46. Consider the molecules $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. Which of the given statements is false?
(1) The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in $\mathrm{CH}{ }_{4}$, the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}, and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ ar all greater than 90°
(2) The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is larger than the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in $\mathrm{CH} \quad 4$.
(3) The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}{ }_{2} \mathrm{O}$ is smaller than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in $\mathrm{NH}{ }_{3}$.
(4) The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4} is larger than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in $\mathrm{NH}{ }_{3}$.
Ans. (2)

Sol.

47. In the reaction

X and Y are :
(1) $\mathrm{X}=1$-Butyne $; \mathrm{Y}=3$-Hexyne
(2) $\mathrm{X}=2$-Butyne ; $\mathrm{Y}=3$-Hexyne
(3) $\mathrm{X}=2$-Butyne ; $\mathrm{Y}=2$-Hexyne
(4) $\mathrm{X}=1$-Butyne ; $\mathrm{Y}=2$-Hexyne

Ans. (1)
Sol.

48. Among the following, the correct order of acidity is
(1) $\mathrm{HClO}_{3}<\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}$
(2) $\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
(3) $\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
(4) $\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}$

Ans. (2)
Sol. Acidic strength $\propto \mathrm{EN} \propto+\mathrm{ve}$ O.S.

$$
\begin{array}{cccc}
\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4} \\
+1 & +3 & +5 & +7
\end{array}
$$

49. The rate of a first-order reaction is $0.04 \mathrm{~mol} \ell^{-1} \mathrm{~s}^{-1}$ at 10 seconds and $0.03 \mathrm{~mol} \ell^{-1} \mathrm{~s}^{-1}$ at 20 seconds after initiation of the reaction. The half-life period of the reaction is :
(1) 24.1 s
(2) 34.1 s
(3) 44.1 s
(4) 54.1 s

Ans. (1)
Sol. $\quad K=\frac{2.303}{\left(t_{2}-t_{1}\right)} \log \frac{\left(a-x_{1}\right)}{\left(a-x_{2}\right)}$
$K=\frac{2.303}{(20-10)} \log \left(\frac{0.04}{0.03}\right)$
$K=\frac{2.303 \times 0.1249}{10}$
$\frac{2.303 \times \log 2}{t_{1 / 2}}=\frac{2.303 \times 0.1249}{10}$
$\mathrm{t}_{1 / 2}=\frac{0.3010 \mathrm{x} 10}{0.1249}=24.1 \mathrm{sec}$
50. Which one of the following characteristics is associated with adsorption?
(1) $\Delta \mathrm{G}$ is negative but $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are positive
(2) $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ all are negative
(3) $\Delta \mathrm{G}$ and $\Delta \mathrm{H}$ are negative but $\Delta \mathrm{S}$ is positive
(4) $\Delta \mathrm{G}$ and $\Delta \mathrm{S}$ are negative but $\Delta \mathrm{H}$ is positive

Ans. (2)
Sol. Adsorption is spontaneous process,
so $\Delta \mathrm{G}=$ negative
Adsorption is exothermic process,
so $\Delta \mathrm{H}=$ negative
In adsorpiton entropy decreases,
so $\Delta \mathrm{S}=$ negative
so $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ all are negative
51. In which of the following options the order of arrangement does not agree with the variation of property indicated against it?
(1) $\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}$(increasing ionic size)
(2) $\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}$ (increasing first ionisationenthalpy)
(3) $\mathrm{I}<\mathrm{Br}<\mathrm{Cl}<\mathrm{F}$ (increasing electron gain enthalpy)
(4) $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}$ (increasing metallic radius)

Ans. (2\& 3)
Sol. (2) $\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}$ (given I.P. order)

$$
\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N} \text { (correct) }
$$

