Marking scheme - 2017

CHEMISTRY (043)/ CLASS XII

Outside Delhi set (56/1)

Q No.	Value Points	Marks
1.	$\mathrm{H}_{3} \mathrm{PO}_{4}$	1
2.	2-Bromo-3-methylbut-2-en-1-ol	1
3.	a. Decreases b. No effect	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \\ \hline \end{array}$
4.		1
5.	Gel e.g. cheese, butter, jellies (any one)	$1 / 2+1 / 2$
6.	a. p-cresol < Phenol < p-nitrophenol b.	1 1
	OR	
6	a. b.	1 1
7.	$\begin{aligned} & \begin{array}{l} \mathrm{n}=\text { given mass } / \text { molar mass } \\ \quad=8.1 / 27 \mathrm{~mol} \\ \text { Number of atoms }= \\ \text { 8.1 } \\ \text { Number of atoms in one unit cell= }=4(\mathrm{fcc}) \end{array} \\ & \text { Number of unit cells }=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4 \\ & \quad=4.5 \times 10^{22} \\ & \text { Or } \\ & \begin{aligned} & \text { Or } \\ & 27 \mathrm{~g} \text { of Al contains }= 6.022 \times 10^{23} \text { atoms } \\ & 8.1 \mathrm{~g} \text { of Al contains }=\left(6.022 \times 10^{23} / 27\right) \times 8.1 \\ & \text { No of unit cells }=\text { total no of atoms } / 4 \\ &=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4 \\ &=4.5 \times 10^{22} \end{aligned} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

8.	a.) HO b.)	1,1
9.	Mercury cell Anode: $\mathrm{Zn}(\mathrm{Hg})+2 \mathrm{OH}^{-} \rightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}$ Cathode: $\mathrm{HgO}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{Hg}(\mathrm{I})+2 \mathrm{OH}^{-}$	$\begin{aligned} & \hline 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
10.	(i) $\mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ (ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{SO}_{4}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
11.	(a) Covalent solid / network solid , molecular solid (b) $\mathrm{ZnO} \xrightarrow{\text { Heating }} \mathrm{Zn}^{2+}+1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-}$ Because excess Zn^{2+} ions move to interstitial sites and the electrons move to neighbouring voids (c) Compounds prepared by combination of groups 12 and 16 behave like semiconductors. For eg ZnS, CdS , CdSe, HgTe (Any one)	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & 1 / 2+1 / 2 \end{aligned}$
12.	$\text { (a) } \begin{aligned} \Delta \mathrm{G}^{0} & =-\mathrm{nFE}_{\text {cell }}^{0} \\ \mathrm{n} & =2 \\ \Delta \mathrm{G}^{0} & =-2 \times 96500 \mathrm{C} / \mathrm{mol} \times 0.236 \mathrm{~V} \\ & =-45548 \mathrm{~J} / \mathrm{mol} \\ & =-45.548 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$ (b) $\begin{aligned} & \mathrm{Q}=\mathrm{It}=0.5 \times 2 \times 60 \times 60 \\ & \quad=3600 \mathrm{C} \\ & 96500 \mathrm{C}=6.023 \times 10^{23} \text { electrons } \\ & 3600 \mathrm{C}=2.25 \times 10^{22} \text { electrons } \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1
13.	(a) Linkage isomerism (b) In $\left[\mathrm{NiCl}_{4}\right]^{2-}$,due to the presence of Cl^{-}, a weak field ligand no pairing occurs whereas in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, \mathrm{CN}^{-}$is a strong field ligand and pairing takes place / diagrammatic representation (c) Because of very low CFSE which is not able to pair up the electrons.	1 1 1
14.	(a) (b)	1

