$\therefore=\frac{273.15}{200} \times T_{A}=\frac{273.15}{350} \times T_{B}$
$T_{A}=\frac{200}{350} T_{B}$
Therefore, the ratio $T_{A}: T_{B}$ is given as 4: 7 .

Answer 3:

It is given that:
$R=R=R_{\mathbf{o}}\left[\mathbf{1}+\boldsymbol{\alpha}\left(T-T_{o}\right)\right] \ldots(i)$
Where,
R_{0} and T_{0} are the initial resistance and temperature respectively
R and T are the final resistance and temperature respectively
α is a constant
At the triple point of water, $T_{0}=273.15 \mathrm{~K}$
Resistance of lead, $R_{0}=101.6 \Omega$
At normal melting point of lead, $T=600.5 \mathrm{~K}$
Resistance of lead, $R=165.5 \Omega$
Substituting these values in equation (i), we get:
$R=R_{0}\left[1+a\left(T-T_{o}\right)\right]$
$165.5=101.6[1+a(600.5-273.15)]$
$1.629=1+a(327.35)$
$\therefore a=\frac{0.629}{327.35}=1.92 \times 10^{-3} \mathrm{~K}^{-1}$
For resistance, $R_{1}=123.4 \Omega$
$R=R_{0}\left[1+a\left(T-T_{o}\right)\right]$
Where, T is the temperature when the resis tan ce of lead is 123.4Ω
$123.4=101.6\left[1+1.92 \times 10^{-3}(T-273.15)\right]$
$1.214=1+1.92 \times 10^{-3}(T-273.15)$
$\frac{0.214}{1.92 \times 10^{-3}}=T-273.15$
$\therefore T=384.61 \mathrm{~K}$

Answer 4:

(a) The triple point of water has a unique value of 273.16 K . At particular values of volume and pressure, the triple point of water is always 273.16 K . The melting point of ice and boiling point of water do not have particular values because these points depend on pressure and temperature.
(b) The absolute zero or 0 K is the other fixed point on the Kelvin absolute scale.
(c) The temperature 273.16 K is the triple point of water. It is not the melting point of ice. The temperature $0^{\circ} \mathrm{C}$ on Celsius scale is the melting point of ice. Its corresponding value on Kelvin scale is 273.15 K .
Hence, absolute temperature (Kelvin scale) T, is related to temperature $t \mathrm{c}$, on Celsius scale as:

Therefore, the absolute temperature of the normal melting point of sulphur as read by thermometer B is 391.98 K .
(b) The oxygen and hydrogen gas present in thermometers A and B respectively are not perfect ideal gases. Hence, there is a slight difference between the readings of thermometers A and B.
To reduce the discrepancy between the two readings, the experiment should be carried under low pressure conditions. At low pressure, these gases behave as perfect ideal gases.

Answer 6:

Length of the steel tape at temperature $T=27^{\circ} \mathrm{C}, l=1 \mathrm{~m}=100 \mathrm{~cm}$
At temperature $T_{1}=45^{\circ} \mathrm{C}$, the length of the steel rod, $l_{1}=63 \mathrm{~cm}$
Coefficient of linear expansion of steel, $\alpha=\mathbf{1 . 2 0} \times \mathbf{1 0}^{-5} \mathrm{~K}^{\mathbf{1}}$
Let l_{2} be the actual length of the steel rod and l^{\prime} be the length of the steel tape at $45^{\circ} \mathrm{C}$.

$$
l^{\prime}=l+a l\left(T_{1}-T\right)
$$

$\therefore l^{\prime}=100+1.20 \times 10^{-5} \times 100(45-27)$
$=100.0216 \mathrm{~cm}$
Hence, the actual length of the steel rod measured by the steel tape at $45^{\circ} \mathrm{C}$ can be calculated as:

$$
l_{2}=\frac{100.0216}{100} \times 63=63.0136 \mathrm{~cm}
$$

Therefore, the actual length of the rod at $45.0^{\circ} \mathrm{C}$ is 63.0136 cm . Its length at $27.0^{\circ} \mathrm{C}$ is 63.0 cm .