(3) $\mathrm{I}<\mathrm{Br}<\mathrm{Cl}<\mathrm{F}$ (given $\Delta \mathrm{H}_{e g}$ order) $\mathrm{I}<\mathrm{Br}<\mathrm{F}<\mathrm{Cl}$ (Correct)
52. Which of the following statements is false?
(1) Mg^{2+} ions form a complex with ATP
(2) Ca^{2+} ions are important in blood clotting
(3) Ca^{2+} ions are not important in maintaining the regular beating of the heart.
(4) Mg^{2+} ions are important in the green parts of plants.
Ans. (3)
Sol.
53. Which of the following statements about hydrogen is incorrect ?
(1) hydrogen has three isotopes of which tritium is the most common.
(2) Hydrogen never acts as cation in ionic salts
(3) Hydroniumion, $\mathrm{H}_{3} \mathrm{O}^{+}$exists freely in solution
(4) Dihydrogen does not act as a reducing agent

Ans. (1\& 4)

Sol.
54. The correct statement regarding a carbonyl compound with a hydrogen atom on its alphacarbon,is :-
(1) a carbonyl compound with a hydrogenatom on its alpha-carbon never equilibrates with its corresponding enol.
(2) a carbonyl compound with a hydrgen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehyde-ketone equilibration.
(3) a carbonyl compound with a hydrogenatom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as carbonylation.
(4) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism.

Ans. (4)
Sol. Keto-enol Tautomerism

55. MY and NY_{3}, two nearly insoluble salts, have the same $K_{\text {sp }}$ values of 6.2×10^{-13} at room temperature. Which statement would be true in regard to MY and NY ${ }_{3}$?
(1) The molar solubilities of MY and NY ${ }_{3}$ in water are identical.
(2) The molar solubility of MY inwater is less than that of NY_{3}
(3) The salts MY and NY_{3} are more soluble in 0.5 M KY than in pure water.
(4) The addition of the salt of KY to solution of MY and $N Y_{3}$ will have no effect on their solubilities.
Ans. (2)
Sol. $\quad M Y \rightarrow K_{\text {sp }}=s^{2}=6.2 \times 10^{-13}$
$s=\sqrt{6.2 \times 10^{-13}}$
$\mathrm{s}=7.87 \times 10 \quad-7 \mathrm{~mol} \mathrm{~L}^{-1}$
$\mathrm{NY}_{3} \rightarrow \mathrm{~K}_{\text {sp }}=27 \mathrm{~s}^{4}=6.2 \times 10^{-13}$
$s=\left(\frac{6.2 \times 10^{-13}}{27}\right)^{1 / 4}$
$\mathrm{s}=3.89 \times 10 \mathrm{~mol} \mathrm{~L}^{-1}$
\therefore molar solubility of NY_{3} is more than MY in water.
56. In a protein molecule various aminoacids are linked together by :
(1) α-glycosidic bond
(2) β-glycosidic bond
(3) peptide bond
(4) dative bond

Ans. (3)

Sol. Peptide bond

57. Natural rubber has
(1) All cis-configuration
(2) All trans-configuration
(3) Alternate cis-and trans-configuration
(4) Randomcis-and trans-configuration

Ans. (1)

Sol.

58. Match items of Column I with the items of

Column II and asign the correct code :

	Columm-I		Columm-II
(a)	Cyanide process	(i)	Ultrapure Ge
(b)	Froth floatation process	(ii)	Dressing of ZnS
(c)	Electrolytic reduction	(iii)	Extraction of Al
(d)	Zone refining	(iv)	Extraction of Au
		(v)	Purification of Ni

Code :

	(a)	(b)	(c)	(d)
(1)	(iv)	(ii)	(iii)	(i)
(2)	(ii)	(iii)	(i)	(v)
(3)	(i)	(ii)	(iii)	(iv)
(4)	(iii)	(iv)	(v)	(i)

Ans. (1)
Sol.
59. Which one of the following statements is correct when SO_{2} is passed through acidified $\mathrm{K}{ }_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution?
(1) The solution turns blue
(2) The solution is decolourized
(3) SO_{2} is reduced
(4) Green $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is formed