	(C)	1/2
19.	(a) $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2}, \mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}$ (b) (c) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} \quad, \quad \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}_{2}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1
20.	(a) Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / alkylbenzene sulphonate or detergents whose anionic part is involved in cleansing action. (b) Limited spectrum antibiotics are effective against a single organism or disease. (c) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
21.	(a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in $\mathrm{N}_{2} \mathrm{O}_{5}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
22.	(i) Due to the resonance, the electron pair of nitrogen atom gets delocalised towards carbonyl group / resonating structures. (ii)Because of $+l$ effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii)Due to protonation of aniline / formation of anilinium ion	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
23.	(i) Concerned, caring, socially alert, leadership (or any other 2 values) (ii) Starch (iii) α-Helix and β-pleated sheets (iv) Vitamin $B / B_{1} / B_{2} / B_{6} / C$ (any two)	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
24.	a. (i) Availability of partially filled d-orbitals / comparable energies of $n s$ and ($n-1$) d orbitals (ii) Completely filled d-orbitals / absence of unpaired d electrons cause weak metallic bonding (iii) Because Mn^{2+} has d^{5} as a stable configuration whereas Cr^{3+} is more stable due to stable $t^{3}{ }_{2 g}$ b) Similarity-both are stable in +3 oxidation state/ both show contraction/ irregular electronic configuration (or any other suitable similarity) Difference- actinoids are radioactive and lanthanoids are not / actinoids show wide range of oxidation states but lanthanoids don't (or any other correct difference)	1 1 1 1 1
	OR	
24	a. (i) Cr^{3+}, half filled $\mathrm{t}^{3}{ }_{2 g}$ (ii) Mn^{3+}, due to stable d^{5} configuration in Mn^{2+}	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$

\begin{tabular}{|c|c|c|c|}
\hline \& \multicolumn{2}{|l|}{\begin{tabular}{l}
(iii) \(\mathrm{Ti}^{4+}\), No unpaired electrons \\
b. (i) \(2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{~S}^{2-} \rightarrow 5 \mathrm{~S}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}\) \\
(ii) \(2 \mathrm{KMnO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}\)
\end{tabular}} \& \\
\hline 25 \& \multicolumn{2}{|l|}{\begin{tabular}{l}
a) \(\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}\) \\
Here, \(m=w_{2} \times 1000 / M_{2} \mathrm{XM}_{1}\)
\[
\begin{aligned}
\& 273.15-269.15=\mathrm{K}_{\mathrm{f}} \times 10 \times 1000 / 342 \times 90 \\
\& \mathrm{~K}_{\mathrm{f}}=12.3 \mathrm{Kkg} / \mathrm{mol} \\
\& \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\
\& =12.3 \times 10 \times 1000 / 180 \times 90 \\
\& =7.6 \mathrm{~K} \\
\& \mathrm{~T}_{\mathrm{f}}=273.15-7.6=265.55 \mathrm{~K}
\end{aligned}
\] \\
(or any other correct method) \\
b) (i) Number of moles of solute dissolved in per kilo gram of the solvent. \\
(ii) Abnormal molar mass: If the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass.
\end{tabular}} \& \(1 / 2\)
1
\(1 / 2\)
\(1 / 2\)
1
1
1 \\
\hline \& \multicolumn{2}{|l|}{\begin{tabular}{l}
(a)
\[
\begin{gathered}
\left(P_{A}^{0}-P_{A}\right) / P_{A}^{0}=\left(w_{B} \times M_{A}\right) /\left(M_{B} \times w_{A}\right) \\
\frac{23.8-P_{A}}{23.8}=(30 \times 18) / 60 \times 846 \\
23.8-P_{A}=23.8 \times[(30 \times 18) / 60 \times 846] \\
23.8-P_{A}=0.2532 \\
P_{A}=23.55 \mathrm{~mm} \mathrm{Hg}
\end{gathered}
\] \\
(b)
\end{tabular}} \& \\
\hline 25. \& \begin{tabular}{l}
(a)
\[
\begin{array}{r}
\left(P_{A}^{0}-P_{A}\right) / P_{A}^{0}=\left(w_{B} \times M_{A}\right) / \\
\frac{23.8-P_{A}}{23.8}=(30 \\
23.8-P_{A}=23.8 \times \\
23.8-P_{A} \\
P_{A}=23.5
\end{array}
\] \\
(b) \\
Ideal solution \\
(a) It obeys Raoult's law over the entire range of concentration. \\
(b) \(\Delta_{\text {mix }} H=0\) \\
(c) \(\Delta_{\operatorname{mix}} V=0\)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \left.M_{B} \times w_{A}\right) \\
\& \times 18) / 60 \times 846 \\
\& (30 \times 18) / 60 \times 846] \\
\& \\
\& =0.2532 \\
\& m m \mathrm{Hg}
\end{aligned}
\] \\
Non ideal solution \\
(a) Does not obey Raoult's law over the entire range of concentration. \\
(b) \(\Delta_{\text {mix }} H\) is not equal to 0. \\
(c) \(\Delta_{\text {mix }} V\) is not equal to 0. (any two correct difference)
\end{tabular} \& \(1 / 2\)
1
\(11 / 2\)