Answer 7:

The given temperature, $T=27^{\circ} \mathrm{C}$ can be written in Kelvin as:
$27+273=300 \mathrm{~K}$
Outer diameter of the steel shaft at $T, d_{1}=8.70 \mathrm{~cm}$
Diameter of the central hole in the wheel at $T, d_{2}=8.69 \mathrm{~cm}$
Coefficient of linear expansion of steel, $\boldsymbol{\alpha}_{\text {steel }}=1.20 \times 10^{-5} \mathrm{~K}^{-1}$
After the shaft is cooled using 'dry ice', its temperature becomes T_{1}.
The wheel will slip on the shaft, if the change in diameter, $\Delta d=8.69-8.70$
$=-0.01 \mathrm{~cm}$
Temperature T_{1}, can be calculated from the relation:
$\Delta d=d_{1} \boldsymbol{\alpha}_{\text {steel }}\left(T_{1}-T\right)$
$0.01=8.70 \times 1.20 \times 10^{-5}\left(T_{1}-300\right)$
$\left(T_{1}-300\right)=95.78$
$\therefore T_{1}=204.21 \mathrm{~K}$
= 204.21-273.16
$=-68.95^{\circ} \mathrm{C}$
Therefore, the wheel will slip on the shaft when the temperature of the shaft is $-69^{\circ} \mathrm{C}$.
Answer 8: Initial temperature, $T_{1}=27.0^{\circ} \mathrm{C}$
Diameter of the hole at $T_{1}, d_{1}=4.24 \mathrm{~cm}$
Final temperature, $T_{2}=227^{\circ} \mathrm{C}$
$F=$ Tension developed in the wire
$A=$ Area of cross-section of the wire.
$\Delta L=$ Change in the length, given by the relation:
$\Delta L=\alpha L\left(T_{2}-T_{1}\right) \ldots$ (ii)
Equating equations (i) and (ii), we get:

$$
\begin{aligned}
& a L\left(T_{2}-T_{1}\right)=\frac{F L}{\pi\left(\frac{d}{2}\right)^{2} \times Y} \\
& F=a\left(T_{2}-T_{1}\right) \pi\left(\frac{d}{2}\right)^{2} \\
& F=2 \times 10^{-5} \times(-39-27) \times 3.14 \times 0.91 \times 10^{11} \times\left(\frac{2 \times 10^{-3}}{2}\right)^{2} \\
& =-3.8 \times 10^{2} \mathrm{~N} \\
& 3.8 \times 10^{2} \mathrm{~N}
\end{aligned}
$$

(The negative sign indicates that the tension is directed inward.)
Hence, the tension developed in the wire is $3.8 \times 10^{2} N$.

Answer 10:

Initial temperature, $T_{1}=40^{\circ} \mathrm{C}$
Final temperature, $T_{2}=250^{\circ} \mathrm{C}$
Change in temperature, $\Delta T=T_{2}-T_{1}=210^{\circ} \mathrm{C}$
Length of the brass rod at $T_{1}, l_{1}=50 \mathrm{~cm}$
Diameter of the brass rod at $T_{1}, d_{1}=3.0 \mathrm{~mm}$
Length of the steel rod at $T_{2}, l_{2}=50 \mathrm{~cm}$
Diameter of the steel rod at $T_{2}, d_{2}=3.0 \mathrm{~mm}$
Coefficient of linear expansion of brass, $\alpha_{1}=\mathbf{2 . 0} \times \mathbf{1 0}^{-5} \mathrm{~K}^{\mathbf{- 1}}$
Coefficient of linear expansion of steel, $\alpha_{2}=\mathbf{1 . 2} \times \mathbf{1 0}^{-5} \mathrm{~K}^{-1}$
For the expansion in the brass rod, we have:
$\frac{\text { Change in area }(\triangle A)}{\text { Original area }(A)}=a_{1} \Delta T$
$\therefore \Delta l_{1}=50 \times\left(2.1 \times 10^{-5}\right) \times 210$
$=0.2205 \mathrm{~cm}$
For the expansion in the steel rod, we have:
$\frac{\text { Change in area }(\Delta A)}{\text { Original area }(A)}=a_{2} \Delta T$
$\therefore \Delta l_{2}=50 \times\left(2.1 \times 10^{-5}\right) \times 210$
$=0.126 \mathrm{~cm}$
Total change in the lengths of brass and steel,
$\Delta l=\Delta l_{1}+\Delta l_{2}$
$=0.2205+0.126$