Ans. (4)
Sol. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$
$\rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
green colour
60. The electronic configurations of Eu (Atomic No 63), Gd (Atomic No 64) and Tb (Atomic No. 65) are
(1) $[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 s^{2},[\mathrm{Xe}] 4 f^{8} 6 s^{2}$ and [Xe] $4 f \mathrm{f}^{85} \mathrm{~d}^{16} 6 s^{2}$
(2) $[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 s^{2},[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 s^{2}$ and $[\mathrm{Xe}] 4 \mathrm{f}^{9} 6 s^{2}$
(3) $[\mathrm{Xe}] 4 f 65 \mathrm{~d}^{16} \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d} 16 \mathrm{~s}^{2}$ and $[\mathrm{Xe}] 4 \mathrm{f} 85 \mathrm{~d}^{16} \mathrm{~s}^{2}$
(4) $[\mathrm{Xe}] 4 f^{7} 6 s^{2},[\mathrm{Xe}] 4 f^{7} 5 \mathrm{~d}^{1} 6 s^{2}$ and $[\mathrm{Xe}] 4 \mathrm{f}^{9} 6 s^{2}$

Ans. (4)
Sol.
61. Two electrons occupying the same orbital are distinguished by
(1) Principal quantum number
(2) Magnetic quantum number
(3) Azimuthal quantum number
(4) Spin quantum number

Ans. (4)
Sol. Two electrons occupying the same orbital differ by spin quantum number.
62 Which copper is heated with conc. HNO 3 it produces
(1) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and NO_{2}
(2) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and NO
(3) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{NO}$ and NO_{2}
(4) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{N}_{2} \mathrm{O}$

Ans. (1)
Sol. $\mathrm{Cu}+4 \mathrm{HNO}_{3}$ (conc.) $\rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
63. Which of the following reagents would distingusih cis-cyclopenta-1,2-diol from the trans-isomer?
(1) Acetone
(2) Ozone
(3) MnO_{2}
(4) Aluminium isopropxide

Ans. (1)
Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} . \Delta \mathrm{S}$
For, $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0, \Delta \mathrm{G}=-\mathrm{ve}$ (always)
\therefore spontaneous at all temperatures.
64. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is
(1) $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}=0$
(2) $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}<0$
(3) $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
(4) $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}<0$

Ans. (3)
Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} . \Delta \mathrm{S}$
For, $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0, \Delta \mathrm{G}=-\mathrm{ve}$ (always)
\therefore spontaneous at all temperatures.
65. Lithium has a bcc structure. Its density is $530 \mathrm{~kg} \mathrm{~m}^{-3}$ and its atomic mass is $6.94 \mathrm{~g} \mathrm{~mol} \quad-1$. Calculate the edge length of a unit cell of Lithium metal. $\left(\mathrm{N}_{\mathrm{A}}=6.02 \times 10 \quad 23 \mathrm{~mol}^{-1}\right)$
(1) 154 pm
(2) 352 pm
(3) 527 pm
(4) 264 pm

Ans. (2)

Sol. $\quad \rho=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}}$
For bcc structure
$\mathrm{Z}=2, \rho=530 \mathrm{~kg} \mathrm{~m}^{-3}=0.530 \mathrm{~g} \mathrm{~cm}^{-3}$
$0.530=\frac{2 \times 6.94}{6.02 \times 10^{23} \times \mathrm{a}^{3}}$
$\mathrm{a}^{3}=4.348 \times 10 \quad-23 \mathrm{~cm}^{3}$
$a=3.52 \times 10 \quad-8 \mathrm{~cm}$
$\mathrm{a}=352 \mathrm{pm}$
66. Which one of the following orders is correct for the bond dissociation enthal py of halogen molecules?
(1) $\mathrm{I}_{2}>\mathrm{Br}_{2}>\mathrm{Cl}_{2}>\mathrm{F}_{2}$
(2) $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$
(3) $\mathrm{Br}_{2}>\mathrm{I}_{2}>\mathrm{F}_{2}>\mathrm{Cl}_{2}$
(4) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$

