NCERT Solutions for Class 11 Maths Chapter 10

Straight Lines Class 11

Chapter 10 Straight Lines Exercise 10.1, 10.2, 10.3, miscellaneous, miscellaneousmiscellaneous Solutions

Exercise 10.1 : Solutions of Questions on Page Number : 211
Q1 :

Draw a quadrilateral in the Cartesian plane, whose vertices are (-4, 5), (0, 7), (5, -5) and (-4, -2). Also, find its area.

Answer :

Let $A B C D$ be the given quadrilateral with vertices $A(\hat{e ̂} € " 4,5), B(0,7), C(5, a ̂ \notin " 5)$, and $D(a ̂ \notin " 4, \hat{a} \in " 2)$.
Then, by plotting A, B, C, and D on the Cartesian plane and joining $A B, B C, C D$, and $D A$, the given quadrilateral can be drawn as

To find the area of quadrilateral $A B C D$, we draw one diagonal, say $A C$.
Accordingly, area $(A B C D)=$ area $(\triangle A B C)+$ area $(\triangle A C D)$
We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is
$\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
Therefore, area of $\triangle A B C$
$=\frac{1}{2}|-4(7+5)+0(-5-5)+5(5-7)|$ unit 2
$=\frac{1}{2}|-4(12)+5(-2)|$ unit 2
$=\frac{1}{2}|-48-10|$ unit 2
$=\frac{1}{2}|-58|$ unit 2
$=\frac{1}{2} \times 58$ unit 2
$=29$ unit 2
Area of $\triangle A C D$
$=\frac{1}{2}|-4(-5+2)+5(-2-5)+(-4)(5+5)|$ unit 2
$=\frac{1}{2}|-4(-3)+5(-7)-4(10)|$ unit 2
$=\frac{1}{2}|12-35-40|$ unit 2
$=\frac{1}{2}|-63|$ unit 2
$=\frac{63}{2}$ unit 2

Thus, area (ABCD)

$$
=\left(29+\frac{63}{2}\right) \text { unit }^{2}=\frac{58+63}{2} \text { unit }^{2}=\frac{121}{2} \text { unit }^{2}
$$

Q2 :
The base of an equilateral triangle with side $2 a$ lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.

Answer :

Let $A B C$ be the given equilateral triangle with side $2 a$.
Accordingly, $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2 a$
Assume that base $B C$ lies along the y-axis such that the mid-point of $B C$ is at the origin.
i.e., $B O=O C=a$, where O is the origin.

Now, it is clear that the coordinates of point C are $(0, a)$, while the coordinates of point B are $\left(0, \hat{a} €^{\prime \prime} a\right)$.
It is known that the line joining a vertex of an equilateral triangle with the mid-point of its opposite side is perpendicular.
Hence, vertex A lies on the y-axis.

On applying Pythagoras theorem to $\triangle A O C$, we obtain
$(A C)^{2}=(O A)^{2}+(O C)^{2}$
$\Rightarrow(2 a)^{2}=(\mathrm{OA})^{2}+a^{2}$
$\Rightarrow 4 a^{2} \hat{a} €^{\prime \prime} a^{2}=(\mathrm{OA})^{2}$
$\Rightarrow(O A)^{2}=3 a^{2}$
$\Rightarrow \mathrm{OA}=\sqrt{3} a$
\therefore Coordinates of point $A=(\pm \sqrt{3} a, 0)$
Thus, the vertices of the given equilateral triangle are $(0, a),\left(0, \hat{a} \epsilon^{\prime \prime} a\right)$, and $(\sqrt{3} a, 0)$ or $(0, a),\left(0, a ̂ \notin{ }^{\prime \prime} a\right)$, and $(-\sqrt{3} a, 0)$

Q3 :
Find the distance between $\overline{\mathrm{P}\left(x_{1}, y_{1}\right)}$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ when: (i) PQ is parallel to the \boldsymbol{y}-axis, (ii) PQ is parallel to thex-axis.

Answer :

The given points are $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$.
(i) When PQ is parallel to the y-axis, $x_{1}=x_{2}$.

In this case, distance between P and $Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{\left(y_{2}-y_{1}\right)^{2}}$
$=\left|y_{2}-y_{1}\right|$
(ii) When PQ is parallel to the x-axis, $y_{1}=y_{2}$.

In this case, distance between P and $\mathrm{Q}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}}$
$=\left|x_{2}-x_{1}\right|$

Q4 :

Find a point on the x-axis, which is equidistant from the points $(7,6)$ and $(3,4)$.

Answer :

Let $(a, 0)$ be the point on the x axis that is equidistant from the points $(7,6)$ and $(3,4)$.

$$
\begin{aligned}
& \text { Accordingly, } \sqrt{(7-a)^{2}+(6-0)^{2}}=\sqrt{(3-a)^{2}+(4-0)^{2}} \\
& \Rightarrow \sqrt{49+a^{2}-14 a+36}=\sqrt{9+a^{2}-6 a+16} \\
& \Rightarrow \sqrt{a^{2}-14 a+85}=\sqrt{a^{2}-6 a+25}
\end{aligned}
$$

On squaring both sides, we
obtain $a^{2} \hat{a} €^{\prime \prime} 14 a+85=a^{2} \hat{a} €^{\prime \prime} 6 a$
$+25 \Rightarrow$ â ${ }^{\prime \prime} 14 a+6 a=25$ â€" 85
$\Rightarrow \hat{a ̂} €^{\prime \prime} 8 a=\mathrm{a} €$ " 60
$\Rightarrow a=\frac{60}{8}=\frac{15}{2}$
Thus, the required point on the x-axis is $\left(\frac{15}{2}, 0\right)$.

Q5:

Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points $P(0,-4)$ and $B(8,0)$.

Answer :

The coordinates of the mid-point of the line segment joining the points
$P(0, \hat{a} \notin " 4)$ and $B(8,0)$ are $\left(\frac{0+8}{2}, \frac{-4+0}{2}\right)=(4,-2)$
It is known that the slope (m) of a non-vertical line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{2} \neq x_{1}$

Therefore, the slope of the line passing through $(0,0)$ and $(4, \hat{\text { â " }} 2)$ is
$\frac{-2-0}{4-0}=\frac{-2}{4}=-\frac{1}{2}$
Hence, the required slope of the line is $-\frac{1}{2}$.

Q6:
Without using the Pythagoras theorem, show that the points $(4,4),(3,5)$ and $(-1,-1)$ are the vertices of a right angled triangle.

Answer :

The vertices of the given triangle are A (4, 4), B (3, 5), and C (â€"1, â€"1).
It is known that the slope (m) of a non-vertical line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{2} \neq x_{1}$
\therefore Slope of $\mathrm{AB}\left(m_{1}\right)=\frac{5-4}{3-4}=-1$
Slope of $\mathrm{BC}\left(m_{2}\right)=\frac{-1-5}{-1-3}=\frac{-6}{-4}=\frac{3}{2}$
Slope of CA $\left(m_{3}\right)=\frac{4+1}{4+1}=\frac{5}{5}=1$
It is observed that $m_{1} m_{3}=\hat{a} €{ }^{\prime \prime} 1$
This shows that line segments $A B$ and $C A$ are perpendicular to each other
i.e., the given triangle is right-angled at $\mathrm{A}(4,4)$.

Thus, the points $(4,4),(3,5)$, and ($\hat{a} €^{\prime \prime} 1, \hat{a} €$ " 1) are the vertices of a right-angled triangle.

Q7:

Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.

Answer :

If a line makes an angle of 30° with the positive direction of the y-axis measured anticlockwise, then the angle made by the line with the positive direction of the x-axis measured anticlockwise is $90^{\circ}+30^{\circ}=120^{\circ}$.

Thus, the slope of the given line is $\tan 120^{\circ}=\tan \left(180^{\circ}\right.$ â $\left.\epsilon^{\prime \prime} 60^{\circ}\right)=$ â€"tan 60°

$$
=-\sqrt{3}
$$

Q8 :

Find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.

Answer :

If points $\mathrm{A}(x$, â $€$ " $), \mathrm{B}(2,1)$, and $\mathrm{C}(4,5)$ are collinear, then
Slope of $A B=$ Slope of $B C$
$\Rightarrow \frac{1-(-1)}{2-x}=\frac{5-1}{4-2}$
$\Rightarrow \frac{1+1}{2-x}=\frac{4}{2}$
$\Rightarrow \frac{2}{2-x}=2$
$\Rightarrow 2=4-2 x$
$\Rightarrow 2 x=2$
$\Rightarrow x=1$
Thus, the required value of x is 1 .

Q9 :

Without using distance formula, show that points (-2, -1), (4, 0), (3, 3) and (-
3,2) are vertices of a parallelogram.

Answer :

Let points (â€" 2 , â€"1), $(4,0),(3,3)$, and (â€" 3,2) be respectively denoted by A, B, C, and D.

Slope of $=\frac{0+1}{4+2}=\frac{1}{6}$
AB

$$
\frac{2-3}{-3-3}=\frac{-1}{-6}=\frac{1}{6}
$$

Slope of $C D=$
\Rightarrow Slope of $A B=$ Slope of $C D$
$\Rightarrow A B$ and $C D$ are parallel to each other.

Now, slope $\quad \frac{3-4}{3-1}=\frac{3}{-1}=-3$ of $\mathrm{BC}=$

Slope of

$$
\frac{2+1}{-3+2}=\frac{3}{-1}=-3
$$

AD =
\Rightarrow Slope of $B C=$ Slope of $A D$
$\Rightarrow B C$ and $A D$ are parallel to each other.
Therefore, both pairs of opposite sides of quadrilateral $A B C D$ are parallel. Hence, $A B C D$ is a parallelogram.
Thus, points (â€"2, â€"1), $(4,0),(3,3)$, and ($\mathfrak{a ̂} \epsilon^{\prime \prime} 3,2$) are the vertices of a parallelogram.

Q10 :
Find the angle between the x-axis and the line joining the points (3, -1) and (4, -2).

Answer :

The slope of the line joining the points ($3, \hat{\not a €}$ " 1) and ($4, \hat{a ̂} €^{\prime \prime} 2$) is $m=\frac{-2-(-1)}{4-3}=-2+1=-1$
Now, the inclination (θ) of the line joining the points ($3, \hat{a} €^{\prime \prime} 1$) and ($4, \hat{a} €^{\prime \prime} 2$) is given by $\tan \theta=\mathrm{a} € " 1 \Rightarrow \theta=\left(90^{\circ}+\right.$
$\left.45^{\circ}\right)=135^{\circ}$

Thus, the angle between the x-axis and the line joining the points ($3, \hat{a} \notin$ " 1) and ($4, \hat{a} €^{\prime \prime} 2$) is 135°.

Q11 :
The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, find the slopes of he lines.