Part - II
 Class -XI Physics
 Chapter - 11 THERMAL PROPERTIES OF MATTER

Answer 12:

Power of the drilling machine, $P=10 \mathrm{~kW}=10 \times 10^{3} \mathrm{~W}$
Mass of the aluminum block, $m=8.0 \mathrm{~kg}=8 \times 10^{3} \mathrm{~g}$
Time for which the machine is used, $t=2.5 \mathrm{~min}=2.5 \times 60=150 \mathrm{~s}$
Specific heat of aluminium, $c=0.91 \mathrm{~J} \mathrm{~g}^{-1} \mathbf{K}^{-1}$
Rise in the temperature of the block after drilling $=\delta T$
Total energy of the drilling machine $=P_{t}$
$=10 \times 10^{3} \times 150$
$=1.5 \times 10^{6} \mathrm{~J}$
It is given that only 50% of the power is useful.
Useful energy, $\Delta Q=\frac{50}{100} \times 1.5 \times 10^{6}=7.5 \times 10^{5} J$
But $\Delta Q=m c \Delta T$
$\therefore \Delta T=\frac{\Delta Q}{m c}$
$=\frac{7.5 \times 10^{5}}{8 \times 10^{3} \times 0.91}$
$=103^{\circ} \mathrm{C}$
Therefore, in 2.5 minutes of drilling, the rise in the temperature of the block is $103^{\circ} \mathrm{C}$.

Answer 13:

Mass of the copper block, $m=2.5 \mathrm{~kg}=2500 \mathrm{~g}$
Rise in the temperature of the copper block, $\Delta \theta=500^{\circ} \mathrm{C}$
Specific heat of copper, $C=0.39 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{C}^{-1}$
Heat of fusion of water, $L=335 \mathrm{~J} \mathrm{~g}^{-1}$
The maximum heat the copper block can lose, $Q=m C \Delta \theta$
$=2500 \times 0.39 \times 500$
$=487500 \mathrm{~J}$
Let $m_{1} \mathrm{~g}$ be the amount of ice that melts when the copper block is placed on the ice block.
The heat gained by the melted ice, $Q=m_{1} L$
$\therefore m_{1}=\frac{Q}{L}=\frac{487500}{335}=1455.22 \mathrm{~g}$
Hence, the maximum amount of ice that can melt is 1.45 kg .
Answer 14: Mass of the metal, $m=0.20 \mathrm{~kg}=200 \mathrm{~g}$
Initial temperature of the metal, $T_{1}=150^{\circ} \mathrm{C}$
Final temperature of the metal, $T_{2}=40^{\circ} \mathrm{C}$
Calorimeter has water equivalent of mass, $m^{\prime}=0.025 \mathrm{~kg}=25 \mathrm{~g}$
Volume of water, $V=150 \mathrm{~cm}^{3}$

C is the triple point of the $\mathbf{C O}_{2}$ phase diagram. This means that at the temperature and pressure corresponding to this point (i.e., at $-56.6^{\circ} \mathrm{C}$ and 5.11 atm), the solid, liquid, and vaporous phases of $\mathbf{C O}_{2}$ co-exist in equilibrium.
(b) The fusion and boiling points of $\mathbf{C O}_{2}$ decrease with a decrease in pressure.
(c) The critical temperature and critical pressure of $\mathbf{C O}_{2}$ are $31.1^{\circ} \mathrm{C}$ and 73 atm respectively. Even if it is compressed to a pressure greater than $73 \mathrm{~atm}, \mathbf{C O}_{2}$ will not liquefy above the critical temperature.
(d) It can be concluded from the $P-T$ phase diagram of $\mathbf{C O}_{2}$ that:
(a) CO_{2} is gaseous at $-70^{\circ} \mathrm{C}$, under 1 atm pressure
(b) CO_{2} is solid at $-60^{\circ} \mathrm{C}$, under 10 atm pressure
(c) $\mathbf{C O}_{2}$ is liquid at $15^{\circ} \mathrm{C}$, under 56 atm pressure

Answer 17:

(a) No
(b) It condenses to solid directly.
(c) The fusion and boiling points are given by the intersection point where this parallel line cuts the fusion and vaporisation curves.
(d) It departs from ideal gas behaviour as pressure increases.