Ans. (2)
Sol. $\quad \mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$

```
    \downarrow
    due to high \ellp-\ellp repulsion
```

67. Which of the following is an analgesic ?
(1) Novalgin
(2) Penicillin
(3) Streptomycin
(4) Chloromycetin

Ans. (1)
Sol. Novalgin used as analgesic
68. Equal moles of hydrogen and oxygen gases are placed in a container with a pin-hole throughwhich both can escape. What fraction of the oxygen escapes in the time required for one-half of the hydrogen to escape?
(1) $1 / 8$
(2) $1 / 4$
(3) $3 / 8$
(4) $1 / 2$

Ans. (1)
Sd. $\mathrm{n}_{\mathrm{H}_{2}}=\mathrm{n}_{\mathrm{O}_{2}}$ and $\mathrm{t}_{\mathrm{H}_{2}}=\mathrm{t}_{\mathrm{O}_{2}}$
According to Graham's law
$\frac{\mathrm{r}_{\mathrm{H}_{2}}}{\mathrm{r}_{\mathrm{O}_{2}}}=\sqrt{\frac{\mathrm{M}_{\mathrm{O}_{2}}}{\mathrm{M}_{\mathrm{H}_{2}}}} \Rightarrow \frac{\mathrm{v}_{1} / \mathrm{t}_{1}}{\mathrm{v}_{2} / \mathrm{t}_{2}}=\sqrt{\frac{32}{2}}$
$\frac{1 / 2}{1 / \mathrm{x}}=\sqrt{16}=4$
$\frac{x}{2}=4$
$\therefore \mathrm{x}=8$
\therefore Fraction of $\mathrm{O}_{2}=1 / 8$
69. Consider thenitration of benzene using mixed conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}. If a large amount of KHSO_{4} is added to the mixture, the rate of nitration will be:-
(1) faster
(2) slower
(3) unchanged
(4) doubled

Ans. (2)
Sol. Slower, as large amount of $\mathrm{HSO}{ }_{4}^{-}$will decrease ionisation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that result in lesser ionisation of nitric acid and lesser formation of nitroniumion $\left[\mathrm{NO}_{2}{ }^{+}\right.$]
70. Predict the correct order among the following :-
(1) lone pair- lone pair > lone pair - bond pair $>$ bond pair - bond pair
(2) lone pair - lone pair > bond pair - bond pair $>$ lone pair - bond pair
(3) bond pair - bond pair > lone pair - bond pair $>$ lone pair - lone pair
(4) lone pair - bond pair > bond pair - bond pair $>$ lone pair - lone pair

Ans. (1)
Sol.
71. The product obtained as a result of a reaction of nitrogen with CaC_{2} is :-
(1) $\mathrm{Ca}(\mathrm{CN})_{2}$
(2) CaCN
(3) CaCN_{3}
(4) $\mathrm{Ca}_{2} \mathrm{CN}$

Ans. (Bonus) (Question should beBonous)
Sol. $\quad \mathrm{CaC}_{2}+\mathrm{N}_{2} \rightarrow \mathrm{CaCN}_{2}+\mathrm{C}$
72. Consider the following liquid - vapour equilibrium. Liquid \rightleftharpoons Vapour
Which of the following relations is correct ?
(1) $\frac{\mathrm{d} \ell \mathrm{nG}}{\mathrm{dT}^{2}}=\frac{\Delta \mathrm{H}_{\mathrm{v}}}{\mathrm{RT}^{2}}$
(2) $\frac{\mathrm{d} \ell n \mathrm{P}}{\mathrm{dT}}=\frac{-\Delta \mathrm{H}_{v}}{\mathrm{RT}}$
(3) $\frac{\mathrm{d} \ell \mathrm{nP}}{\mathrm{dT}^{2}}=\frac{-\Delta \mathrm{H}_{v}}{\mathrm{~T}^{2}}$
(4) $\frac{\mathrm{d} \ell n \mathrm{P}}{\mathrm{dT}}=\frac{\Delta \mathrm{H}_{\mathrm{v}}}{\mathrm{RT}^{2}}$