Answer :

Let m_{1} and m be the slopes of the two given lines such that $m_{1}=2 m$.
We know that if θ isthe angle between the lines ι_{1} and ι_{2} with slopes m_{1} and m_{2}, then $\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|$
It is given that the tangent of the angle between the two lines is $\frac{1}{3}$
$\therefore \frac{1}{3}=\left|\frac{m-2 m}{1+(2 m) \cdot m}\right|$
$\Rightarrow \frac{1}{3}=\left|\frac{-m}{1+2 m^{2}}\right|$
$\Rightarrow \frac{1}{3}=\frac{-m}{1+2 m^{2}}$ or $\frac{1}{3}=-\left(\frac{-m}{1+2 m^{2}}\right)=\frac{m}{1+2 m^{2}}$

Case I

$\Rightarrow \frac{1}{3}=\frac{-m}{1+2 m^{2}}$
$\Rightarrow 1+2 m^{2}=-3 m$
$\Rightarrow 2 m^{2}+3 m+1=0$
$\Rightarrow 2 m^{2}+2 m+m+1=0$
$\Rightarrow 2 m(m+1)+1(m+1)=0$
$\Rightarrow(m+1)(2 m+1)=0$
$\Rightarrow m=-1$ or $m=-\frac{1}{2}$
If $m=\hat{a ̂} € " 1$, then the slopes of the lines are $\hat{a ̂}$ " 1 and $\hat{a ̂} €$ " 2 .

If $m=\sqrt{-\frac{1}{2}}$, then the slopes of the lines are $=\sqrt{-\frac{1}{2}}$ and $\hat{\text { â" } 1 . ~}$

Case II

$$
\begin{aligned}
& \frac{1}{3}=\frac{m}{1+2 m^{2}} \\
& \Rightarrow 2 m^{2}+1=3 m \\
& \Rightarrow 2 m^{2}-3 m+1=0 \\
& \Rightarrow 2 m^{2}-2 m-m+1=0 \\
& \Rightarrow 2 m(m-1)-1(m-1)=0 \\
& \Rightarrow(m-1)(2 m-1)=0 \\
& \Rightarrow m=1 \text { or } m=\frac{1}{2}
\end{aligned}
$$

If $m=1$, then the slopes of the lines are 1 and 2 .
If $m=\sqrt{\frac{1}{2}}$, then the slopes of the lines are $\frac{1}{2}$ and 1

Hen and $\hat{a ̂} \epsilon^{\prime \prime} 1$ or 1 and 2 or $\frac{1}{2}$ and 1 .

Q12 :
A line passes through $\sqrt{\left(x_{1}, y_{1}\right) \text { and }(h, k)}$. If slope of the line is m, show that $k-y_{1}=m\left(h-x_{1}\right)$.

Answer :

The slope of the line passing through $\left(x_{1}, y_{1}\right)$ and (h, k) is $\frac{\sqrt{\frac{k-y_{1}}{h-x_{1}}} \text {. } . ~ . ~}{\text {. }}$
It is given that the slope of the line is m.
$\therefore \frac{k-y_{1}}{h-x_{1}}=m$
$\Rightarrow k-y_{1}=m\left(h-x_{1}\right)$
Hence, $k-y_{1}=m\left(h-x_{1}\right)$

$$
\frac{a}{h}+\frac{b}{k}=1
$$

Answer :

If the points $\mathrm{A}(h, 0), \mathrm{B}(a, b)$, and $\mathrm{C}(0, k)$ lie on a line, then
Slope of $A B=$ Slope of $B C$
$\frac{b-0}{a-h}=\frac{k-b}{0-a}$
$\Rightarrow \frac{b}{a-h}=\frac{k-b}{-a}$
$\Rightarrow-a b=(k-b)(a-h)$
$\Rightarrow-a b=k a-k h-a b+b h$
$\Rightarrow k a+b h=k h$
On dividing both sides by kh, we obtain
$\frac{k a}{k h}+\frac{b h}{k h}=\frac{k h}{k h}$
$\Rightarrow \frac{a}{h}+\frac{b}{k}=1$
Hence, $\frac{a}{h}+\frac{b}{k}=1$

Q14 :

Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?

Answer :

Since line $A B$ passes through points $A(1985,92)$ and $B(1995,97)$, its slope is $\frac{97-92}{1995-1985}=\frac{5}{10}=\frac{1}{2}$
Let y be the population in the year 2010. Then, according to the given graph, line $A B$ must pass through point C (2010, y).

Slope of $A B=$ Slope of $B C \quad \therefore$
$\Rightarrow \frac{1}{2}=\frac{y-97}{2010-1995}$
$\Rightarrow \frac{1}{2}=\frac{y-97}{15}$
$\Rightarrow \frac{15}{2}=y-97$
$\Rightarrow y-97=7.5$
$\Rightarrow y=7.5+97=104.5$
Thus, the slope of line AB is $\frac{1}{2}$, while in the year 2010, the population will be 104.5 crores.

Exercise 10.2 : Solutions of Questions on Page Number : 219
Q1 :
Write the equations for the x and y-axes.

Answer:

The y-coordinate of every point on the x-axis is 0 .
Therefore, the equation of the x-axis is $y=0$.
The x-coordinate of every point on the y-axis is 0 .
Therefore, the equation of the y-axis is $x=0$.

Q2 :
Find the equation of the line which passes through the point (â€"4, 3) with slope $\sqrt[\frac{1}{2}]{8}$

Answer :

We know that the equation of the line passing through point $\left(x_{0}, y_{0}\right)$, whose slope is m, is $\left(y-y_{0}\right)=m\left(x-x_{0}\right)$

Thus, the equation of the line passing through point (â€" 4,3), whose slope is $\frac{1}{2}$, is

$$
\begin{aligned}
& (y-3)=\frac{1}{2}(x+4) \\
& 2(y-3)=x+4 \\
& 2 y-6=x+4 \\
& \text { i.e., } x-2 y+10=0
\end{aligned}
$$

Q3 :

Find the equation of the line which passes though $(0,0)$ with slope m.

Answer :

We know that the equation of the line passing through point $\left(x_{0}, y_{0}\right)$, whose slope is m, is $\left(y-y_{0}\right)=m\left(x-x_{0}\right)$.
Thus, the equation of the line passing through point $(0,0)$, whose slope is m,is
$\left(y \hat{a ̂} €^{\prime \prime} 0\right)=m\left(x \hat{a ̂} €^{\prime \prime} 0\right)$
i.e., $y=m x$

Q4 :
Find the equation of the line which passes though $(2,2 \sqrt{3})$ and is inclined with the x-axis at an angle of 75°.

Answer :

The slope of the line that inclines with the x-axis at an angle of 75° is
$m=\tan 75^{\circ}$
$\Rightarrow m=\tan \left(45^{\circ}+30^{\circ}\right)=\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45^{\circ} \cdot \tan 30^{\circ}}=\frac{1+\frac{1}{\sqrt{3}}}{1-1 \cdot \frac{1}{\sqrt{3}}}=\frac{\frac{\sqrt{3}+1}{\sqrt{3}}}{\frac{\sqrt{3}-1}{\sqrt{3}}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$
We know that the equation of the line passing through point $\left(x_{0}, y_{0}\right)$, whose slope is m, is $\left(y-y_{0}\right)=m\left(x-x_{0}\right)$.
Thus, if a line passes though $(2,2 \sqrt{3})$ and inclines with the x-axis at an angle of 75°, then the equation of the line is given as

$$
\begin{aligned}
& (y-2 \sqrt{3})=\frac{\sqrt{3}+1}{\sqrt{3}-1}(x-2) \\
& (y-2 \sqrt{3})(\sqrt{3}-1)=(\sqrt{3}+1)(x-2) \\
& y(\sqrt{3}-1)-2 \sqrt{3}(\sqrt{3}-1)=x(\sqrt{3}+1)-2(\sqrt{3}+1) \\
& (\sqrt{3}+1) x-(\sqrt{3}-1) y=2 \sqrt{3}+2-6+2 \sqrt{3} \\
& (\sqrt{3}+1) x-(\sqrt{3}-1) y=4 \sqrt{3}-4 \\
& \text { i.e., }(\sqrt{3}+1) x-(\sqrt{3}-1) y=4(\sqrt{3}-1)
\end{aligned}
$$

Q5:
Find the equation of the line which intersects the x-axis at a distance of 3 units to the left of origin with slope -2.

Answer :

It is known that if a line with slope m makes x-intercept d, then the equation of the line is given as
$y=m(x-d)$

For the line intersecting the x-axis at a distance of 3 units to the left of the origin, $d=-3$.
The slope of the line is given as $m=-2$
Thus, the required equation of the given line is
$y=-2[x-(-3)] y=-2 x-6$
i.e., $2 x+y+6=0$

Q6:

Find the equation of the line which intersects the y-axis at a distance of 2 units above the origin and makes an angle of 30° with the positive direction of the x-axis.

Answer :

It is known that if a line with slope m makes y-intercept c, then the equation of the line is given as
$y=m x+c$
Here, $c=2$ and $m=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$.
Thus, the required equation of the given line is

$$
\begin{aligned}
& y=\frac{1}{\sqrt{3}} x+2 \\
& y=\frac{x+2 \sqrt{3}}{\sqrt{3}} \\
& \sqrt{3} y=x+2 \sqrt{3} \\
& \text { i.e., } x-\sqrt{3} y+2 \sqrt{3}=0
\end{aligned}
$$

Q7 :
Find the equation of the line which passes through the points (-1, 1) and (2, -4).

Answer :

It is known that the equation of the line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
Therefore, the equation of the line passing through the points (â€" 1,1) and
(2, â€"4) is

$$
\begin{aligned}
& (y-1)=\frac{-4-1}{2+1}(x+1) \\
& (y-1)=\frac{-5}{3}(x+1) \\
& 3(y-1)=-5(x+1) \\
& 3 y-3=-5 x-5 \\
& \text { i.e., } 5 x+3 y+2=0
\end{aligned}
$$

Q8:
Find the equation of the line which is at a perpendicular distance of 5 units from the origin and the angle made by the perpendicular with the positive x-axis is 30°

Answer :

If p is the length of the normal from the origin to a line and $\tilde{A} a ̂ \epsilon^{\circ}$ is the angle made by the normal with the positive direction of the x-axis, then the equation of the line is given by $x \cos \tilde{A} \hat{a ̂} €^{\circ}+y \sin \tilde{A} \hat{a} €^{\circ}=p$.

Here, $p=5$ units and $\tilde{A} \hat{a ̂} €^{\circ}=30^{\circ}$
Thus, the required equation of the given line is

```
x cos 30}+y\operatorname{sin}3\mp@subsup{0}{}{\circ}=
```

$x \frac{\sqrt{3}}{2}+y \cdot \frac{1}{2}=5$
i.e., $\sqrt{3} x+y=10$

Q9 :

The vertices of $\triangle P Q R$ are $P(2,1), Q(-2,3)$ and $R(4,5)$. Find equation of the median through the vertex R.

Answer :

It is given that the vertices of $\triangle P Q R$ are $P(2,1), Q$ (â€" 2,3), and $R(4,5)$.
Let $R L$ be the median through vertex R.
Accordingly, L is the mid-point of $P Q$.

$$
\left(\frac{2-2}{2}, \frac{1+3}{2}\right)=(0,2)
$$

By mid-point formula, the coordinates of point L are given by
It is known that the equation of the line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
Therefore, the equation of RL can be determined by substituting $\left(x_{1}, y_{1}\right)=(4,5)$ and $\left(x_{2}, y_{2}\right)=(0,2)$.
Hence, $y-5=\frac{2-5}{0-4}(x-4)$
$\Rightarrow y-5=\frac{-3}{-4}(x-4)$
$\Rightarrow 4(y-5)=3(x-4)$
$\Rightarrow 4 y-20=3 x-12$
$\Rightarrow 3 x-4 y+8=0$
Thus, the required equation of the median through vertex R is $3 x-4 y+8=0$.

