CHEMISTRY (043) MARKING SCHEME 2016
 SET-56/1/C

Q	VALUES POINTS	MARKS
1		1
2	NO 2	1
3	(i) Molecular Solid - I_{2} (ii) Ionic Solid - NaCl (Any other suitable example)	$1 / 2+1 / 2$
4	2- Phenylethanol	1
5	Like charged particles cause repulsion / Brownian movement / solvation	1
6	(i) Gas B, Higher the value of K_{H} lower is the solubility of gas / $p=K_{\mathrm{H}} \boldsymbol{x}$ (ii) Negative deviation from Raoult's law	$1 / 2+1 / 2$
7	(i) ii)	1+1
	OR	
7	$\begin{array}{ll}\text { (i) } & 2 \mathrm{Fe}^{3+}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow\end{array} \begin{aligned} & 2 \mathrm{Fe}^{2+}+\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \\ & {\left[\mathrm{XeF}_{3}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}}\end{aligned}$	1
8	(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ (ii) Hexaamminecobalt(III) chloride	1
9	(i) Zero order reaction, Molecularity is 2 / bimolecular reaction (ii) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	$\begin{gathered} 1 / 2+1 / 2 \\ 1 \end{gathered}$

\begin{tabular}{|c|c|c|}
\hline 10 \& \begin{tabular}{l}
(i) \\
(ii)
\[
\mathrm{Ar} / \mathrm{R}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\Delta} \mathrm{Ar} / \mathrm{R}-\mathrm{NC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
\] \\
(where \(\mathrm{R}=\) alkyl group, \(\mathrm{Ar}=\) aryl group)
\end{tabular} \& 1

1

\hline 11 \& | $\begin{aligned} & \mathrm{z}=2 \\ & \mathrm{~d}=\underline{\mathrm{z} \times \mathrm{M}} \\ & \mathrm{a}^{3} \times \mathrm{N}_{\mathrm{o}} \\ & \mathrm{~N}=\mathrm{z} \times \mathrm{M} / \mathrm{d} \times \mathrm{a}^{3} \\ & \mathrm{~N}=2 \times 300 \mathrm{~g} /\left[7.5 \mathrm{~g} \mathrm{~cm}^{-3}\left(5 \times 10^{-8} \mathrm{~cm}\right)^{3}\right] \\ & \mathrm{N}=6.4 \times 10^{23} \text { atoms } \end{aligned}$ |
| :--- |
| OR $\mathrm{d}=\frac{\mathrm{z} \times \mathrm{M}}{\mathrm{a}^{3} \times \mathrm{N}_{o}}$ $7.5=\frac{2 \times M}{(500)^{3} \times 10^{-30} \times 6.022 \times 10^{23}}$ $\begin{aligned} & \mathrm{M}=\frac{7.5 \times 125 \times 10^{-24} \times 6.022 \times 10^{23}}{2} \\ & =282.3 \mathrm{~g} / \mathrm{mol} \end{aligned}$ $\begin{aligned} 282.3 \mathrm{~g} & =6.022 \times 10^{23} \text { atoms } \\ 300 \mathrm{~g} & =\frac{6.022}{282.3} \times 10^{23 \times} 300 \\ & =6.4 \times 10^{23} \text { atoms } \end{aligned}$ | \& $1 / 2$

$1 / 2$
1
1
1
1
$1 / 2$
1
1
$1 / 2$
1

\hline 12 \& $$
\begin{aligned}
& \text { Given: Initial pressure, } \mathrm{P}_{\mathrm{o}}=0.30 \mathrm{~atm} \\
& \qquad \begin{array}{r}
\mathrm{P}_{\mathrm{t}}=0.50 \mathrm{~atm} \\
\mathrm{t}=300 \mathrm{~s}
\end{array} \\
& \quad \text { Rate constant, } \mathrm{k}=\frac{2.303}{t} \log \frac{P_{0}}{2 P_{\mathrm{o}}-P_{\mathrm{t}}} \\
& =\frac{2.303}{300 \mathrm{~s}} \log \frac{0.30}{2 \times 0.30-0.50} \\
& =\frac{2.303}{300 \mathrm{~s}} \log \frac{0.30}{0.60-0.50} \\
& =\frac{2.303}{300 s} \log \frac{0.30}{0.10} \\
& =\frac{2.303}{300 \mathrm{~s}} \log 3
\end{aligned}
$$ \& 1