1
1
$1+1$

\hline 26. \& | a. |
| :--- |
| (ii) | \& \& 1

1

\hline
\end{tabular}

	(iii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$ b. (i) Tollen's reagent test: Add ammoniacal solution of silver nitrate (Tollen's Reagent) in both the solutions. Butanal gives silver mirror whereas Butan-2-one does not. (ii) Add neutral FeCl_{3} in both the solutions, phenol forms violet colour but benzoic acid does not. (or any other correct test)	1 1
	OR	
26	(a) (i)Étard reaction Toluene (i) $\mathrm{CrO2Cl} 2, \mathbf{C S} 2$ (ii) $\mathrm{H} 3 \mathrm{O}+$ Benzaldehyde (ii)Stephen reaction (i) $\mathbf{S n C l}_{\mathbf{2}}+\mathbf{H C l}$ RCN RCHO (ii) $\mathrm{H}_{3} \mathbf{O}+$ (b) (i) (ii)	

	(c) $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{Cl}_{2} / \mathrm{P}} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{\mathrm{KOH}(A q)} \mathrm{CH}_{2} \mathrm{COOH}$	1	
	Cl	OH (or any other correct method)	

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra		16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan		18	Dr. Azhar Aslam Khan	
7	Dr. (Mrs.) Sunita Ramrakhiani		19	Mr. Roop Narain Chauhan	
8	Mrs. Preeti Kiran		20	Mr. Mukesh Kumar Kaushik	
9	Ms. Neeru Sofat		21	Ms. Abha Chaudhary	
10	Sh. Pawan Singh Meena		22	Ms. Garima Bhutani	
11	Mrs. P. Nirupama Shankar				

Marking scheme - 2017
 CHEMISTRY (043)/ CLASS XII
 Outside Delhi set (56/2)

Q.No	Value points	Marks
1.	a. Decreases b. No change	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
2.	Sol : example- paints, cell fluids (any one)	$1 / 2+1 / 2$
3.	3-phenyl-prop-2-en-1-ol	1
4.	$\mathrm{H}_{2} \mathrm{SO}_{4}$	1
5.		1
6.	$\begin{array}{ll}\text { (i) } & {\left[\mathrm{Cr}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}} \\ \text { (ii) } & \mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]\end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
7.	(a) (b)	1
8.	Lead storage battery Anode : $\mathrm{Pb}_{(\mathrm{s})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\text {aq })} \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{e}^{-}$ Cathode : $\mathrm{PbO}_{2}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	$\begin{aligned} & 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
9.	$\begin{aligned} & \mathrm{n}=\text { given mass } / \text { molar mass } \\ & \quad=8.1 / 27 \mathrm{~mol} \\ & \text { Number of atoms }=\frac{8.1}{27} \times 6.022 \times 10^{23} \\ & \text { Number of atoms in one unit cell }=4(\mathrm{fcc}) \\ & \text { Number of unit cells }=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4 \\ & \qquad \quad=4.5 \times 10^{22} \end{aligned}$	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