Q10 :
Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and $(-3,6)$.

Answer :

The slope of the line joining the points $(2,5)$ and $\left(\hat{a} \notin{ }^{\prime \prime} 3,6\right)$ is $m=\frac{-3-2}{-3-5}=\frac{1}{-5}$
We know that two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other.

Therefore, slope of the line perpendicular to the line through the points $(2,5)$ and ($\hat{a} \neq{ }^{\prime} 3,6$)

$$
=-\frac{1}{m}=-\frac{1}{\left(\frac{-1}{5}\right)}=5
$$

Now, the equation of the line passing through point ($\hat{\text { € " }} 3,5$), whose slope is 5 , is

$$
\begin{aligned}
& (y-5)=5(x+3) \\
& y-5=5 x+15 \\
& \text { i.e., } 5 x-y+20=0
\end{aligned}
$$

Q11 :

A line perpendicular to the line segment joining the points $(1,0)$ and $(2,3)$ divides it in the ratio $1: n$. Find the equation of the line.

Answer :

According to the section formula, the coordinates of the point that divides the line segment joining the points $(1,0)$ and $(2,3)$ in the ratio $1: n$ is given by

$$
\left(\frac{n(1)+1(2)}{1+n}, \frac{n(0)+1(3)}{1+n}\right)=\left(\frac{n+2}{n+1}, \frac{3}{n+1}\right)
$$

The slope of the line joining the points $(1,0)$ and $(2,3)$ is

$$
m=\frac{3-0}{2-1}=3
$$

We know that two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other.

Therefore, slope of the line that is perpendicular to the line joining the points (1,

$$
=-\frac{1}{m}=-\frac{1}{3}
$$

0) and $(2,3)$
Now, the equation of the line passing through $\left(\frac{n+2}{n+1}, \frac{3}{n+1}\right)$ and whose slope $-\frac{1}{3}$ is given by is

$$
\begin{aligned}
& \left(y-\frac{3}{n+1}\right)=\frac{-1}{3}\left(x-\frac{n+2}{n+1}\right) \\
& \Rightarrow 3[(n+1) y-3]=-[x(n+1)-(n+2)] \\
& \Rightarrow 3(n+1) y-9=-(n+1) x+n+2 \\
& \Rightarrow(1+n) x+3(1+n) y=n+11
\end{aligned}
$$

Q12 :
Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the point $(2,3)$.

Answer :

The equation of a line in the intercept form is

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 \tag{i}
\end{equation*}
$$

Here, a and b are the intercepts on x and y axes respectively.
It is given that the line cuts off equal intercepts on both the axes. This means that $a=b$.
Accordingly, equation (i) reduces to
$\frac{x}{a}+\frac{y}{a}=1$
$\Rightarrow x+y=a$
Since the given line passes through point $(2,3)$, equation (ii) reduces to
$2+3=a \Rightarrow a=5$
On substituting the value of a in equation (ii), we obtain
$x+y=5$, which is the required equation of the line

Q13 :
Find equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9.

Answer :

The equation of a line in the intercept form is

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 \tag{i}
\end{equation*}
$$

Here, a and b are the intercepts on x and y axes respectively.
It is given that $a+b=9 \Rightarrow b=9$ â€" $a \ldots$ (ii)

From equations (i) and (ii), we obtain
$\frac{x}{a}+\frac{y}{9-a}=1$
It is given that the line passes through point $(2,2)$. Therefore, equation (iii) reduces to
$\frac{2}{a}+\frac{2}{9-a}=1$
$\Rightarrow 2\left(\frac{1}{a}+\frac{1}{9-a}\right)=1$
$\Rightarrow 2\left(\frac{9-a+a}{a(9-a)}\right)=1$
$\Rightarrow \frac{18}{9 a-a^{2}}=1$
$\Rightarrow 18=9 a-a^{2}$
$\Rightarrow a^{2}-9 a+18=0$
$\Rightarrow a^{2}-6 a-3 a+18=0$
$\Rightarrow a(a-6)-3(a-6)=0$
$\Rightarrow(a-6)(a-3)=0$
$\Rightarrow a=6$ or $a=3$
If $a=6$ and $b=9 \hat{a} \epsilon^{\prime \prime} 6=3$, then the equation of the line is
$\frac{x}{6}+\frac{y}{3}=1 \Rightarrow x+2 y-6=0$
If $a=3$ and $b=9 \hat{a} \epsilon^{\prime \prime} 3=6$, then the equation of the line is
$\frac{x}{3}+\frac{y}{6}=1 \Rightarrow 2 x+y-6=0$

Q14 :

Find equation of the line through the point $(0,2)$ making an angle 3 with the positive x-axis. Also, find the equation of line parallel to it and crossing the y-axis at a distance of 2 units below the origin.

Answer :

The slope of the line making an angle $\frac{2 \pi}{3}$ with the positive x-axis is $m=\tan \left(\frac{2 \pi}{3}\right)=-\sqrt{3}$
Now, the equation of the line passing through point $(0,2)$ and having a slope ${ }^{-\sqrt{3}}$ is $(y-2)=-\sqrt{3}(x-0)$

$$
\begin{aligned}
& y-2=-\sqrt{3} x \\
& \text { i.e., } \sqrt{3} x+y-2=0
\end{aligned}
$$

The slope of line parallel to line $\sqrt{3} x+y-2=0$ is $-\sqrt{3}$.
It is given that the line parallel to line $\sqrt{3} x+y-2=0$ crosses the y-axis 2 units below the origin i.e., it passes through point ($0, \hat{a} \epsilon^{\text {" }} 2$).
Hence, the equation of the line passing through point (0 , â€" ${ }^{\text {" }}$) and having a slope ${ }^{-\sqrt{3}}$ is

$$
\begin{aligned}
& y-(-2)=-\sqrt{3}(x-0) \\
& y+2=-\sqrt{3} x \\
& \sqrt{3} x+y+2=0
\end{aligned}
$$

Q15 :

The perpendicular from the origin to a line meets it at the point (-2,9), find the equation of the line.

Answer :

The slope of the line joining the origin $(0,0)$ and point $\left(\hat{a} €^{\prime \prime} 2,9\right)$ is

$$
m_{1}=\frac{9-0}{-2-0}=-\frac{9}{2}
$$

Accordingly, the slope of the line perpendicular to the line joining the origin and point ($\hat{(} \epsilon^{\prime \prime} 2,9$) is

$$
m_{2}=-\frac{1}{m_{1}}=-\frac{1}{\left(-\frac{9}{2}\right)}=\frac{2}{9}
$$

Now, the equation of the line passing through point ($\hat{\text { a }}$ " 2,9) and having a slope m_{2} is

$$
\begin{aligned}
& (y-9)=\frac{2}{9}(x+2) \\
& 9 y-81=2 x+4 \\
& \text { i.e., } 2 x-9 y+85=0
\end{aligned}
$$

Q16 :

The length L (in centimetre) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if $L=124.942$ when $C=20$ and $L=125.134$ when $C=110$, express L in terms of C.

Answer :

It is given that when $C=20$, the value of L is 124.942 , whereas when $C=110$, the value of L is 125.134 .
Accordingly, points $(20,124.942)$ and $(110,125.134)$ satisfy the linear relation between L and C.

Now, assuming C along the x-axis and L along the y-axis, we have two points i.e., $(20,124.942)$ and $(110,125.134)$ in the XY plane.

Therefore, the linear relation between L and C is the equation of the line passing through points $(20,124.942)$ and (110, 125.134).
$\left(L \hat{a ̂} \epsilon^{\prime \prime} 124.942\right)=\frac{125.134-124.942}{110-20}(\mathrm{C}-20)$
$\mathrm{L}-124.942=\frac{0.192}{90}(\mathrm{C}-20)$
i.e., $\mathrm{L}=\frac{0.192}{90}(\mathrm{C}-20)+124.942$, which is the required linear relation

Q17:

The owner of a milk store finds that, he can sell 980 litres of milk each week at Rs $14 / l i t r e$ and 1220 litres of milk each week at Rs 16/litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at Rs 17/litre?

Answer :

The relationship between selling price and demand is linear.
Assuming selling price per litre along the x-axis and demand along the y-axis, we have two points i.e., $(14,980)$ and $(16,1220)$ in the XY plane that satisfy the linear relationship between selling price and demand.

Therefore, the linear relationship between selling price per litre and demand is the equation of the line passing through points $(14,980)$ and $(16,1220)$.

$$
\begin{aligned}
& y-980=\frac{1220-980}{16-14}(x-14) \\
& y-980=\frac{240}{2}(x-14) \\
& y-980=120(x-14) \\
& \text { i.e., } y=120(x-14)+980
\end{aligned}
$$

When $x=$ Rs 17/litre,

$$
\begin{aligned}
& y=120(17-14)+980 \\
& \Rightarrow y=120 \times 3+980=360+980=1340
\end{aligned}
$$

Thus, the owner of the milk store could sell 1340 litres of milk weekly at Rs $17 / l i t r e$.

Q18:
$\mathbf{P}(a, b)$ is the mid-point of a line segment between axes. Show that equation of the line is $a b$

$$
\frac{x}{a}+\frac{y}{b}=2
$$

Answer :

Let $A B$ be the line segment between the axes and let $P(a, b)$ be its mid-point.

Let the coordinates of A and B be $(0, y)$ and $(x, 0)$ respectively.
Since $P(a, b)$ is the mid-point of $A B$,
$\left(\frac{0+x}{2}, \frac{y+0}{2}\right)=(a, b)$
$\Rightarrow\left(\frac{x}{2}, \frac{y}{2}\right)=(a, b)$
$\Rightarrow \frac{x}{2}=a$ and $\frac{y}{2}=b$
$\therefore x=2 a$ and $y=2 b$
Thus, the respective coordinates of A and B are $(0,2 b)$ and $(2 a, 0)$.
The equation of the line passing through points $(0,2 b)$ and $(2 a, 0)$ is
$(y-2 b)=\frac{(0-2 b)}{(2 a-0)}(x-0)$
$y-2 b=\frac{-2 b}{2 a}(x)$
$a(y-2 b)=-b x$
$a y-2 a b=-b x$
i.e., $b x+a y=2 a b$

On dividing both sides by $a b$, we obtain

$$
\begin{aligned}
& \frac{b x}{a b}+\frac{a y}{a b}=\frac{2 a b}{a b} \\
& \Rightarrow \frac{x}{a}+\frac{y}{b}=2
\end{aligned}
$$

Thus, the equation of the line is $\frac{x}{a}+\frac{y}{b}=2$

Q19 :
Point $R(h, k)$ divides a line segment between the axes in the ratio 1:2. Find equation of the line.

Answer :

Let $A B$ be the line segment between the axes such that point $R(h, k)$ divides $A B$ in the ratio 1:2.