1

\hline
\end{tabular}

	$\begin{aligned} & =\frac{2.303}{300 \mathrm{~s}} \times 0.4771 \\ & =\frac{1.099}{300 s} \\ & =0.0036 \mathrm{~s}^{-1} \quad / 3.66 \times 10^{-3} \mathrm{~s}^{-1} \quad \text { (deduct } 1 / 2 \text { mark if unit is not written) } \end{aligned}$	1
13	i) Liquid loving/ solvent loving. ii) Potential difference between the fixed layer and diffused / double layer of opposite charges iii) Some substances at higher concentration exhibit colloidal behaviour due to formation of aggregates. The aggregated particles thus formed are called associated colloids or micelles	1 1 1
14	(i) Mond's Process (ii) The melting point of alumina is very high. It is dissolved in cryolite which lowers the melting point and brings conductivity / acts as a solvent. (iii) Limestone is decomposed to CaO , which removes silica impurity of the ore as slag.	1 1 1
15	$\begin{aligned} & \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{~K}_{\mathrm{b}} . \mathrm{m} \\ & \quad \mathrm{i}=2 \\ &= \mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times \frac{w_{\mathrm{z}} \times 1000}{M \times W_{1}} \\ &= 2 \times 0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{4 \mathrm{~g} \times 1000 \mathrm{~g} / \mathrm{kg}}{120 \mathrm{~g} / \mathrm{mol} \times 100 \mathrm{~g}} \\ &= \frac{2 \times 0.52}{3} \\ &= 0.346 \mathrm{~K} \end{aligned}$ Boiling point of water $=373.15 \mathrm{~K} / 373 \mathrm{~K}$ $\begin{aligned} & \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}{ }^{0}+\Delta \mathrm{T}_{\mathrm{b}} \\ & =373.15 \mathrm{~K}+0.346 \mathrm{~K} \quad / \quad 373 \mathrm{~K}+0.346 \mathrm{~K} \\ & =373.496 \mathrm{~K} \quad / \quad 373.346 \mathrm{~K} \end{aligned}$	$1 / 2$ 1 1 $1 / 2$ 1
16	i) Because stability of higher oxidation state decreases as we move down the group / S is more stable in higher (+6) oxidation state whereas Te is more stable in +4 oxidation state. (ii) Due to absence of d orbital.	1 1

\begin{tabular}{|c|c|c|}
\hline \& (iii)Because \(\mathrm{I}-\mathrm{Cl}\) bond is weaker than I-I bond. \& 1 \\
\hline 17 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& 1

1
1
1

\hline 18 \& | (i) Aniline is a Lewis base while AICl_{3} is lewis acid. They combine to form a salt. |
| :--- |
| (ii) Due to combined +I and solvation effects. |
| (iii) Due to presence of H -bonding in primary amines. | \& 1

1
1

\hline 19 \& | (i) |
| :--- |
| (ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{HBr} / \text { peroxide }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\text { Nal/acetone }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$ |
| (iii) | \& 1

1
1

\hline
\end{tabular}

	OR	
19	(i) (ii) (iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC}$	1 1 1
20	(i) On vulcanization, sulphur forms cross links at the reactive sites of double bond, the rubber gets stiffened. (ii) Ethylene glycol $/ \mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$, Terephthalic acid / (iii) Neoprene < Polythene < Terylene	1 1 1
21	```(i) Starch - Polymer of \alpha-D- glucose units / Polymer of \alpha-glucose units. Cellulose - polymer of \beta-D -glucose units / polymer of }\beta\mathrm{ -glucose units. (ii) Phosphodiester linkage (iii) Fibrous protein - Keratin / myosin / collagen Globular protein - haemoglobin / insulin```	1 1 $1 / 2+1 / 2$
22	(i) $\quad \mathrm{sp}^{3} \mathrm{~d}^{2}$, paramagnetic, high spin (ii)	$1+1 / 2+1 / 2$ 1
23	(i) Caring nature, supportive, aware (or any other two suitable values)	$1 / 2+1 / 2$