Explanation:
(a) The P - T phase diagram for $\mathbf{C O}_{2}$ is shown in the following figure.

At 1 atm pressure and at $-60^{\circ} \mathrm{C}, \mathbf{C O}_{2}$ lies to the left of $-56.6^{\circ} \mathrm{C}$ (triple point C). Hence, it lies in the region of vaporous and solid phases.
Thus, CCO_{2} condenses into the solid state directly, without going through the liquid state.
(b) At 4 atm pressure, $\mathbf{C O}_{2}$ lies below 5.11 atm (triple point C). Hence, it lies in the region of vaporous and solid phases. Thus, it condenses into the solid state directly, without passing through the liquid state.
(c) When the temperature of a mass of solid $\mathbf{C O}_{2}$ (at 10 atm pressure and at $-65^{\circ} \mathrm{C}$) is increased, it changes to the liquid phase and then to the vaporous phase. It forms a line parallel to the temperature axis at 10 atm . The fusion and boiling points are given by the intersection point where this parallel line cuts the fusion and vaporisation curves.
$\theta=\frac{K A(T-0) t}{l}$
Where,
$A=$ Surface area of the box $=6 s^{2}=6 \times(0.3)^{2}=0.54 \mathrm{~m}^{3}$
$\theta=\frac{0.01 \times 0.54 \times(45) \times 6 \times 60 \times 60}{0.05}=104976 J$
But $\theta=m^{\prime} L$
$\therefore m^{\prime}=\frac{\theta}{L}$
$=\frac{104976}{335 \times 10^{3}}=0.313 \mathrm{~kg}$
Mass of ice left $=4-0.313=3.687 \mathrm{~kg}$
Hence, the amount of ice remaining after 6 h is 3.687 kg .

Answer 20:

Base area of the boiler, $A=0.15 \mathrm{~m}^{2}$
Thickness of the boiler, $l=1.0 \mathrm{~cm}=0.01 \mathrm{~m}$
Boiling rate of water, $R=6.0 \mathrm{~kg} / \mathrm{min}$
Mass, $m=6 \mathrm{~kg}$
Time, $t=1 \mathrm{~min}=60 \mathrm{~s}$
Thermal conductivity of brass, $K=10^{9} \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$
Heat of vaporisation, $L=2256 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1}$
The amount of heat flowing into water through the brass base of the boiler is given by:
$\theta=\frac{K A\left(T_{1}-T_{2}\right) t}{l}$
Where,
$T_{1}=$ Temperature of the flame in contact with the boiler
$T_{2}=$ Boiling point of water $=100^{\circ} \mathrm{C}$
Heat required for boiling the water:
$\theta=m L \ldots$... (ii)
Equating equations (i) and (ii), we get:
$\therefore m l=\frac{K A\left(T_{1}-T_{2}\right) t}{l}$
$T_{1}-T_{2}=\frac{m L l}{K A t}$
$=\frac{6 \times 2256 \times 10^{3} \times 0.01}{109 \times 0.15 \times 60}$
$=137.98^{\circ} \mathrm{C}$
Therefore, the temperature of the part of the flame in contact with the boiler is $137.98^{\circ} \mathrm{C}$.

Answer 21:

$$
\begin{align*}
& \frac{2.3026}{K} \log _{10} \frac{80-20}{50-20}=-300 \\
& \frac{2.3026}{K} \log _{10} 2=-300 \\
& \frac{-2.3026}{K} \log _{10} 2=K \quad \ldots \ldots . . \text { (ii) } \tag{ii}
\end{align*}
$$

The temperature of the body falls from $60^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ in time $=t^{\prime}$
Hence, we get:
$\frac{-2.3026}{t^{\prime}} \log _{10} \frac{60-20}{30-20}=-t^{\prime}$
$\frac{-2.3026}{t^{\prime}} \log _{10} 4=K$ \qquad
Equating equations (ii) and (iii), we get:
$\frac{-2.3026}{t^{\prime}} \log _{10} 4=\frac{-2.3026}{300} \log _{10} 2$
$\therefore t^{\prime}=300 \times 2=600 s=10 \mathrm{~min}$
Therefore, the time taken to cool the body from $60^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ is 10 minutes.