Let the respective coordinates of A and B be $(x, 0)$ and $(0, y)$.
Since point $\mathrm{R}(h, k)$ divides AB in the ratio 1:2, according to the section formula,
$(h, k)=\left(\frac{1 \times 0+2 \times x}{1+2}, \frac{1 \times y+2 \times 0}{1+2}\right)$
$\Rightarrow(h, k)=\left(\frac{2 x}{3}, \frac{y}{3}\right)$
$\Rightarrow h=\frac{2 x}{3}$ and $k=\frac{y}{3}$
$\Rightarrow x=\frac{3 h}{2}$ and $y=3 k$
Therefore, the respective coordinates of A and $\mathrm{B} \quad \sqrt[\left(\frac{3 h}{2}, 0\right)]{ }$ are and $(0,3 k)$.
Now, the equation of line $A B$ passing through $\quad\left(\frac{3 h}{2}, 0\right)$ points and
$(0,3 k)$ is
$(y-0)=\frac{3 k-0}{0-\frac{3 h}{2}}\left(x-\frac{3 h}{2}\right)$
$y=-\frac{2 k}{h}\left(x-\frac{3 h}{2}\right)$
$h y=-2 k x+3 h k$
i.e., $2 k x+h y=3 h k$

Thus, the required equation of the line is $2 k x+h y=3 h k$.

Q20 :

By using the concept of equation of a line, prove that the three points $(3,0),(-$ $2,-2)$ and $(8,2)$ are collinear.

Answer :

In order to show that points $(3,0)$, ($\hat{a} \neq$ " 2 , â€" 2), and $(8,2)$ are collinear, it suffices to show that the line passing through points $(3,0)$ and (â€" 2 , â€" 2) also passes through point $(8,2)$.

The equation of the line passing through points $(3,0)$ and ($\hat{a} €$ " $2, \hat{a} €$ " 2) is

$$
\begin{aligned}
& (y-0)=\frac{(-2-0)}{(-2-3)}(x-3) \\
& y=\frac{-2}{-5}(x-3) \\
& 5 y=2 x-6 \\
& \text { i.e., } 2 x-5 y=6
\end{aligned}
$$

It is observed that at $x=8$ and $y=2$,

$$
\text { L.H.S. }=2 \times 8 \text { â€" } 5 \times 2=16 \text { â€" } 10=6=\text { R.H.S. }
$$

Therefore, the line passing through points $(3,0)$ and (â€" 2 , â€" 2) also passes through point $(8,2)$. Hence, points (3, 0), (â€" 2 , â€" 2), and (8,2) are collinear.

Exercise 10.3 : Solutions of Questions on Page Number : 227
Q1 :
Reduce the following equations into slope-intercept form and find their slopes and the y-intercepts.
(i) $x+7 y=0$ (ii) $6 x+3 y-5=0$ (iii) $y=0$

Answer :

(i) The given equation is $x+7 y=0$.

It can be written as

$$
\begin{equation*}
y=-\frac{1}{7} x+0 \tag{1}
\end{equation*}
$$

This equation is of the form $y=m x+c$, where $m=-\frac{1}{7}$ and $c=0$.
Therefore, equation (1) is in the slope-intercept form, where the slope and the y-intercept are $\sqrt{-\frac{1}{7}}$ and 0 respectively.
(ii) The given equation is $6 x+3 y \hat{a} €^{\prime \prime} 5=0$.

It can be written as

$$
\begin{align*}
& y=\frac{1}{3}(-6 x+5) \\
& y=-2 x+\frac{5}{3} \tag{2}
\end{align*}
$$

This equation is of the form $y=m x+c$, where $m=-2$ and $c=\frac{5}{3}$.
Therefore, equation (2) is in the slope-intercept form, where the slope and the y-intercept areâє" 2 and $\frac{5}{3}$ respectively.
(iii) The given equation is $y=0$. It can be written as $y=0 . x+0$

This equation is of the form $y=m x+c$, where $m=0$ and $c=0$.
Therefore, equation (3) is in the slope-intercept form, where the slope and the y-intercept are 0 and 0 respectively.

Q2 :
Reduce the following equations into intercept form and find their intercepts on the axes.
(i) $3 x+2 y-12=0$ (ii) $4 x-3 y=6$ (iii) $3 y+2=0$.

Answer :

(i) The given equation is $3 x+2 y \hat{a} €^{\prime \prime} 12=0$.

It can be written as

$$
\begin{aligned}
& 3 x+2 y=12 \\
& \frac{3 x}{12}+\frac{2 y}{12}=1
\end{aligned}
$$

$$
\begin{equation*}
\text { i.e., } \frac{x}{4}+\frac{y}{6}=1 \tag{1}
\end{equation*}
$$

This equation is of the form $\frac{x}{a}+\frac{y}{b}=1$, where $a=4$ and $b=6$.
Therefore, equation (1) is in the intercept form, where the intercepts on the x and y axes are 4 and 6 respectively.
(ii) The given equation is $4 x$ âє" $3 y=6$.

It can be written as
$\frac{4 x}{6}-\frac{3 y}{6}=1$
$\frac{2 x}{3}-\frac{y}{2}=1$
i.e., $\frac{x}{\left(\frac{3}{2}\right)}+\frac{y}{(-2)}=1$

This equation is of the form $\sqrt{\frac{x}{a}+\frac{y}{b}=1}$, where $a=\quad$ and $b=a ̂ \in^{\prime 2} 2 . \sqrt{\frac{3}{2}}$
Therefore, equation (2) is in the intercept form, where the intercepts on the x and y axes are $\sqrt{\frac{3}{2}}$ and $\hat{a} €^{\prime \prime} 2$ respectively.
(iii) The given equation is $3 y+2=0$.

It can be written as

$$
\begin{align*}
& 3 y=-2 \\
& \text { i.e., } \frac{y}{\left(-\frac{2}{3}\right)}=1 \tag{3}
\end{align*}
$$

This equation is of the form $\frac{x}{a}+\frac{y}{b}=1 \quad$, where $a=0$ and $b=-\frac{2}{3}$.
Therefore, equation (3) is in the intercept form, where the intercept on the y-axis is $-\frac{2}{3}$ and it has no intercept on the x-axis.

Q3:
Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
(i) $\mathrm{x}-\sqrt{3} \mathrm{y}+8=0$ (ii) $\boldsymbol{y} \hat{\mathrm{a}} €^{\prime \prime} 2=0$ (iii) \boldsymbol{x} â€" $y=4$

Answer:
(i) The given equation is $x-\sqrt{3} y+8=0$.

Itcan be reduced as:
$x-\sqrt{3} y=-8$
$\Rightarrow-x+\sqrt{3} y=8$
On dividing both sides by $\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{4}=2$, we obtain
$-\frac{x}{2}+\frac{\sqrt{3}}{2} y=\frac{8}{2}$
$\Rightarrow\left(-\frac{1}{2}\right) x+\left(\frac{\sqrt{3}}{2}\right) y=4$
$\Rightarrow \mathrm{x} \cos 120^{\circ}+\mathrm{y} \sin 120^{\circ}=4$

Equation (1) is in the normal form.
On comparing equation (1) with the normal form of equation of line $x \cos \tilde{A} a ̂ €^{\circ}+y \sin \tilde{A} a ̂ €^{\circ}=p$, we obtain $\tilde{A} \hat{a ̂} €^{\circ}=120^{\circ}$ and $p=4$.

Thus, the perpendicular distance of the line from the origin is 4 , while the angle between the perpendicular and the positive x-axis is 120°.
(ii) The given equation is y â€" $2=0$.

Itcan be reduced as $0 . x+1 . y=2$
On dividing both sides by $\sqrt{0^{2}+1^{2}}=1$, we obtain $0 \cdot x+1 \cdot y=2$
$\Rightarrow x \cos 90^{\circ}+y \sin 90^{\circ}=2$
Equation (1) is in the normal form.
On comparing equation (1) with the normal form of equation of line $x \cos \tilde{A} a ̂ €^{\circ}+y \sin \tilde{A} \hat{a} €^{\circ}=p$, we obtain $\tilde{A} a ̂ €^{\circ}=90^{\circ}$ and $p=2$.

Thus, the perpendicular distance of the line from the origin is 2 , while the angle between the perpendicular and the positive x-axis is 90°.
(iii) The given equation is $x \hat{a} €^{\prime \prime} y=4$.

Itcan be reduced as 1. $x+\left(\hat{a} €^{\prime \prime} 1\right) y=4$
On dividing both sides by $\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}$, we obtain

$$
\begin{align*}
& \frac{1}{\sqrt{2}} x+\left(-\frac{1}{\sqrt{2}}\right) y=\frac{4}{\sqrt{2}} \\
& \Rightarrow x \cos \left(2 \pi-\frac{\pi}{4}\right)+y \sin \left(2 \pi-\frac{\pi}{4}\right)=2 \sqrt{2} \\
& \Rightarrow x \cos 315^{\circ}+y \sin 315^{\circ}=2 \sqrt{2} \tag{1}
\end{align*}
$$

Equation (1) is in the normal form.
On comparing equation (1) with the normal form of equation of line
$x \cos \tilde{A} \hat{a} €^{\circ}+y \sin \tilde{A} a ̂ €^{\circ}=p$, we obtain $\tilde{A} \hat{a} €^{\circ}=$
$\mathrm{p}=2 \sqrt{2}$.
315° and

$$
2 \sqrt{2}
$$

Thus, the perpendicular distance of the line from the origin is , while the angle between the perpendicular and the positive x-axisis 315°.

Q4:
Find the distance of the point $(-1,1)$ from the line $12(x+6)=5(y-2)$.

Answer :

The given equation of the line is $12(x+6)=5\left(y \hat{a} €^{\prime \prime} 2\right)$.
$\Rightarrow 12 x+72=5 y$ â€" 10
$\Rightarrow 12 x$ â€" $5 y+82=0$
On comparing equation (1) with general equation of line $A x+B y+C=0$, we obtain $A=12, B=\hat{a} €^{\prime \prime} 5$, and $C=82$.
It is known that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by
$d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$.
The given point is $\left(x_{1}, y_{1}\right)=\left(\hat{a} €^{\prime \prime} 1,1\right)$.
Therefore, the distance of point ($\hat{a} €$ " 1,1) from the given line

$$
=\frac{|12(-1)+(-5)(1)+82|}{\sqrt{(12)^{2}+(-5)^{2}}} \text { units }=\frac{|-12-5+82|}{\sqrt{169}} \text { units }=\frac{|65|}{13} \text { units }=5 \text { units }
$$

Q5 :

Answer :

The given equation of line is

$$
\begin{align*}
& \frac{x}{3}+\frac{y}{4}=1 \\
& \text { or, } 4 x+3 y-12=0 \tag{1}
\end{align*}
$$

On comparing equation (1) with general equation of line $A x+B y+C=0$, we obtain $A=4, B=3$, and $C=\hat{a} €^{\prime \prime} 12$. Let $(a, 0)$ be the point on the x-axis whose distance from the given line is 4 units.

It is known that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$

Therefore,

$$
\begin{aligned}
& 4=\frac{|4 a+3 \times 0-12|}{\sqrt{4^{2}+3^{2}}} \\
& \Rightarrow 4=\frac{|4 a-12|}{5} \\
& \Rightarrow|4 a-12|=20 \\
& \Rightarrow \pm(4 a-12)=20 \\
& \Rightarrow(4 a-12)=20 \text { or }-(4 a-12)=20 \\
& \Rightarrow 4 a=20+12 \text { or } 4 a=-20+12 \\
& \Rightarrow a=8 \text { or }-2
\end{aligned}
$$

Thus, the required points on the x-axis are ($\left.\hat{a} €^{\prime \prime} 2,0\right)$ and $(8,0)$.