	(ii) Antacids are the medicines used to control acidity in stomach. Ex - mixture of aluminium and magnesium hydroxide / sodium hydrogen carbonate / Zantac / Ranitidine (or any other suitable example) (iii) No, Excessive antacid can make the stomach alkaline and trigger the production of more acid.	$1+1 / 2$ $1 / 2+1$
24	$\begin{aligned} & \text { a) } \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell- }}^{0} \frac{0.0591 V}{n} \log \frac{\left[A l^{\mathrm{s}-}\right]^{\mathrm{z}}}{\left[c u^{2 \pi}\right]^{\mathrm{s}}} \\ & \mathrm{E}_{\text {cell }}^{0}=\mathrm{E}_{\text {cell }}+\frac{0.0591 V}{n} \log \frac{\left[A l^{\mathrm{s}+1}\right]^{3}}{\left[C u^{2}\right]^{\mathrm{s}}} \\ & \mathrm{E}_{\text {cell }}^{0}=1.98 \mathrm{~V}+\frac{0.0591 V}{6} \log \frac{(0.01)^{2}}{(0.01)^{\mathrm{s}}} \\ & \mathrm{E}_{\text {cell }}^{0}=1.98 \mathrm{~V}+\frac{0.0591 V}{6} \log 10^{2} \\ & \mathrm{E}_{\text {cell }}^{0}=1.98 \mathrm{~V}+\frac{0.0591 V}{6} \times 2 \times \log 10 \quad[\because \log 10=1] \\ & \mathrm{E}_{\text {cell }}^{0}=1.98 \mathrm{~V}+\frac{0.0591 V}{6} \times 2 \\ & \mathrm{E}_{\text {cell }}^{0}=1.98 \mathrm{~V}+0.0197 \mathrm{~V} \\ & \mathrm{E}_{\text {cell }}^{0}=1.9997 \mathrm{~V} \end{aligned}$ (b) A, \quad because its E^{0} value is more negative.	1 1 1 $1+1$
	OR	
24	$\text { (a) } \begin{aligned} \Lambda_{\mathrm{m}}{ }^{\mathrm{c}} & =\kappa \times 1000 / \mathrm{C} \\ & =3.905 \times 10^{-5} \times 1000 / 0.001 \\ & =39.05 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol} \\ & \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\ \Lambda^{\circ} \mathrm{CH}_{3} \mathrm{COOH} & =\lambda^{0} \mathrm{CH}_{3} \mathrm{COO}-+\lambda^{0} \mathrm{H}^{+} \\ & =40.9+349.6 \\ \Lambda^{\circ} \mathrm{CH}_{3} \mathrm{COOH} & =390.5 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol} \end{aligned}$	$1 / 2$ 1

	$\begin{aligned} & \alpha=\frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}^{0}} \\ & \\ &=39.05 / 390.5 \\ &=0.1 \end{aligned}$ (b) Device used for the production of electricity from energy released during spontaneous chemical reaction and the use of electrical energy to bring about a chemical change. The reaction gets reversed / It starts acting as an electrolytic cell \& vice - versa.	$1 / 2$ 1 1 1
25	(a) i) Ability of oxygen to form multiple bond with Mn metal. ii) Cr^{2+} is oxidized to Cr^{3+} which has stable $\mathrm{d}^{3} / \mathrm{t}^{3}{ }_{2 g}$ orbital configuration iii) Cu^{2+} has unpaired electron while Zn^{2+} has no unpaired electron. (b) i) $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{I}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}$ (balanced equation is required)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
	OR	
25	i) Mn. It has maximum unpaired electrons. ii) Cr iii) Sc iv) Manganese. Mn^{3+} to Mn^{2+} results in the stable half filled (d^{5}) configuration.	$\begin{gathered} 1 / 2+1 \\ 1 \\ 1 \\ 1 / 2+1 \end{gathered}$
26	(a) (i) A: $\mathrm{CH}_{3} \mathrm{CHO}$, $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CH}=\mathrm{N}-\mathrm{OH}$ (ii) $\mathrm{A}: \mathrm{CH}_{3} \mathrm{COOH}$, $\quad \mathrm{B}: \mathrm{CH}_{3} \mathrm{COCl}$ (b) (i) Heat both compounds with NaOH and $\mathrm{I}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$ forms yellow ppt of CHI_{3} whereas $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ does not. (ii) Add ammonical solution of silver nitrate (Tollen's reagent) to both the compounds, HCOOH gives silver mirror but $\mathrm{CH}_{3} \mathrm{COOH}$ does not. (or any other suitable test) $\begin{equation*} \mathrm{CH}_{3} \mathrm{CHO}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{COOH} \tag{C} \end{equation*}$	$\begin{gathered} 1 / 2+1 / 2 \\ 1 / 2+1 / 2 \end{gathered}$ 1 1 1

	OR	
26	(a)	
		1
	(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}<\mathrm{CH}_{3} \mathrm{COCH}_{3}<\mathrm{CH}_{3} \mathrm{CHO}$	1
	(c) Because of resonance in carboxylic group the carbonyl group loses a double bond character.	1
	(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CHO}$	1
	(e) A : $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$	$1 / 2+1 / 2$
	B : $\mathrm{CH}_{3} \mathrm{COCH}_{3}$	

Name	Signature	Name	Signature
Dr. (Mrs.) Sangeeta Bhatia		Sh. S.K. Munjal	
Dr. K.N. Uppadhya		Sh. D.A. Mishra	
Prof. R.D. Shukla		Sh. Rakesh Dhawan	
Dr. (Mrs.) Sunita Ramrakhiani		Ms. Nirmala Venkateswaran	
Sh. S. Vallabhan, Principal		Mrs. Deepika Arora	
Mr. K.M. Abdul Raheem		Sh. Mukesh Kaushik	
Mrs. Sushma Sachdeva		Mr. Roop Narayan	
Ms. Seema Bhatnagar			
Sh. Pawan Singh Meena			
Sh. Praveen Kumar Agrawal			