	$\begin{aligned} & \text { Or } \\ & 27 \mathrm{~g} \text { of Al contains }=6.022 \times 10^{23} \text { atoms } \\ & 8.1 \mathrm{~g} \text { of Al contains }=\left(6.022 \times 10^{23} / 27\right) \times 8.1 \\ & \text { No of unit cells } \end{aligned}=\begin{aligned} & =(t a t a l \\ & \text { no of atoms } / 4 \\ & =\left[\frac{87}{27} \times 6.022 \times 10^{23}\right] / 4 \\ & =4.5 \times 10^{22} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
10.	a. p-cresol < Phenol < p-nitrophenol b.	$\begin{array}{\|l\|l} \hline 1 \\ 1 \end{array}$
	OR	
10	a. b.	1 1
11.	(a)Metal is converted into volatile compound which on strong heating is decomposed to give pure metal. (b)It acts as a leaching agent / forms soluble complex with Ag (c)Enhances non-wettability of mineral particles. For e.g.-Pine oil, Fatty acids, xanthates (Any one).	1 1 $1 / 2+1 / 2$
12.	(a) (A) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ (B) $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (C) $\mathrm{CH}_{3} \mathrm{NC}$ (b) (A) (B) (C)	$1 / 2$ $1 / 2$

13.	$\text { (a) } \begin{aligned} & \Delta G^{0}=-n F E_{\text {cell }}^{0} \\ & n=2 \\ & \Delta G^{0}=-2 \times 96500 \mathrm{C} / \mathrm{mol} \times 0.236 \mathrm{~V} \\ & =-45548 \mathrm{~J} / \mathrm{mol} \\ & = \end{aligned}$ (b) $\begin{aligned} \mathrm{Q}=1 \mathrm{t} & =0.5 \times 2 \times 60 \times 60 \\ = & 3600 \mathrm{C} \\ 96500 \mathrm{C} & =6.023 \times 10^{23} \text { electrons } \\ 3600 \mathrm{C} & =2.25 \times 10^{22} \text { electrons } \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1
14.	(i) Due to the resonance, the electron pair of nitrogen atom gets delocalised towards carbonyl group / resonating structures. (ii) Because of +1 effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii)Due to protonation of aniline / formation of anilinium ion	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
15	(a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state $(+5)$ of nitrogen in $\mathrm{N}_{2} \mathrm{O}_{5}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
16	(a) Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / alkylbenzene sulphonate or detergents whose anionic part is involved in cleansing action. (b) Narrow spectrum antibiotics- which are effective against either gram positive or gram negative bacteria. (c) Chemical compounds which are used for the treatment of excess acid produced in the stomach.	1 1
17	(a) $\mathrm{CH}_{2}=\mathrm{CHCl}$ (b) and HCHO (c) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{CH}_{2}=\mathrm{CHCN}$	1 1 1
18.	(i) 1-Bromopentane (ii) 2-Bromopentane (iii) 2-Bromo-2-methylbutane	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$

21.	(a) Linkage isomerism (b) In $\left[\mathrm{NiCl}_{4}\right]^{2-}$, due to the presence of Cl^{-}, a weak field ligand no pairing occurs whereas in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, \mathrm{CN}^{-}$is a strong field ligand and pairing takes place / diagrammatic representation (c) Because of very low CFSE which is not able to pair up the electrons.	1 1 1
22.	(a) Benzene - molecular solid Silver - metallic solid (b) Size of Ag^{+}ion is smaller than Na^{+}ion (c) p -type	$\begin{aligned} & \hline 1 / 2 \\ & \\ & 1 / 2 \\ & 1 \\ & 1 \end{aligned}$
23.	(i) Concerned, caring, socially alert, leadership (or any other 2 values) (ii) Starch (iii) α-Helix and β-pleated sheets (iv) Vitamin $B / B_{1} / B_{2} / B_{6} / C$ (any two)	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
24	$\begin{aligned} & \text { a) } \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\ & \text { Here, } \mathrm{m}=\mathrm{w}_{2} \times 1000 / \mathrm{M}_{2} \times \mathrm{M}_{1} \\ & 273.15-269.15=\mathrm{K}_{\mathrm{f}} \times 10 \times 1000 / 342 \times 90 \\ & \mathrm{~K}_{\mathrm{f}}=12.3 \mathrm{Kkg} / \mathrm{mol} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\ & =12.3 \times 10 \times 1000 / 180 \times 90 \\ & =7.6 \mathrm{~K} \\ & \mathrm{~T}_{\mathrm{f}}=273.15-7.6=265.55 \mathrm{~K} \end{aligned}$ (or any other correct method) b) (i) Number of moles of solute dissolved in per kilo gram of the solvent. (ii) Abnormal molar mass: If the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass.	$1 / 2$ 1 $1 / 2$ 1 1 1
	OR	