Q6 :

Find the distance between parallel lines
(i) $15 x+8 y-34=0$ and $15 x+8 y+31=0$
(ii) $I(x+y)+p=0$ and $I(x+y)-r=0$

Answer :

It is known that the distance (d) between parallel lines $A x+B y+C_{1}=0$ and $A x+B y+C_{2}=0$ is given by

$$
d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}
$$

(i) The given parallel lines are $15 x+8 y$ â€" $34=0$ and $15 x+8 y+31$
$=0$.
Here, $A=15, B=8, C_{1}=\hat{\text { â }}{ }^{\prime \prime} 34$, and $C_{2}=31$.
Therefore, the distance between the parallel lines is

$$
d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}=\frac{|-34-31|}{\sqrt{(15)^{2}+(8)^{2}}} \text { units }=\frac{|-65|}{17} \text { units }=\frac{65}{17} \text { units }
$$

(ii) The given parallel lines are $I(x+y)+p=0$ and $I(x+y) \hat{a} €^{\prime \prime} r=0 . I x$

$$
+l y+p=0 \text { and } l x+l y \text { â } €^{\prime \prime} r=0
$$

Here, $A=I, B=I, C_{1}=p$, and $C_{2}=\hat{a} €^{\prime \prime} r$.
Therefore, the distance between the parallel lines is

$$
d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}=\frac{|p+r|}{\sqrt{l^{2}+l^{2}}} \text { units }=\frac{|p+r|}{\sqrt{2 l^{2}}} \text { units }=\frac{|p+r|}{l \sqrt{2}} \text { units }=\frac{1}{\sqrt{2}}\left|\frac{p+r}{l}\right| \text { units }
$$

Q7:
Find equation of the line parallel to the line $3 x-4 y+2=0$ and passing through the point $(-2,3)$.

Answer :

The equation of the given line is
$3 x-4 y+2=0$
or $y=\frac{3 x}{4}+\frac{2}{4}$
or $y=\frac{3}{4} x+\frac{1}{2}$ which is of the form $y=m x+c$

$$
=\frac{3}{4}
$$

\therefore Slope of the given
line

It is known that $\quad 3$ parallel lines have the same slope.

$$
m=\frac{3}{4} \quad \text { parallel lines have the same slope. }
$$

\therefore Slope of the other line $=$
Now, the equation of the line that has a slope of $\sqrt{\frac{3}{4}}$ and passes through the point (â€"2, 3) is
$(y-3)=\frac{3}{4}\{x-(-2)\}$
$4 y-12=3 x+6$
i.e., $3 x-4 y+18=0$

Q8 :
Find equation of the line perpendicular to the line $x-7 y+5=0$ and having x intercept 3 .

Answer :

The given equation of line is $x-7 y+5=0$.

Or, $y=\frac{1}{7} x+\frac{5}{7}$, which is of the form $y=m x+c$
\therefore Slope of the given line $=\frac{1}{7}$
The slope of the line perpendicular to the line having a slope of ${ }^{\frac{1}{7}} \quad m=-\frac{1}{\left(\frac{1}{7}\right)}=-7$
The equation of the line with slope $\hat{a} \epsilon^{"} 7$ and x-intercept 3 is given
by $y=m\left(x \hat{a} \epsilon^{\prime \prime} d\right) \Rightarrow y=\hat{\mathrm{a}} €^{\prime} 7\left(x \hat{\mathrm{a}} €^{\prime \prime} 3\right) \Rightarrow y=\hat{\mathrm{a}} €^{\prime \prime} 7 x+21 \Rightarrow 7 x+y=$ 21

Q9 :
Find angles between the lines $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$

Answer :
The given lines are $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$

$$
\begin{equation*}
y=-\sqrt{3} x+1 \quad \ldots(1) \quad \text { and } y=-\frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}} \tag{2}
\end{equation*}
$$

The slope of line (1) is $\sqrt{m_{1}=-\sqrt{3}}$, while the slope of line (2) is $m_{2}=-\frac{1}{\sqrt{3}}$.
The acute angle i.e., θ between the two lines is given by
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\tan \theta=\left|\frac{-\sqrt{3}+\frac{1}{\sqrt{3}}}{1+(-\sqrt{3})\left(-\frac{1}{\sqrt{3}}\right)}\right|$
$\tan \theta=\left|\frac{\frac{-3+1}{\sqrt{3}}}{1+1}\right|=\left|\frac{-2}{2 \times \sqrt{3}}\right|$
$\tan \theta=\frac{1}{\sqrt{3}}$
$\theta=30^{\circ}$
Thus, the angle between the given lines is either 30° or $180^{\circ} \hat{a} \epsilon^{\prime \prime} 30^{\circ}=150^{\circ}$.

Q10 :
The line through the points $(h, 3)$ and $(4,1)$ intersects the line $7 x-9 y-19=0$. at right angle. Find the value of h.

Answer :

The slope of the line passing through points $(h, 3)$ and $(4,1)$ is
$m_{1}=\frac{1-3}{4-h}=\frac{-2}{4-h}$

The slope of line $7 x$ â€" $9 y$ â€" $19=0$ or

$$
y=\frac{7}{9} x-\frac{19}{9} \quad m_{2}=\frac{7}{9} .
$$

It is given that the two lines are perpendicular.
$\therefore m_{1} \times m_{2}=-1$
$\Rightarrow\left(\frac{-2}{4-h}\right) \times\left(\frac{7}{9}\right)=-1$
$\Rightarrow \frac{-14}{36-9 h}=-1$
$\Rightarrow 14=36-9 h$
$\Rightarrow 9 h=36-14$
$\Rightarrow h=\frac{22}{9}$
Thus, the value of h is $\frac{22}{9}$

Q11 :
Prove that the line through the point $\left(x_{1}, y_{1}\right)$ and parallel to the line $A x+B y+C=0$ is $A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0$.

Answer :

The slope of line $A x+$

$$
y=\left(\frac{-\mathrm{A}}{\mathrm{~B}}\right) x+\left(\frac{-\mathrm{C}}{\mathrm{~B}}\right) \quad m=-\frac{\mathrm{A}}{\mathrm{~B}}
$$

$$
\mathrm{B} y+\mathrm{C}=0 \text { or }
$$

It is known that parallel lines have the same slope. \therefore Slope of the other line $m=-\frac{\mathrm{A}}{\mathrm{B}}$ =

The equation of the line passing through point $\left(x_{1}, y_{1}\right)$ and having a slope $m=-\frac{\mathrm{A}}{\mathrm{B}}$ is
$y-y_{1}=m\left(x-x_{1}\right)$
$y-y_{1}=-\frac{\mathrm{A}}{\mathrm{B}}\left(x-x_{1}\right)$
$\mathrm{B}\left(y-y_{1}\right)=-\mathbf{A}\left(x-x_{1}\right)$
$\mathrm{A}\left(x-x_{1}\right)+\mathrm{B}\left(y-y_{1}\right)=0$
Hence, the line through point (x_{1}, y_{1}) and parallel to line $\mathrm{A} x+\mathrm{By}+\mathrm{C}=0$ is $\mathrm{A}\left(x \hat{a} €^{\prime \prime} x_{1}\right)+\mathrm{B}\left(y \hat{a} €^{\prime \prime} y_{1}\right)=0$

Q12 :
Two lines passing through the point $(2,3)$ intersects each other at an angle of 60°. If slope of one line is 2 , find equation of the other line.

Answer :

It is given that the slope of the first line, $m_{1}=2$.
Let the slope of the other line be m_{2}.
The angle between the two lines is 60°.
$\therefore \tan 60^{\circ}=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\Rightarrow \sqrt{3}=\left|\frac{2-m_{2}}{1+2 m_{2}}\right|$
$\Rightarrow \sqrt{3}= \pm\left(\frac{2-m_{2}}{1+2 m_{2}}\right)$
$\Rightarrow \sqrt{3}=\frac{2-m_{2}}{1+2 m_{2}}$ or $\sqrt{3}=-\left(\frac{2-m_{2}}{1+2 m_{2}}\right)$
$\Rightarrow \sqrt{3}\left(1+2 m_{2}\right)=2-m_{2}$ or $\sqrt{3}\left(1+2 m_{2}\right)=-\left(2-m_{2}\right)$
$\Rightarrow \sqrt{3}+2 \sqrt{3} m_{2}+m_{2}=2$ or $\sqrt{3}+2 \sqrt{3} m_{2}-m_{2}=-2$
$\Rightarrow \sqrt{3}+(2 \sqrt{3}+1) m_{2}=2$ or $\sqrt{3}+(2 \sqrt{3}-1) m_{2}=-2$
$\Rightarrow m_{2}=\frac{2-\sqrt{3}}{(2 \sqrt{3}+1)}$ or $m_{2}=\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}$
Case I: $\quad m_{2}=\left(\frac{2-\sqrt{3}}{2 \sqrt{3}+1}\right)$

$$
\frac{(2-\sqrt{3})}{(2 \sqrt{3}+1)}
$$

The equation of the line passing through point $(2,3)$ and having a slope of is

$$
(y-3)=\frac{2-\sqrt{3}}{2 \sqrt{3}+1}(x-2)
$$

$$
(2 \sqrt{3}+1) y-3(2 \sqrt{3}+1)=(2-\sqrt{3}) x-2(2-\sqrt{3})
$$

$$
(\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-4+2 \sqrt{3}+6 \sqrt{3}+3
$$

$$
(\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-1+8 \sqrt{3}
$$

In this case, the equation of the other line is $(\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-1+8 \sqrt{3}$.
Case II : $\quad m_{2}=\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}$
The equation of the line passing through point (2, 3) and having a slope of $\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}$ is $(y-3)=\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}(x-2)$
$(2 \sqrt{3}-1) y-3(2 \sqrt{3}-1)=-(2+\sqrt{3}) x+2(2+\sqrt{3})$
$(2 \sqrt{3}-1) y+(2+\sqrt{3}) x=4+2 \sqrt{3}+6 \sqrt{3}-3$
$(2+\sqrt{3}) x+(2 \sqrt{3}-1) y=1+8 \sqrt{3}$
In this case, the equation of the other line is $(2+\sqrt{3}) x+(2 \sqrt{3}-1) y=1+8 \sqrt{3}$.
Thus, the required equation of the other line is $(\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-1+8 \sqrt{3}$
or $(2+\sqrt{3}) x+(2 \sqrt{3}-1) y=1+8 \sqrt{3}$

Q13 :
Find the equation of the right bisector of the line segment joining the points $(3,4)$ and $(-1,2)$.

Answer :

The right bisector of a line segment bisects the line segment at 90°.

The end-points of the line segment are given as $A(3,4)$ and $B(\hat{a} \notin " 1,2)$.
Accordingly, mid-point of $A B=\left(\frac{3-1}{2}, \frac{4+2}{2}\right)=(1,3)$
Slope of $A B=\frac{2-4}{-1-3}=\frac{-2}{-4}=\frac{1}{2}$
\therefore Slope of the line perpendicular to $A B=-\frac{1}{\left(\frac{1}{2}\right)}=-2$
The equation of the line passing through $(1,3)$ and having a slope of $\mathfrak{a ̂}$ " 2 is
(y â€" 3) $=$ â€" $2(x$ â€" 1$)$
y â€" 3 = â€" $2 x+2$
$2 x+y=5$
Thus, the required equation of the line is $2 x+y=5$.

Q14 :
Find the coordinates of the foot of perpendicular from the point $(-1,3)$ to the line $3 x-4 y-16=0$.

