}{O}: + CH_3 = CH_2 = \overset{\circ}{O} = CH_3CH_2 = \overset{\circ}{O} = CH_2CH_3 + H_2O$	1/2
	(iii) CH_3CH_2 \longrightarrow CH_2CH_3 \longrightarrow CH_3CH_2 \longrightarrow CH_2CH_3 + H	1
	b) $\begin{array}{c} COOH \\ OH \\ + (CH_3CO)_2O \rightarrow \end{array} \begin{array}{c} COOH \\ OCOCH_3 \\ + CH_3COOH \end{array}$	
	(Acetyl chloride instead of acetic anhydride may be used)	1
21	(i)Maltose	1
	(ii) fibrous proteins: parallel polypeptide chain , insoluble in water Globular proteins: spherical shape, soluble in water, (or any 1 suitable difference) (iii) Vitamin D	1
22	(i)Larger surface area, higher van der Waals' forces, higher the boiling point	1
	(ii)Rotation due to one enantiomer is cancelled by another enantiomer	1
	(iii) - NO ₂ acts as Electron withdrawing group or –I effect	1
23	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy, caring or any other (ii)Through posters, nukkad natak in community, social media, play in assembly or any other	1
	(iii)Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders Eg: equanil (or any other suitable example)	1/2, 1/2
24	(iv) Aspartame is unstable at cooking temperature.	1
24	(a) (i) Due to decrease in bond dissociation enthalpy from HF to HI, there is an increase in acidic character observed.	1
	(ii)Oxygen exists as diatomic O_2 molecule while sulphur as polyatomic S_8 (iii)Due to non availability of d orbitals	1 1

26 (a) 1 $k = \underbrace{2.303}_{t} \log \underbrace{[A_{\underline{0}}]}_{[A]}$ $k = 2.303 \log 0.60$ 1/2 $k = 2.303 x 0.301 = 0.023 s^{-1}$ $k = 2.303 \log 0.60$ 60 0.15 1/2 $k = 2.303 \times 0.6021 = 0.023 \text{ s}^{-1}$ As k is constant in both the readings, hence it is a pseudofirst order reaction. 1 ii) Rate = - $\Delta[R]/\Delta t$ 1/2 = -[0.15-0.30]1/2 60-30 $= 0.005 \text{ mol } L^{-1} s^{-1}$ OR a) 26 (i) Rate will increase 4 times of the actual rate of reaction. 1 + 1(ii) Second order reaction $_{1/2}^{t} = \underline{0.693}$ 1/2 $30\min =$ $k = 0.0231 \text{min}^{-1}$

$k = \underbrace{2.303}_{t} \log \left[\underbrace{A_0}_{A} \right]$	1/2
$t = \underbrace{2.303}_{0.0231} \log \underbrace{100}_{10}$	1/2
$t = \frac{2.303}{0.0231}$ min	
t = 99.7 min	1