Ans. (4)
Sol. Clausius - Clapeyron's equation

$$
\frac{\mathrm{d} \ln \mathrm{P}}{\mathrm{dT}}=\frac{\Delta \mathrm{H}_{\mathrm{V}}}{\mathrm{RT}^{2}}
$$

73. Match the compounds given in column I with the hybridisation and shape given in column II and mark the correct option.

Column-I		Column-II	
(a)	XeF_{6}	(i)	Distorted octahedral
(b)	XeO_{3}	(ii)	Square planar
(c)	XeOF_{4}	(iii)	pyramidal
(d)	XeF_{4}	(iv)	Square pyramidal

Code:- (a)	(b)	(c)	(d)
(1)	(i)	(iii)	(iv)
(2)	(i)	(ii)	(iv)
(3)	(iv)	(iii)	(ii)
(4)	(iv)	(i)	(ii)
(ii)			
(iii)			

Ans. (1)
Sol.
 octahedral

Square pyramidal
XeF_{4}

74. Which of the following has longest C-O bond length? (Free $\mathrm{C}-\mathrm{O}$ bond length in Co is $1.128 \AA$).
(1) $\mathrm{Ni}\left(\mathrm{CO}_{4}\right.$
(2) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\ominus}$
(3) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(4) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$

Ans. (3)
Sol. $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
Since metal atom is carrying maximum-ve charge thereforeit would show maximum synergic bonding as sa resultant $\mathrm{C}-\mathrm{O}$ bond length would be maximum.
75. The pressure of H_{2} required to make the potential of H_{2}-electrode zero in pure water at 298 K is :-
(1) $10^{-14} \mathrm{~atm}$
(2) $10^{-12} \mathrm{~atm}$
(3) $10^{-10} \mathrm{~atm}$
(4) $10^{-4} \mathrm{~atm}$

Ans. (1)
Sol. $2 \mathrm{H}^{+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
$\therefore \mathrm{E}=\mathrm{E}^{0}-\frac{0.0591}{2} \log \frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}}$
$0=0-0.0295 \log \frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left(10^{-7}\right)^{2}}$
$\frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left(10^{-7}\right)^{2}}=1$
$\mathrm{P}_{\mathrm{H}_{2}}=10^{-14} \mathrm{~atm}$
76. The addition of a catalyst during a chemical reaction alters which of the following quantities ?
(1) Entropy
(2) Internal energy
(3) Enthalpy
(4) Activation energy

Ans. (4)

Sol. The addition of catalyst during a chemical reaction alters the activation energy.
77. The ionic radii of $\mathrm{A}+$ and B^{-}ions are $0.98 \times 10-10 \mathrm{~m}$ and $1.81 \times 10-10 \mathrm{~m}$. The coordination number of each ion in AB is :-
(1) 6
(2) 4
(3) 8
(4) 2

Ans. (1)

Sol. \quad radii ratio $=\frac{r_{+}}{r_{-}}=\frac{0.98 \times 10^{-10}}{1.81 \times 10^{-10}}=0.54$
radii ratio is in between 0.414 to 0.732
so, coordination number is 6
78. Which is the comect statement for the given acids?
(1) Phosphinic acid is a diprotic acid while phosphonic acid is a monoprotic acid
(2) Phosphinic acid is a monoprotic acid while phosphonic acid is a diprotic acid
(3) Both are triprotic acids
(4) Both are diprotic acids