Answer :

Let (a, b) be the coordinates of the foot of the perpendicular from the point ($\left.\hat{a} €^{\prime \prime} 1,3\right)$ to the line $3 x \hat{a} €$ " $4 y$ â€" $16=0$.

Slope of the line joining ($\left.\hat{a} €^{\prime \prime} 1,3\right)$ and $(a, b), m_{1}=\frac{b-3}{a+1}$

$$
y=\frac{3}{4} x-4, m_{2}=\frac{3}{4}
$$

Since these two lines are perpendicular, $m_{1} m_{2}=\hat{a} € " 1$

$$
\begin{align*}
& \therefore\left(\frac{b-3}{a+1}\right) \times\left(\frac{3}{4}\right)=-1 \\
& \Rightarrow \frac{3 b-9}{4 a+4}=-1 \\
& \Rightarrow 3 b-9=-4 a-4 \\
& \Rightarrow 4 a+3 b=5 \tag{1}
\end{align*}
$$

Point (a, b) lies on line $3 x$ â $\epsilon^{" 4 y=16 . ~}$
. $.3 a$ â€" $4 b=16 \ldots$... (2)
On solving equations (1) and (2), we obtain
$a=\frac{68}{25}$ and $b=-\frac{49}{25}$
Thus, the required coordinates of the foot of the perpendicular are $\left(\frac{68}{25},-\frac{49}{25}\right)$

Q15 :

The perpendicular from the origin to the line $\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{c}$ meets it at the point ($1,2)$. Find the values of m and c.

Answer:

The given equation of line is $y=m x+c$.
It is given that the perpendicular from the origin meets the given line at (â€"1,2).
Therefore, the line joining the points $(0,0)$ and $(\hat{a} \notin " 1,2)$ is perpendicular to the given line.
\therefore Slope of the line joining $(0,0)$ and $\left(\hat{a} \epsilon^{\prime \prime} 1,2\right)=\frac{2}{-1}=-2$
The slope of the given line is m.
$\therefore m \times-2=-1 \quad$ [The two lines are perpendicular]
$\Rightarrow m=\frac{1}{2}$
Since point $(\hat{a ̂} \in$ " 1,2$)$ lies on the given line, it satisfies the equation $y=m x+c$.

$$
\begin{aligned}
& \therefore 2=m(-1)+c \\
& \Rightarrow 2=\frac{1}{2}(-1)+c \\
& \Rightarrow c=2+\frac{1}{2}=\frac{5}{2}
\end{aligned}
$$

Thus, the respective values of m and c are $\frac{1}{2}$ and $\frac{5}{2}$.

Q16 :

If p and q are the lengths of perpendiculars from the origin to the lines $x \cos \tilde{A} Z ̌ A ̂, ~ y \sin A \tilde{Z} \neq \hat{A},=k \cos$ $2 \tilde{A} Z ̌ \hat{A}$, and $x \sec \tilde{A} Z ̌ A \hat{A}, y \operatorname{cosec} \tilde{A} Z ̌ \hat{A},=k$, respectively, prove that $p^{2}+4 q^{2}=k^{2}$

Answer :

The equations of given lines are x

$$
\begin{equation*}
\cos \theta \hat{a ̂} \epsilon^{\prime \prime} y \sin \theta=k \cos 2 \theta \ldots \text { (1) } x \tag{2}
\end{equation*}
$$

$\sec \theta+y \operatorname{cosec} \theta=k$.
The perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$.
On comparing equation (1) to the general equation of line i.e., $A x+B y+C=0$, we obtain $A=\cos \theta, B=\hat{a} €$ " $\sin \theta$, and $C=\hat{a ̂} \epsilon^{\prime k} k \cos 2 \theta$.

It is given that p is the length of the perpendicular from $(0,0)$ to line (1).

$$
\begin{equation*}
\therefore p=\frac{|A(0)+B(0)+C|}{\sqrt{A^{2}+B^{2}}}=\frac{|C|}{\sqrt{A^{2}+B^{2}}}=\frac{|-k \cos 2 \theta|}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}=|-k \cos 2 \theta| \tag{3}
\end{equation*}
$$

On comparing equation (2) to the general equation of line i.e., $A x+B y+C=0$, we obtain $A=\sec \theta, B=\operatorname{cosec} \theta$, and $C=\hat{a} \neq " k$.

It is given that q is the length of the perpendicular from $(0,0)$ to line (2).

$$
\begin{equation*}
\therefore q=\frac{|A(0)+B(0)+C|}{\sqrt{A^{2}+B^{2}}}=\frac{|C|}{\sqrt{A^{2}+B^{2}}}=\frac{|-k|}{\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}} \tag{4}
\end{equation*}
$$

From (3) and (4), we have

$$
\begin{aligned}
& p^{2}+4 q^{2}=(|-k \cos 2 \theta|)^{2}+4\left(\frac{|-k|}{\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}}\right)^{2} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\sec ^{2} \theta+\operatorname{cosec}^{2} \theta\right)} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta}\right)} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}\right)} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\frac{1}{\sin ^{2} \theta \cos ^{2} \theta}\right)} \\
& =k^{2} \cos ^{2} 2 \theta+4 k^{2} \sin ^{2} \theta \cos ^{2} \theta \\
& =k^{2} \cos ^{2} 2 \theta+k^{2}\left(2 \sin ^{2} \theta \cos ^{2} \theta\right)^{2} \\
& =k^{2} \cos ^{2} 2 \theta+k^{2} \sin ^{2} 2 \theta \\
& =k^{2}\left(\cos ^{2} 2 \theta+\sin ^{2} 2 \theta\right) \\
& =k^{2}
\end{aligned}
$$

Hence, we proved that $p^{2}+4 q^{2}=k^{2}$.

Q17 :
In the triangle $A B C$ with vertices $A(2,3), B(4,-1)$ and $C(1,2)$, find the equation and length of altitude from the vertex A.
Let $A D$ be the altitude of triangle $A B C$ from vertex A.
Accordingly, $A D \perp B C$

Answer:

The equation of the line passing through point $(2,3)$ and having a slope of 1 is
$(y$ â€" 3$)=1(x$ â€"
2) $\Rightarrow x$ â€" $y+1=0$
$\Rightarrow y \hat{a ̂} \epsilon^{\prime \prime} x=1$

Therefore, equation of the altitude from vertex $\mathrm{A}=y \hat{a} €^{\prime \prime} x=1$.
Length of $A D=$ Length of the perpendicular from $A(2,3)$ to $B C$
The equation of $B C$ is
$(y+1)=\frac{2+1}{1-4}(x-4)$
$\Rightarrow(y+1)=-1(x-4)$
$\Rightarrow y+1=-x+4$
$\Rightarrow x+y-3=0$

The perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$ On comparing equation (1) to the general equation of line $A x+B y+C=0$, we obtain $A=1, B=1$, and $C=\hat{a} €$ " 3 .
\therefore Length of $A D=\frac{|1 \times 2+|\times 3-3|}{\sqrt{1^{2}+1^{2}}}$ units $=\frac{|2|}{\sqrt{2}}$ units $=\frac{2}{\sqrt{2}}$ units $=\sqrt{2}$ units
Thus, the equation and the length of the altitude from vertex A are $y \hat{a ̂} €^{\prime} x=1$ and $\sqrt{2}$ units respectively.

Q18 :
If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then
show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

Answer:

It is known that the equation of a line whose intercepts on the axes are a and b is

$$
\begin{align*}
& \frac{x}{a}+\frac{y}{b}=1 \\
& \text { or } b x+a y=a b \\
& \text { or } b x+a y-a b=0 \tag{1}
\end{align*}
$$

The perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$.
On comparing equation (1) to the general equation of line $A x+B y+C=0$, we obtain $A=b, B=a$, and $C=$ â€"ab.

Therefore, if p is the length of the perpendicular from point $\left(x_{1}, y_{1}\right)=(0,0)$ to line (1), we obtain
$p=\frac{|A(0)+B(0)-a b|}{\sqrt{b^{2}+a^{2}}}$
$\Rightarrow p=\frac{|-a b|}{\sqrt{a^{2}+b^{2}}}$
On squaring both sides, we obtain
$p^{2}=\frac{(-a b)^{2}}{a^{2}+b^{2}}$
$\Rightarrow p^{2}\left(a^{2}+b^{2}\right)=a^{2} b^{2}$
$\Rightarrow \frac{a^{2}+b^{2}}{a^{2} b^{2}}=\frac{1}{p^{2}}$
$\Rightarrow \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
Hence, we showed that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Exercise Miscellaneous : Solutions of Questions on Page Number : 233
Q1:

Answer:
Find the values of \boldsymbol{k} for which the line $(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$ is
(a) Parallel to the x-axis,
(b) Parallel to the y-axis,
(c) Passing through the origin.

The given equation of line is
(k â€" 3) x â€" (4 â€" $\left.k^{2}\right) y+k^{2} \hat{a ̂} €^{\prime \prime} 7 k+6=0 \ldots(1)$
(a) If the given line is parallel to the x-axis, then

Slope of the given line $=$ Slope of the x-axis
The given line can be written as

$$
\begin{aligned}
& \left(4 \text { â€" } k^{2}\right) y=\left(k \hat{a} €^{\prime \prime} 3\right) x+k^{2} \hat{a} € " 7 k+6=0 \\
& y=\frac{(k-3)}{\left(4-k^{2}\right)} x+\frac{k^{2}-7 k+6}{\left(4-k^{2}\right)}
\end{aligned}
$$

\therefore Slope of the given line $=\sqrt{\frac{(k-3)}{\left(4-k^{2}\right)}}$
Slope of the x-axis $=0 \quad$, which is of the form $y=m x+c$.

$$
\begin{aligned}
& \therefore \frac{(k-3)}{\left(4-k^{2}\right)}=0 \\
& \Rightarrow k-3=0 \\
& \Rightarrow k=3
\end{aligned}
$$

Thus, if the given line is parallel to the x-axis, then the value of k is 3 .
(b) If the given line is parallel to the y-axis, it is vertical. Hence, its slope will be undefined.

The slope of the given line is $\frac{(k-3)}{\left(4-k^{2}\right)}$.
Now, $\sqrt{\frac{(k-3)}{\left(4-k^{2}\right)}}$ is undefined at $k^{2}=4$
$k^{2}=4 \Rightarrow$
$k= \pm 2$

Thus, if the given line is parallel to the y-axis, then the value of k is ± 2. (c) If the given line is passing through the origin, then point $(0,0)$ satisfies the given equation of line.

$$
\begin{aligned}
& (k-3)(0)-\left(4-k^{2}\right)(0)+k^{2}-7 k+6=0 \\
& k^{2}-7 k+6=0 \\
& k^{2}-6 k-k+6=0 \\
& (k-6)(k-1)=0 \\
& k=1 \text { or } 6
\end{aligned}
$$

Thus, if the given line is passing through the origin, then the value of k is either 1 or 6 .

Q2 :
Find the values of θ and p, if the equation $x \cos \theta+y \sin \theta=p$ is the normal form of the line $\sqrt{3} x+y+2=0$.

