
CHEMISTRY MARKING SCHEME DELHI -2015 SET -56/1/1/D

Qu es.	Value points	Marks
1	3	1
2	2, 5 - dinitrophenol	1
3	CH ₃ -CH ₂ -Br	1/2 +1/2
	Because it is a primary halide / (1 ⁰) halide	
4	BaCl ₂ because it has greater charge / +2 charge	1/2 +1/2
5	X_2Y_3	1
6.	Elements which have partially filled d-orbital in its ground states or any one of its oxidation states.	1
	 Variable oxidation states Form coloured ion 	1/2 +1/2
7.	Or any other two correct characteristics 1) Diamminedichloridoethylenediaminechromium(III) chloride	1+ 1
/.		1+1
	2) $[Co(NH_3)_5(ONO)]^{2+}$	
8.	(i)LiAlH ₄ / NaBH ₄ /H ₂ , Pt	1
	(ii)KMnO ₄ , KOH	1
9	When vapour pressure of solution is higher than that predicted by Raoult's law /	1
	the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than	
	those between the solute-solute and solvent-solvent molecules/A-A or B-B molecules. Eg. ethanol-acetone/ethanol-cyclohexane/CS ₂ -acetone or any other correct example	1/2
	$\Delta_{\rm mix}$ H is positive OR	1/2
9.	(a)Azeotropes are binary mixtures having the same composition in the liquid and vapour phase	1
	and boil at a constant temperature.	
	(b) Minimum boiling azeotrope	1/2
	eg - ethanol + water or any other example	1/2
10	$(i)Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	1/2
	Reaction with higher E^0 value / ΔG^0 negative (ii) Molar conductivity of a solution at infinite dilution or when concentration approaches	1/2 1/2
	zero	
	Number of ions per unit volume decreases	1/2

		1
11	$\begin{array}{lll} \Delta T_f = i \ K_f \ m \\ \Delta T_f = i \ K_f \ \underline{w_b \ x 1000} \\ \underline{M_b \ x \ w_a} \end{array}$	1/2
	$1.62 \text{ K} = \text{ i } \text{ x } 4.9 \text{ K kg mol}^{-1} \text{ x } \underbrace{3.9 \text{ g}}_{122 \text{ gmol}^{-1}} \text{ x } \underbrace{1000}_{49 \text{ kg}}$	1
	i = 0.506	1/2
	Or by any other correct method	
	As $i < 1$, therefore solute gets associated.	1
12	(i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure metal gets deposited on cathode from anode.	1
	(ii)Silica acts as flux to remove iron oxide which is an impurity as slag or $FeO + SiO_2 \rightarrow FeSiO_3$ (iii)Wrought iron	1 1
13	$d = \underbrace{z \times M}_{a^3 N_A}$	1/2
	$z = \frac{d a^3 N_A}{M}$	
	M -3 < 022 40 ²³ v-1 < 4.05 40 ⁻⁸ >3	
	$z = \frac{2.7 \text{ g cm}^{-3} \text{ x } 6.022 \text{ x} 10^{23} \text{ mol}^{-1} \text{ x } (4.05 \text{ x } 10^{-8} \text{cm})^{3}}{27 \text{ g mol}^{-1}}$	1
	27 g mor	1/2
	$= 3.999 \approx 4$	
	Face centered cubic cell/ fcc	1
14	(i) 5f orbital electrons have poor shielding effect than 4f	1
	(ii)due to d-d transition / or the energy of excitation of an electron from lower d orbital to higher	1
	d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital. (iii) $2 \text{ MnO}_4^- + 6 \text{ H}^+ + 5 \text{ NO}_2^- \rightarrow 2 \text{ Mn}^{2+} + 3 \text{ H}_2\text{O} + 5 \text{ NO}_3^-$	
	$(III) \angle IVIIIO_4 + 0 \Pi + 3 INO_2 = 7 \angle IVIII + 3 \Pi_2O + 3 INO_3$	1
15	(i)	
	H ₁ N NH ₁ H ₂ N C1	
	Cr Cl Cl NH, cis-isomer trans-isomer	1
		1
	$(ii)t_2 \frac{3}{g} e_g^1$	
	(iii) sp ³ , diamagnetic	1/2+1/2