Ans. (2)
Sol. Phosphinic acid $\left(\mathrm{H}_{3} \mathrm{PO}_{2}\right)$

Phosphonic acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$

79. Fog is colloidal solution of :-
(1) Liquid in gas
(2) Gas in liquid
(3) Solid in gas
(4) Gas in gas

Ans. (1)
Sol. Fog is a colloidal solution of liquid in gas
80. Which of the following statement about the composition of the vapour over anideal a $1: 1 \mathrm{molar}$ mixture of benzene and tolueneis correct ?Assume that the temperature is constant at $25^{\circ} \mathrm{C}$. (Given : Vapour Pressure Data at $25^{\circ} \mathrm{C}$, benzene $=12.8 \mathrm{kPa}$, Toluene $=3.85 \mathrm{kPa}$)
(1) The vapour will contain a higher percentage of benzene
(2) The vapour will contain a higher percentage of toluene
(3) The vapour will contain equal amounts of benezene and toluene
(4) Not enough information is given to make a predication

Ans. (1)
Sol. $\mathrm{A} \rightarrow$ benzene, $\mathrm{B} \rightarrow$ toluene
1:1 molar mixture of A and B
$\therefore \mathrm{x}_{\mathrm{A}}=\frac{1}{2}$ and $\mathrm{x}_{\mathrm{B}}=\frac{1}{2}$
$P_{s}=P_{A}^{0} X_{A}+P_{B}^{0} X_{B}$
$\mathrm{P}_{\mathrm{s}}=12.8 \times \frac{1}{2}+3.85 \times \frac{1}{2}=8.325 \mathrm{kP} \mathrm{a}$
$Y_{A}=\frac{\mathrm{P}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{s}}}=\frac{12.8 \times \frac{1}{2}}{8.325}=0.768$
$\therefore Y_{B}=1-Y_{A}=1-0.768=0.232$
so, the vapour will contain higher percentage of benzene.
81. The correct statement regarding the comparison of staggered and eclipsed conformation of ethane, is :-
(1) The staggered conformation of ethane is less stable than eclipsed conformation, because staggered conformation has torsional strain
(2) The eclipsed conformation of ethane is more stable than staggered conformation, because eclipsed conformation has no torsional strain
(3) The eclipsed conformation of ethane is more stable than staggered conformation even through the eclipsed conformation has torsional strain
(4) The staggered conformation of ethane is more stable than eclipsed conformation, because staggered conformation has no torsional strain.

Ans. (4)

Sol.

Staggered form

* No torsional strain

Eclipsed form

82 The reaction

Can be classified as :-
(1) Williamson ether synthesis reaction
(2) Alcohol formation reaction
(3) Dehydration reaction
(4) Williamson al cohol synthesis reaction

Ans. (1)
Sol. This is an exmaple of Williamson ether syntehsis reaction in which sodium al koxide reacts with alkyl halide and gives ether.
83. The product formed by the reaction of an aldehyde with a primary amine is :-
(1) Schiff base
(2) Ketone
(3) Carboxylic acid
(4) Aromatic acid

Ans. (1)

Sol.

Aldehyde + primary amine Schiff base
84. Which of the following biphenyls is optically active?

(2)

(3)

(4)

Ans. (2)

Sol.
 is optically active due to
absence of plane of symmetry and center of symmetry
85. For the following reactions :-
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{KOH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}$
(b)

(c)

Which of the following statements is
correct ?
(1) (a) and (b) are elimination reaction and (c) is addition reaction
(2) (a) is elimination, (b) is substitution and (c) is addition reaction
(3) (a) is elimination, (b) and (c) are substitution reactions
(4) (a) issubstitution, (b) and (c) areaddition reaction