Answer :

The equation of the given line is $\sqrt{3} x+y+2=0$.
This equation can be reduced as
$\sqrt{3} x+y+2=0$
$\Rightarrow-\sqrt{3} x-y=2$

On dividing both sides by

$$
\sqrt{(-\sqrt{3})^{2}+(-1)^{2}}=2 \text {, we obtain }
$$

$-\frac{\sqrt{3}}{2} x-\frac{1}{2} y=\frac{2}{2}$
$\Rightarrow\left(-\frac{\sqrt{3}}{2}\right) x+\left(-\frac{1}{2}\right) y=1$
On comparing equation (1) to $x \cos \theta+y \sin \theta=p$, we obtain
$\cos \theta=-\frac{\sqrt{3}}{2}, \sin \theta=-\frac{1}{2}$, and $p=1$
Since the values of $\sin \theta$ and $\cos \theta$ are negative, $\theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}$
Thus, the respective values of θ and p are $\frac{7 \pi}{6}$ and 1

Answer:

Q3 :

Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6 , respectively.

Answer :

Let the intercepts cut by the given lines on the axes be a and b.
It is given that $a+b=1 \ldots$ (1) $a b=\hat{\text { â " }} 6$

On solving equations (1) and (2), we obtain
$a=3$ and $b=\hat{a} € " 2$ or $a=\hat{a} € " 2$ and $b=3$

It is known that the equation of the line whose intercepts on the axes are a and b is
$\frac{x}{a}+\frac{y}{b}=1$ or $b x+a y-a b=0$
Case I: $a=3$ and $b=$ â€" 2
In this case, the equation of the line is â€" $2 x+3 y+6=0$, i.e., $2 x$ â€" $3 y=6$.
Case II: $a=\hat{a} \notin " 2$ and $b=3$
In this case, the equation of the line is $3 x$ â€" $2 y+6=0$, i.e., $\hat{\text { â" }} 3 x+2 y=6$.
Thus, the required equation of the lines are $2 x$ â€" $3 y=6$ and $\hat{a ̂} \in$ " $3 x+2 y=6$.

Q4 :
What are the points on the y-axis whose distance from the line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.

Answer :

Let $(0, b)$ be the point on the y-axis whose distance from line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.
The given line can be written as $4 x+3 y$ â€" $12=0$
On comparing equation (1) to the general equation of line $A x+B y+C=0$, we obtain $A=4, B=3$, and $C=\hat{a} \in$ " 12 . It is known that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by
$d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
Therefore, if $(0, b)$ is the point on the y-axis whose distance from line $\sqrt{\frac{x}{3}+\frac{y}{4}=1}$ is 4 units, then:
$4=\frac{|4(0)+3(b)-12|}{\sqrt{4^{2}+3^{2}}}$
$\Rightarrow 4=\frac{|3 b-12|}{5}$
$\Rightarrow 20=|3 b-12|$
$\Rightarrow 20= \pm(3 b-12)$
$\Rightarrow 20=(3 b-12)$ or $20=-(3 b-12)$
$\Rightarrow 3 b=20+12$ or $3 b=-20+12$
$\Rightarrow b=\frac{32}{3}$ or $b=-\frac{8}{3}$
Thus, the required points are $\left(0, \frac{32}{3}\right)$ and $\left(0,-\frac{8}{3}\right)$.

Q5 :
Find the perpendicular distance from the origin to the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$.

Answer :

The equation of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$ is given by

$$
\begin{aligned}
& y-\sin \theta=\frac{\sin \phi-\sin \theta}{\cos \phi-\cos \theta}(x-\cos \theta) \\
& y(\cos \phi-\cos \theta)-\sin \theta(\cos \phi-\cos \theta)=x(\sin \phi-\sin \theta)-\cos \theta(\sin \phi-\sin \theta) \\
& x(\sin \theta-\sin \phi)+y(\cos \phi-\cos \theta)+\cos \theta \sin \phi-\cos \theta \sin \theta-\sin \theta \cos \phi+\sin \theta \cos \theta=0 \\
& x(\sin \theta-\sin \phi)+y(\cos \phi-\cos \theta)+\sin (\phi-\theta)=0 \\
& A x+B y+C=0, \text { where } A=\sin \theta-\sin \phi, B=\cos \phi-\cos \theta, \text { and } C=\sin (\phi-\theta)
\end{aligned}
$$

It is known that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by

$$
d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}
$$

Therefore, the perpendicular distance (d) of the given line from point $\left(x_{1}, y_{1}\right)=(0,0)$ is

$$
\begin{aligned}
& d=\frac{|(\sin \theta-\sin \phi)(0)+(\cos \phi-\cos \theta)(0)+\sin (\phi-\theta)|}{\sqrt{(\sin \theta-\sin \phi)^{2}+(\cos \phi-\cos \theta)^{2}}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{\sin ^{2} \theta+\sin ^{2} \phi-2 \sin \theta \sin \phi+\cos ^{2} \phi+\cos ^{2} \theta-2 \cos \phi \cos \theta}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\left(\sin ^{2} \phi+\cos ^{2} \phi\right)-2(\sin \theta \sin \phi+\cos \theta \cos \phi)}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{1+1-2(\cos (\phi-\theta))}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{2(1-\cos (\phi-\theta))}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{2\left(2 \sin 2\left(\frac{\phi-\theta}{2}\right)\right)}} \\
& =\frac{|\sin (\phi-\theta)|}{\left|2 \sin \left(\frac{\phi-\theta}{2}\right)\right|}
\end{aligned}
$$

Q6 :

Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines $x-7 y+$ $5=0$ and $3 x+y=0$.

Answer :

The equation of any line parallel to the y-axis is of the form
$x=a \ldots(1)$

The two given lines are
x â€" $7 y+5=0$
$3 x+y=0$
On solving equations (2) and (3), we obtain $x=-\frac{5}{22}$ and $y=\frac{15}{22}$.
Therefore, $\left(-\frac{5}{22}, \frac{15}{22}\right)$ is the point of intersection of lines (2) and (3).

Since line $x=$ a passes through

$$
\left(-\frac{5}{22}, \frac{15}{22}\right), a=-\frac{5}{22} \quad \text { point. }
$$

Thus, the required equation of the

$$
x=-\frac{5}{22}
$$

Q7:
Find the equation of a line drawn perpendicular to the line $\frac{x}{4}+\frac{y}{6}=1$ through the point, where it meets the y-axis.

Answer :

The equation of the given line is $\frac{x}{4}+\frac{y}{6}=1$.
This equation can also be written as $3 x+2 y$ â€" $12=0$

$$
y=\frac{-3}{2} x+6
$$

$$
\text { which is of the form } y=m x+c
$$

..Slope of the given line $=-\frac{3}{2}$
.Slope of line perpendicular to the given line $=-\frac{1}{\left(-\frac{3}{2}\right)}=\frac{2}{3}$
Let the given line intersect the y-axis at $(0, y)$.
On substituting x with 0 in the equation of the given line, we obtain $\frac{y}{6}=1 \Rightarrow y=6$
.:The given line intersects the y-axis at $(0,6)$.
The equation of the line that has a slope of $\sqrt{\frac{2}{3}}$ and passes through point $(0,6)$ is

$$
\begin{aligned}
& (y-6)=\frac{2}{3}(x-0) \\
& 3 y-18=2 x \\
& 2 x-3 y+18=0
\end{aligned}
$$

Thus, the required equation of the line is $2 x-3 y+18=0$

Q8 :

Find the area of the triangle formed by the lines $y-x=0, x+y=0$ and $x-k=0$.

Answer :

The equations of the given lines are
y â€" $x=0 \ldots$ (1) $x+y=0 \ldots$ (2) x
â€" $k=0$

The point of intersection of lines (1) and (2) is given by
$x=0$ and $y=0$

The point of intersection of lines (2) and (3) is given by
$x=k$ and $y=\hat{a} \notin{ }^{\prime \prime} k$

The point of intersection of lines (3) and (1) is given by
$x=k$ and $y=k$

Thus, the vertices of the triangle formed by the three given lines are (0,0), (k, â€" k), and (k, k).
We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is

$$
\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| .
$$

Therefore, area of the triangle formed by the three given lines

$$
\begin{aligned}
& =\frac{1}{2}|0(-k-k)+k(k-0)+k(0+k)| \text { square units } \\
& =\frac{1}{2}\left|k^{2}+k^{2}\right| \text { square units } \\
& =\frac{1}{2}\left|2 k^{2}\right| \text { square units } \\
& =k^{2} \text { square units }
\end{aligned}
$$

Q9:
Find the value of p so that the three lines $3 x+y-2=0, p x+2 y-3=0$ and $2 x-y-3=0$ may intersect at one point.

Answer :

The equations of the given lines are
$3 x+y-2=0$
$p x+2 y-3=0$
$2 x-y-3=0$

On solving equations (1) and (3), we obtain
$x=1$ and $y=-1$

Since these three lines may intersect at one point, the point of intersection of lines (1) and (3) will also satisfy line (2).
$p(1)+2(-1)-3=0 p-2-3=0 p=5$

Thus, the required value of p is 5 .

Q10 :

If three lines whose

$$
y=m_{1} x+c_{1}, y=m_{2} x+c_{2} \text { and } y=m_{3} x+c_{3} \text { are }
$$

equations are
concurrent, then show

$$
m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0
$$

that

Answer :

The equations of the given lines are
$y=m_{1} x+c_{1} \ldots$ (1) $y=m_{2} x+c_{2} \ldots$
(2) $y=m_{3} x+c_{3} \ldots$ (3)

On subtracting equation (1) from (2), we obtain
$0=\left(m_{2}-m_{1}\right) x+\left(c_{2}-c_{1}\right)$
$\Rightarrow\left(m_{1}-m_{2}\right) x=c_{2}-c_{1}$
$\Rightarrow x=\frac{c_{2}-c_{1}}{m_{1}-m_{2}}$
On substituting this value of x in (1), we obtain

$$
\begin{aligned}
& y=m_{1}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{1} \\
& y=\frac{m_{1} c_{2}-m_{1} c_{1}}{m_{1}-m_{2}}+c_{1} \\
& y=\frac{m_{1} c_{2}-m_{1} c_{1}+m_{1} c_{1}-m_{2} c_{1}}{m_{1}-m_{2}} \\
& y=\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}} \\
& \qquad \therefore\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}, \frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\right) \quad \text { is the point of intersection of lines (1) and (2). }
\end{aligned}
$$

It is given that lines (1), (2), and (3) are concurrent. Hence, the point of intersection of lines (1) and (2) will also satisfy
equation (3).

$$
\begin{aligned}
& \frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=m_{3}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{3} \\
& \frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=\frac{m_{3} c_{2}-m_{3} c_{1}+c_{3} m_{1}-c_{3} m_{2}}{m_{1}-m_{2}} \\
& m_{1} c_{2}-m_{2} c_{1}-m_{3} c_{2}+m_{3} c_{1}-c_{3} m_{1}+c_{3} m_{2}=0 \\
& m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0 \\
& \text { Hence, } m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0
\end{aligned}
$$

Q11 :
Find the equation of the lines through the point $(3,2)$ which make an angle of 45° with the line $x-2 y=3$.