\begin{tabular}{|c|c|c|}
\hline 24 \& \begin{tabular}{l}
(a)
\[
\begin{gathered}
\left(P_{A}^{0}-P_{A}\right) / P_{A}^{0}=\left(w_{B} \times M_{A}\right) /\left(M_{B} \times w_{A}\right) \\
\frac{23.8-P_{A}}{23.8}=(30 \times 18) / 60 \times 846 \\
23.8-P_{A}=23.8 \times[(30 \times 18) / 60 \times 846] \\
23.8-P_{A}=0.2532 \\
P_{A}=23.55 \mathrm{~mm} \mathrm{Hg}
\end{gathered}
\] \\
(b) \\
(any two correct difference)
\end{tabular} \& \begin{tabular}{l}
\(1 / 2\) \\
1 \\
\(1 / 2\) \\
1
\[
1+1
\]
\end{tabular} \\
\hline 25 \& \begin{tabular}{l}
a. \\
(i) \\
(ii) \\
(iii) \(\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}\) \\
b. (i) Tollen's reagent test: Add ammoniacal solution of silver nitrate (Tollen's Reagent) in both the solutions. Butanal gives silver mirror whereas Butan-2one does not. \\
(ii) Add neutral \(\mathrm{FeCl}_{3}\) in both the solutions, phenol forms violet colour but benzoic acid does not.
\end{tabular} \& 1

1
1
1
1
1

\hline \& OR \&

\hline
\end{tabular}

25	(a) (i)Étard reaction Toluene (i) CrO2Cl2, CS2 (ii) $\mathrm{H} 3 \mathrm{O}+$ Benzaldehyde (ii)Stephen reaction (i) $\mathbf{S n C l}_{\mathbf{2}}+\mathbf{H C l}$ RCN \longrightarrow RCHO (ii) $\mathrm{H}_{3} \mathrm{O}+$ (b) (i) (ii) (c) $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{Cl}_{2} / \mathrm{P}} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{\text { \| }} \xrightarrow{\mathrm{KOH}(A q)} \mathrm{Cl}^{\mathrm{Cl}} \mathrm{CH}_{2} \mathrm{COOH}$ (or any other correct method)	1
26	a. (i) Availability of partially filled d-orbitals / comparable energies of ns and ($\mathrm{n}-1$) d orbitals	1

	(ii) Completely filled d-orbitals / absence of unpaired d electrons cause weak metallic bonding (iii) Because Mn^{2+} has d^{5} as a stable configuration whereas Cr^{3+} is more stable due to stable $\mathrm{t}^{3}{ }_{2 \mathrm{~g}}$ b) Similarity-both are stable in +3 oxidation state/ both show contraction/ irregular electronic configuration (or any other suitable similarity) Difference- actinoids are radioactive and lanthanoids are not / actinoids show wide range of oxidation states but lanthanoids don't (or any other correct difference)	1 1 1 1
	OR	
26	a. (i) Cr^{3+}, half filled $\mathrm{t}^{3}{ }_{2 g}$ (ii) Mn^{3+}, due to stable d^{5} configuration in Mn^{2+} (iii) Ti^{4+}, No unpaired electrons b. (i) $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{~S}^{2-} \rightarrow 5 \mathrm{~S}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ (ii) $2 \mathrm{KMnO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 \\ & 1 \end{aligned}$

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra		16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan		18	Mr. Azhar Aslam Khan	
7	Dr. (Mrs.) Sunita Ramrakhiani		19	Mr. Roop Narain Chauhan	
8	Mrs. Preeti Kiran		20	Mr. Mukesh Kumar Kaushik	
9	Ms. Neeru Sofat		21	Ms. Abha Chaudhary	
10	Sh. Pawan Singh Meena		22	Ms. Garima Bhutani	
11	Mrs. P. Nirupama Shankar				