16	The cell reaction : Fe(s) + $2H^+$ (aq) \rightarrow Fe ²⁺ (aq) + H ₂ (g)	
	$E^{o}_{cell} = E^{o}_{c} - E^{o}_{a}$ = $[0-(-0.44)]V=0.44V$	
	$E_{cell} = E_{cell}^{o} - \frac{0.059}{2} \log \frac{[Fe^{2+}]}{[H^{+}]^{2}}$	1
	$E_{cell} = 0.44 \text{ V} - \frac{0.059}{2} \log \frac{(0.001)}{(0.01)^2}$	
	$= 0.44 \text{ V} - \frac{0.059}{2} \log (10)$	1
	= 0.44 V - 0.0295 V	
17	$=\approx 0.410 \text{ V}$	1
17	(i) mutual coagulation(ii)strong interaction between dispersed phase and dispersion medium or solvated layer(iii)CO acts as a poison for catalyst	1 1 1
18	(i)Hexamethylene diamine NH ₂ (CH ₂) ₆ NH ₂ and adipic acid HOOC- (CH ₂) ₄ - COOH (ii)3 hydroxybutanoic acid CH ₃ CH(OH)CH ₂ COOH and 3 hydroxypentanoic acid CH ₃ CH ₂ CH(OH)CH ₂ COOH (iii)Chloroprene H ₂ C=C(Cl)CH=CH ₂ IUPAC names are accepted	1/2 1/2 1/2 1/2 1/2 1/2
	Note: ½ mark for name /s and ½ mark for structure / s	/ 2
19	(i)CH ₃ CH ₂ CH ₃ (ii) C ₆ H ₅ COONa + CHI ₃ (iii)CH ₄	1 1/2, 1/2 1
20	(i) $C_6H_5OH + NaOH \rightarrow C_6H_5ONa$ CH_3X $C_6H_5OCH_3$ Or $C_6H_5OH + Na \rightarrow C_6H_5ONa$ CH_3X $C_6H_5OCH_3$	
		1
	(ii)CH ₃ CH(OH)CH ₃ CrO ₃ or Cu/573K CH ₃ COCH ₃ (ii)CH ₃ MgX (CH ₃) ₂ C(OH)CH ₃ (ii)H ₂ O (CH ₃) ₂ C(OH)CH ₃	1
	(iii) $C_6H_5NH_2$ NaNO ₂ + HCl $C_6H_5N_2Cl$ H ₂ O warm C_6H_5OH 273K	1

20	OR	
	a)	
	(i) $CH_3-CH_2-\overset{\cdots}{O}-H + H^+ \longrightarrow CH_3-CH_2-\overset{+}{O}-H$	1/2
	(ii) $CH_3CH_2 = \overset{\circ}{O}: + CH_3 = CH_2 = \overset{\circ}{O} = CH_3CH_2 = \overset{\circ}{O} = CH_2CH_3 + H_2O$	1/2
	(iii) $CH_3CH_2 \longrightarrow CH_2CH_3 \longrightarrow CH_3CH_2 - CH_2CH_3 + H$	1
	b) $\begin{array}{c} COOH \\ OH \\ + (CH_3CO)_2O \longrightarrow \end{array} \begin{array}{c} COOH \\ OCOCH_3 \\ + CH_3COOH \end{array}$	
	(Acetyl chloride instead of acetic anhydride may be used)	1
21	(i)Maltose	1
	(ii) fibrous proteins: parallel polypeptide chain , insoluble in water Globular proteins: spherical shape, soluble in water, (or any 1 suitable difference) (iii) Vitamin D	1
22	(i)Larger surface area, higher van der Waals' forces, higher the boiling point	1
	(ii)Rotation due to one enantiomer is cancelled by another enantiomer	1
	(iii) - NO ₂ acts as Electron withdrawing group or –I effect	1
23	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy, caring or any other (ii)Through posters, nukkad natak in community, social media, play in assembly or any other	1
	(iii)Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders Eg: equanil (or any other suitable example)	1/2, 1/2
2.4	(iv) Aspartame is unstable at cooking temperature.	1
24	(a) (i) Due to decrease in bond dissociation enthalpy from HF to HI, there is an increase in acidic character observed.	1
	(ii)Oxygen exists as diatomic O_2 molecule while sulphur as polyatomic S_8 (iii)Due to non availability of d orbitals	1 1

26		
20	(a)	
	$k = \underbrace{2.303}_{t} \log \left[\underbrace{A_0}_{A_0} \right]$	1
	$k = \frac{2.303}{30} \log \frac{0.60}{0.30}$	1/2
	$k = 2.303 \times 0.301 = 0.023 \text{ s}^{-1}$	
	$k = \frac{2.303}{60} \log \frac{0.60}{0.15}$	
	$k = 2.303 \times 0.6021 = 0.023 \text{ s}^{-1}$	1/2
	As k is constant in both the readings, hence it is a pseudofirst order reaction. ii)	1
	Rate = - Δ [R]/ Δ t	1/2
	$= -\frac{[0.15 - 0.30]}{60 - 30}$	1/2
	$= 0.005 \text{ mol } L^{-1} s^{-1}$	1
	OR	
26	a)	
	(i) Rate will increase 4 times of the actual rate of reaction.(ii) Second order reaction	1+1
	b) $\frac{t_{1/2}}{k} = \frac{0.693}{k}$	1/2
	$30\min = \underbrace{0.693}_{k}$	
	$k = 0.0231 \text{min}^{-1}$	1/2

$k = \underbrace{2.303}_{t} \log \left[\underbrace{A_0}_{A_0} \right]$	1/2
$t = \frac{2.303}{0.0231} \log \frac{100}{10}$	1/2
$t = \frac{2.303}{0.0231}$ min	
t = 99.7 min	1