Ans. (2)
Sol.
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+\mathrm{KOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}$ breaking of 2σ bonds and formation of 1π bond so it is an example of elimination reaction.
(b)

replacement of Br^{-}by OH^{-}is substitution reaction
(c)

breaking of 1π bond and formation of 2σ bonds is addition reaction
86. At $100^{\circ} \mathrm{C}$ the vapour pressure of a solution of 6.5 g of a solutein 100 g water is 732 mm . If $\mathrm{K} \quad \mathrm{b}=0.52$, the boiling point of this solution will be :-
(1) $101^{\circ} \mathrm{C}$
(2) $100^{\circ} \mathrm{C}$
(3) $102^{\circ} \mathrm{C}$
(4) $103^{\circ} \mathrm{C}$

Ans. (1)

Sol. $\quad\left(\frac{P^{0}-P_{s}}{P^{0}}\right)=\frac{n}{N}=\frac{W_{\text {solute }}}{M_{\text {solute }}} \times \frac{M_{\text {solvent }}}{W_{\text {solvent }}}$
at $100^{\circ} \mathrm{C}, ~ P{ }^{0}=760 \mathrm{~mm}$
$\frac{760-732}{760}=\frac{6.5 \times 18}{\mathrm{M}_{\text {solute }} \times 100}$
$\mathrm{M}_{\text {solute }}=31.75 \mathrm{~g} \mathrm{~mol}^{-1}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{m} \times \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{w}_{\text {solute }} \times 1000}{\mathrm{M}_{\text {solute }} \times \mathrm{w}_{\text {solvent }}} \times \mathrm{K}_{\mathrm{b}}$
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{0.52 \times 6.5 \nexists 000}{31.75 \rtimes 100}=1.06^{\circ} \mathrm{C}$
\therefore boiling point of solution

$$
=100^{\circ} \mathrm{C}+1.06^{\circ} \mathrm{C} \simeq 101^{\circ} \mathrm{C}
$$

87. The comect statement regarding RNA and DNA, respectively is :
(1) The sugar component in RNA is arabinose and the sugar component in DNA is 2-deoxyribose.
(2) The sugar component in RNA is ribose and the sugar component in DNA is 2-deoxyribose.
(3) The sugar component in RNA is arabinose
(4) The sugar component in RNA is 2'-deoxyribose and the sugar component in DNA is arabinose.

Ans. (2)
Sol. RNA \longrightarrow Ribose Nucleic Acid
DNA \longrightarrow 2-Deoxyribose Nucleic Acid
88. The correct statement regarding the basicity of arylamines is :-
(1) Arylamines are generally less basic than alkylamines because the nitrogen lone-pair electrons are delocalized by interaction with the aromatic ring π electron system.
(2) Arylamines are generally more basic than alkylamines because the nitrogen lone-pair electrons are not delocalized by interaction with the aromatic ring π electron system.
(3) Arylamines are generally more basic than alkylamines because of aryl group.
(4) Arylamines are generally more basic than alkylamines, because the nitrongen atom in arylamines is sp-hybridized.
Ans. (1)

Sol.

$\mathrm{R}-\stackrel{\mathrm{N}}{\mathrm{N}} \mathrm{H}_{2}$
alkyl amine
Aryl amine

* Delocalized lone pair of nitrogen
* less basic

89. Which one given below is a non-reducing sugar?
(1) Maltose
(2) Lactose
(3) Glucose
(4) Sucrose

Ans. (4)

Sol.

$\mathrm{R}-\mathrm{NNH}_{2}$
alkyl amine
Aryl amine

* Delocalized lone pair of nitrogen
* less basic

90. The pair of electron in the given carbanion, $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}^{\ominus}$, is present in which of the following orbitals?
(1) $2 p$
(2) sp^{3}
(3) sp^{2}
(4) sp

Ans. (4)
Sol. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}^{\ominus}$
No. of $\left.\begin{array}{c}\text { obp }-1 \\ \mathrm{p}-1\end{array}\right] 2$ \& hybridisation is sp