Marking scheme - 2017

CHEMISTRY (043)/ CLASS XII

Outside Delhi set (56/3)

\begin{tabular}{|c|c|c|}
\hline Q No. \& Value Points \& \begin{tabular}{l}
Mark \\
s
\end{tabular} \\
\hline 1. \& \& 1 \\
\hline 2. \& \begin{tabular}{l}
a. Decreases \\
b. No effect
\end{tabular} \& \(1 / 21 / 2\) \\
\hline 3. \& \(\mathrm{HIO}_{3}\) \& 1 \\
\hline 4. \& Foam ; e.g. froth, whipped cream, soap lather(any one) \& \(1 / 2+1 / 2\) \\
\hline 5. \& 2-Methoxy-2-methylpropane \& 1 \\
\hline 6. \& b. \& 1,1 \\
\hline 7. \& \begin{tabular}{l}
Dry Cell / Leclanche cell \\
Anode: \(\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}\) \\
Cathode: \(\mathrm{MnO}_{2}+\mathrm{NH}_{4}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{MnO}(\mathrm{OH})+\mathrm{NH}_{3}\)
\end{tabular} \& \[
\begin{aligned}
\& \hline 1 \\
\& 1 / 2 \\
\& 1 / 2 \\
\& \hline
\end{aligned}
\] \\
\hline 8. \& \begin{tabular}{l}
a. p-cresol < Phenol < p-nitrophenol \\
b.
\end{tabular} \& \begin{tabular}{l}
1 \\
1
\end{tabular} \\
\hline \& OR \& \\
\hline 8 \& \begin{tabular}{l}
a. \\
b.
\end{tabular} \& 1

1

\hline 9. \& | a. $\mathrm{K}_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ |
| :--- |
| b. $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$ | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\]

\hline 10. \& $$
\begin{aligned}
& \mathrm{n}=\text { given mass } / \text { molar mass } \\
& \quad=8.1 / 27 \mathrm{~mol} \\
& \text { Number of atoms }=\frac{8.1}{27} \times 6.022 \times 10^{23}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \multicolumn{2}{|l|}{} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline 11. \& \begin{tabular}{l}
(a) Linkage isomerism \\
(b) \(\operatorname{In}\left[\mathrm{NiCl}_{4}\right]^{2-}\), due to the p no pairing occurs where field ligand and pairing ta representation \\
(c) Because of very low CFS electrons.
\end{tabular} \& \begin{tabular}{l}
sence of \(\mathrm{Cl}^{-}\), a weak field ligand in \(\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, \mathrm{CN}^{-}\)is a strong kes place / diagrammatic \\
which is not able to pair up the
\end{tabular} \& 1 \\
\hline 12. \& \begin{tabular}{l}
(a) \\
Multimolecular colloid \\
(a) Aggregation of large number of small atoms or molecules. \\
(b) \\
Coagulation \\
(a) Settling down of colloidal particles. \\
(c) \\
Homogenous catalysis \\
(a) Reactants and catalyst are in same phase.
\end{tabular} \& \begin{tabular}{l}
Associated colloid \\
(a) Aggregation of large number of ions in concentrated solutions. \\
Peptization \\
(a) Conversion of precipitate into colloidal sol by adding small amount of electrolyte. \\
Heterogeneous catalysis \\
(a) Reactants and catalyst are in different phases.
\end{tabular} \& 1

1
1
1

\hline \& | (a) Dispersed phase-liquid, |
| :--- |
| (b) Both are surface phenome surface area (or any other |
| (c) Hydrolysis / $\mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ | \& ispersion medium - liquid on / both increase with increase in rrect similarity)

$$
- \text { hydrolysis }-\rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{sol})+3 \mathrm{HCl}
$$ \& 1

1

\hline 13. \& | $\text { (a) } \begin{aligned} & \Delta G^{0}=-n F E_{\text {cell }}^{0} \\ & n=2 \\ & \Delta G^{0}=-2 \times 96500 \mathrm{C} / \mathrm{mol} \times 0.236 \\ &=-45548 \mathrm{~J} / \mathrm{mol} \\ &=-45.548 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$ |
| :--- |
| (b) $\mathrm{Q}=\mathrm{It}=0.5 \times 2 \times 60 \times 60$ | \& \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$

\hline
\end{tabular}

	$\begin{aligned} &=3600 \mathrm{C} \\ & 96500 \mathrm{C}=6.023 \times 10^{23} \text { electrons } \\ & 3600 \mathrm{C}=2.25 \times 10^{22} \text { electrons } \end{aligned}$	1
14.	a. $\mathrm{Na}_{2} \mathrm{SO}_{4}$: Ionic, H_{2} : Molecular b. Impurity defect / Schottky defect c. In ferrimagnetism ,domains / magnetic moments are aligned in opposite direction in unequal numbers while in antiferromagnetic the domains align in opposite direction in equal numbers so they cancel magnetic moments completely ,net magnetism is zero / diagrammatic explanation.	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & 1 \end{aligned}$
15.	a. On passing current through the electrolytic cell , the pure metal gets deposited on the cathode. b. Evolution of SO_{2} gas c. It selectively prevents one of the sulphide ores from coming to the froth.	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
16.	(a) (A) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ (B) $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (C) $\mathrm{CH}_{3} \mathrm{NC}$ (b) (A) (B) (C)	$1 / 2$ $1 / 2$
17.	(i) Due to the resonance, the electron pair of nitrogen atom gets delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
18.	(a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in $\mathrm{N}_{2} \mathrm{O}_{5}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
19.	a. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / detergents whose cationic part is involved in cleansing action. b. Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. c. Chemical compounds used for the treatment of stress and mild or severe mental diseases.	1 1 1
20.	a. $\mathrm{CF}_{2}=\mathrm{CF}_{2}$	1

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
 \\
and HCHO \\
b. \\
c.
\end{tabular} \& 1

1

\hline 21. \& | (i) | 1-Bromopentane |
| :--- | :--- |
| (ii) | 2-Bromopentane |
| (iii) | 2-Bromo-2-methylbutane | \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
$$
\]

\hline 22. \& | $\begin{align*} & t=\frac{2.303}{k} \log \frac{[A] o}{[A]} \\ & 20 \mathrm{~min}=\frac{2.303}{k} \log \frac{100}{75} \tag{i}\\ & t=\frac{2.303}{k} \log \frac{100}{25} \tag{ii} \end{align*}$ |
| :--- |
| Divide (i) equation by (ii) $\begin{aligned} & \frac{20}{t}= \frac{\frac{2.303}{k} \log \frac{100}{75}}{\frac{2.303}{k} \log \frac{100}{25}} \\ &=\frac{\log 4 / 3}{\log 4} \\ & 20 / \mathrm{t}=0.1250 / 0.6021 \\ & \mathrm{t}=96.3 \mathrm{~min} \end{aligned}$ |
| (or any other correct procedure) | \& | $1 / 2$ |
| :--- |
| $1 / 2$ |
| $1 / 2$ |
| $1 / 2$ |
| 1 |

\hline 23. \& | (i) Concerned , caring, socially alert, leadership (or any other 2 values) |
| :--- |
| (ii) Starch |
| (iii) α-Helix and β-pleated sheets |
| (iv) Vitamin $B / B_{1} / B_{2} / B_{6} / C$ (any two) | \& \[

$$
\begin{aligned}
& 1 / 2+1 / 2 \\
& 1 \\
& 1 / 2+1 / 2 \\
& 1 / 2+1 / 2
\end{aligned}
$$
\]

\hline 24. \& | a. |
| :--- |
| (i) |
| (ii) |
| (iii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$ |
| b. (i) Tollen's reagent test: Add ammoniacal solution of silver nitrate (Tollen's Reagent) in both the solutions. Butanal gives silver mirror whereas Butan-2-one does not. |
| (ii) Add neutral FeCl_{3} in both the solutions, phenol forms violet colour | \& 1

1
1
1

\hline
\end{tabular}

	but benzoic acid does not. (or any other correct test)	1
	OR	
2 4	(a) (i)Étard reaction or Toluene (i) $\mathrm{CrO2Cl} 2, \mathrm{CS} 2$ $\xrightarrow[\text { (ii) } \mathrm{H} 3 \mathrm{O}+]{ }$ (ii) $\mathrm{H} 3 \mathrm{O}+$ Benzaldehyde (ii)Stephen reaction $\mathrm{RCN}+\mathrm{SnCl}_{2}+\mathrm{HCl} \longrightarrow \mathrm{Or} \text { OCH }=\mathrm{NH} \xrightarrow{\mathrm{H}_{3} \stackrel{+}{\mathrm{O}}} \mathrm{RCHO}$ (i) $\mathbf{S n C l}_{2}+\mathbf{H C l}$ RCN \longrightarrow RCHO (ii) $\mathrm{H}_{3} \mathrm{O}+$ (b) (i) (ii) (c) $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{Cl}_{2} / \mathrm{P}} \underset{\mathrm{Cl}}{\mathrm{C}} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{\mathrm{KOH}(\mathrm{Aq})} \underset{\mathrm{Cl}}{\mathrm{Cl}} \mathrm{CH}_{2} \mathrm{COOH}$ (or any other correct method)	$1{ }^{\prime}$
25.	a. (i) Availability of partially filled d-orbitals / comparable energies of ns and ($\mathrm{n}-1$) d orbitals (ii) Completely filled d-orbitals / absence of unpaired d electrons cause weak metallic bonding	1 1

	(iii) Because Mn^{2+} has d^{5} as a stable configuration whereas Cr^{3+} is more stable due to stable $\mathrm{t}^{3}{ }_{2 \mathrm{~g}}$ b) Similarity-both are stable in +3 oxidation state/ both show contraction/ irregular electronic configuration (or any other suitable similarity) Difference- actinoids are radioactive and lanthanoids are not / actinoids show wide range of oxidation states but lanthanoids don't (or any other correct difference)	1 1 1
	OR	
	a. (i) Cr^{3+}, half filled $\mathrm{t}^{3}{ }_{2 g}$ (ii) Mn^{3+}, due to stable d^{5} configuration in Mn^{2+} (iii) $\mathrm{T}^{4^{+}}$, No unpaired electrons b. (i) $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{~S}^{2-} \rightarrow 5 \mathrm{~S}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ (ii) $2 \mathrm{KMnO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
26.	a) $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}$ Here, $m=w_{2} \times 1000 / M_{2} \mathrm{XM}_{1}$ $\begin{aligned} & 273.15-269.15=\mathrm{K}_{\mathrm{f}} \times 10 \times 1000 / 342 \times 90 \\ & \mathrm{~K}_{\mathrm{f}}=12.3 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\ & ==12.3 \times 10 \times 1000 / 180 \times 90 \\ & =7.6 \mathrm{~K} \end{aligned}$ $\mathrm{T}_{\mathrm{f}}=273.15-7.6=265.55 \mathrm{~K} \quad \text { (or any other correct method) }$ b) (i) Number of moles of solute dissolved in per kilo gram of the solvent. (ii) Abnormal molar mass: If the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass.	$\begin{aligned} & 1 / 2 \\ & 1 \\ & 1 \end{aligned}$ 1 1 1
	OR	
	(a) $\begin{gathered} \left(P_{A}^{0}-P_{A}\right) / P_{A}^{0}=\left(w_{B} \times M_{A}\right) /\left(M_{B} \times w_{A}\right) \\ \frac{23.8-P_{A}}{23.8}=(30 \times 18) / 60 \times 846 \\ 23.8-P_{A}=23.8 \times[(30 \times 18) / 60 \times 846] \\ 23.8-P_{A}=0.2532 \\ P_{A}=23.55 \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$1 / 2$ 1 $1 / 2$ 1

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra		16	Ms. Seema Bhatnagar	
7	Sh. Rakesh Dhawan		18	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani		19	Dr. Azhar Aslam Khan	
8	Mrs. Preeti Kiran		20	Mr. Roop Narain Chauhan	
9	Ms. Neeru Sofat		21	Mr. Mukesh Kumar	
10	Sh. Pawan Singh Meena				
11	Mrs. P. Nirupama Shankar				