Answer :

Let the slope of the required line be m_{1}.
The given line can be $\quad y=\frac{1}{2} x-\frac{3}{2} \quad$ written as , which is of the form $y=m x+c$
\therefore Slope of the given line

$$
m_{2}=\frac{1}{2}
$$

=
It is given that the angle between the required line and line $x \hat{a} €^{\prime \prime} 2 y=3$ is 45°.
We know that if θ isthe acute angle between lines l_{1} and l_{2} with slopes m_{1} and m_{2} respectively, then
$\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|$.

$$
\begin{aligned}
& \therefore \tan 45^{\circ}=\frac{\left|m_{1}-m_{2}\right|}{1+m_{1} m_{2}} \\
& \Rightarrow 1=\left|\frac{\frac{1}{2}-m_{1}}{1+\frac{m_{1}}{2}}\right| \\
& \Rightarrow 1=\left|\frac{\left(\frac{1-2 m_{1}}{2}\right)}{\frac{2+m_{1}}{2}}\right| \\
& \Rightarrow 1=\left|\frac{1-2 m_{1}}{2+m_{1}}\right| \\
& \Rightarrow 1= \pm\left(\frac{1-2 m_{1}}{2+m_{1}}\right) \\
& \Rightarrow 1=\frac{1-2 m_{1}}{2+m_{1}} \text { or } 1=-\left(\frac{1-2 m_{1}}{2+m_{1}}\right) \\
& \Rightarrow 2+m_{1}=1-2 m_{1} \text { or } 2+m_{1}=-1+2 m_{1} \\
& \Rightarrow m_{1}=-\frac{1}{3} \text { or } m_{1}=3
\end{aligned}
$$

Case I: $m_{1}=3$
The equation of the line passing through $(3,2)$ and having a slope of 3 is:
y â€" $2=3(x$ â€" 3$)$
y â€" $2=3 x$ â€" 9
$3 x$ â€" $y=7$
Case II: $m_{1}=-\frac{1}{3}$
The equation of the line passing through $(3,2)$ and having a slope of $-\frac{1}{3}$ is:

$$
\begin{aligned}
& y-2=-\frac{1}{3}(x-3) \\
& 3 y-6=-x+3 \\
& x+3 y=9
\end{aligned}
$$

Thus, the equations of the lines are $3 x$ â€" $y=7$ and $x+3 y=9$.

Find the equation of the line passing through the point of intersection of the lines $4 x+7 y-3=0$ and $2 x-3 y+$ $1=0$ that has equal intercepts on the axes.

Answer :

Let the equation of the line having equal intercepts on the axes be
$\frac{x}{a}+\frac{y}{a}=1$
Or $x+y=a$
On solving equations $4 x+7 y$ â€" $3=0$ and $2 x$ â€" $3 y+1=0$, we obtain $x=\frac{1}{13}$ and $y=\frac{5}{13}$
$\therefore\left(\frac{1}{13}, \frac{5}{13}\right)$ is the point of intersection of the two given lines.
Since equation (1) passes through point $\left(\frac{1}{13}, \frac{5}{13}\right)$,
$\frac{1}{13}+\frac{5}{13}=a$
$\Rightarrow a=\frac{6}{13}$
\therefore Equation (1)

$$
x+y=\frac{6}{13} \text {, i.e., } 13 x+13 y=6
$$

Thus, the required

$$
13 x+13 y=6
$$

becomes
equation of the line is

Exercise Miscellaneousmiscellaneous : Solutions of Questions on Page Number : 234
Q1:
Show that the equation of the line passing through the origin and making an angle θ with the line $y=m x+\operatorname{cis} \frac{y}{x}=\frac{m \pm \tan \theta}{1 \mp m \tan \theta}$

Answer :

Let the equation of the line passing through the origin be $y=m_{1} x$.
If this line makes an angle of θ with line $y=m x+c$, then angle θ is given by

$$
\therefore \tan \theta=\left|\frac{m_{1}-m}{1+m_{1} m}\right|
$$

$$
\Rightarrow \tan \theta=\left|\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right|
$$

$$
\Rightarrow \tan \theta= \pm\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)
$$

$$
\Rightarrow \tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m} \text { or } \tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)
$$

Case I:

$$
\tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}
$$

$$
\begin{aligned}
& \tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m} \\
& \Rightarrow \tan \theta+\frac{y}{x} m \tan \theta=\frac{y}{x}-m \\
& \Rightarrow m+\tan \theta=\frac{y}{x}(1-m \tan \theta) \\
& \Rightarrow \frac{y}{x}=\frac{m+\tan \theta}{1-m \tan \theta}
\end{aligned}
$$

Case II:

$$
\tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)
$$

$$
\begin{aligned}
& \tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right) \\
& \Rightarrow \tan \theta+\frac{y}{x} m \tan \theta=-\frac{y}{x}+m \\
& \Rightarrow \frac{y}{x}(1+m \tan \theta)=m-\tan \theta \\
& \Rightarrow \frac{y}{x}=\frac{m-\tan \theta}{1+m \tan \theta}
\end{aligned}
$$

Therefore, the required line is given by $\frac{y}{x}=\frac{m \pm \tan \theta}{1 \mp m \tan \theta}$

Q2 :

In what ratio, the line joining $(-1,1)$ and $(5,7)$ is divided by the line $x+y=4$?

Answer :

The equation of the line joining the points (\hat{a} €" 1,1) and $(5,7)$ is given by
$y-1=\frac{7-1}{5+1}(x+1)$
$y-1=\frac{6}{6}(x+1)$
$x-y+2=0$
The equation of the given line is
$x+y$ â€" $4=0$

The point of intersection of lines (1) and (2) is given by
$x=1$ and $y=3$

Let point $(1,3)$ divide the line segment joining (â€" 1,1) and $(5,7)$ in the ratio $1: k$. Accordingly, by section formula,

$$
\begin{aligned}
& (1,3)=\left(\frac{k(-1)+1(5)}{1+k}, \frac{k(1)+1(7)}{1+k}\right) \\
& \Rightarrow(1,3)=\left(\frac{-k+5}{1+k}, \frac{k+7}{1+k}\right) \\
& \Rightarrow \frac{-k+5}{1+k}=1, \frac{k+7}{1+k}=3 \\
& \therefore \frac{-k+5}{1+k}=1 \\
& \Rightarrow-k+5=1+k \\
& \Rightarrow 2 k=4 \\
& \Rightarrow k=2
\end{aligned}
$$

Thus, the line joining the points ($\hat{\mathrm{a}} €^{\prime \prime} 1,1$) and $(5,7)$ is divided by line $x+y=4$ in the ratio 1:2.

Q3 :
Find the distance of the line $4 x+7 y+5=0$ from the point $(1,2)$ along the line $2 x-y=0$.

Answer :

The given lines are
$2 x$ â€" $y=0 \ldots$ (1)
$4 x+7 y+5=0$
A $(1,2)$ is a point on line (1).
Let B be the point of intersection of lines (1) and (2).

On solving equations (1)

$$
x=\frac{-5}{18} \text { and } y=\frac{-5}{9} .
$$

and (2), we obtain
$\begin{aligned} & \text {.Coordinates of point } B \\ & \text { are }\end{aligned}\left(\frac{-5}{18}, \frac{-5}{9}\right)$.
By using distance formula, the distance between points A and B can be obtained as
$\mathrm{AB}=\sqrt{\left(1+\frac{5}{18}\right)^{2}+\left(2+\frac{5}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{18}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{2 \times 9}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{9}\right)^{2}\left(\frac{1}{2}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{9}\right)^{2}\left(\frac{1}{4}+1\right)}$ units
$=\frac{23}{9} \sqrt{\frac{5}{4}}$ units
$=\frac{23}{9} \times \frac{\sqrt{5}}{2}$ units
$=\frac{23 \sqrt{5}}{18}$ units
Thus, the required distance is $\frac{23 \sqrt{5}}{18}$ units

Q4 :

Find the direction in which a straight line must be drawn through the point (-1, 2) so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.

Answer :

Let $y=m x+c$ be the line through point ($\mathfrak{a} €^{\prime \prime} 1,2$).
Accordingly, $2=m(a ̂ \notin " 1)+c$.
$\Rightarrow 2=\hat{a ̂} \epsilon^{\prime \prime} m+c \Rightarrow c=$
$m+2: y=m x+m+2$
... (1) The given line is
$x+y=4 \ldots$

On solving equations (1) and (2), we obtain
$x=\frac{2-m}{m+1}$ and $y=\frac{5 m+2}{m+1}$
$\therefore\left(\frac{2-m}{m+1}, \frac{5 m+2}{m+1}\right)$ is the point of intersection of lines (1) and (2).
Since this point is at a distance of 3 units from point (â€ " 1,2), according to distance formula,

$$
\begin{aligned}
& \sqrt{\left(\frac{2-m}{m+1}+1\right)^{2}+\left(\frac{5 m+2}{m+1}-2\right)^{2}}=3 \\
& \Rightarrow\left(\frac{2-m+m+1}{m+1}\right)^{2}+\left(\frac{5 m+2-2 m-2}{m+1}\right)^{2}=3^{2} \\
& \Rightarrow \frac{9}{(m+1)^{2}}+\frac{9 m^{2}}{(m+1)^{2}}=9 \\
& \Rightarrow \frac{1+m^{2}}{(m+1)^{2}}=1 \\
& \Rightarrow 1+m^{2}=m^{2}+1+2 m \\
& \Rightarrow 2 m=0 \\
& \Rightarrow m=0
\end{aligned}
$$

Thus, the slope of the required line must be zero i.e., the line must be parallel to the x-axis.

Q5 : The hypotenuse of a right angled triangle has its ends at the points $(1,3)$ and $(-4,1)$. Find the equation of the legs (perpendicular sides) of the triangle.

Answer :

Let $\mathrm{A}(1,3)$ and $\mathrm{B}(-4,1)$ be the coordinates of the end points of the hypotenuse.
Now, plotting the line segment joining the points $A(1,3)$ and $B(-4,1)$ on the coordinate plane, we will get two right triangles with AB as the hypotenuse. Now from the diagram, it is clear that the point of intersection of the other two legs of the right triangle having $A B$ as the hypotenuse can be either P or Q.

CASE 1: When /" APB is taken.
The perpendicular sides in $\angle " \mathrm{APB}$ are AP and PB.
Now, side PB is parallel to x-axis and at a distance of 1 units above x-axis.
So, equation of PB is, $y=1$ or $y-1=0$.
The side AP is parallel to y-axis and at a distance of 1 units on the right of y-axis.
So, equation of AP is $x=1$ or $x-1=0$.
CASE 2: When $\angle " A Q B$ is taken.
The perpendicular sides in \angle " $A Q B$ are $A Q$ and $Q B$.
Now, side $A Q$ is parallel to x-axis and at a distance of 3 units above x-axis.
So, equation of $A Q$ is, $y=3$ or $y-3=0$.
The side QB is parallel to y-axis and at a distance of 4 units on the left of y-axis.
So, equation of QB is $x=-4$ or $x+4=0$.
Hence, the equation of the legs are :
$x=1, y=1$ or $x=-4, y=3$

Q6:
Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.

Answer :

The equation of the given line is
$x+3 y=7 \ldots(1)$

Let point $\mathrm{B}(a, b)$ be the image of point $\mathrm{A}(3,8)$.
Accordingly, line (1) is the perpendicular bisector of AB.

Slope of $\mathrm{AB}=\frac{b-8}{a-3}$, while the slope of line $(1)=-\frac{1}{3}$
Since line (1) is perpendicular to $A B$,

$$
\begin{align*}
& \left(\frac{b-8}{a-3}\right) \times\left(-\frac{1}{3}\right)=-1 \\
& \Rightarrow \frac{b-8}{3 a-9}=1 \\
& \Rightarrow b-8=3 a-9 \\
& \Rightarrow 3 a-b=1 \tag{2}
\end{align*}
$$

Mid-point of $\mathrm{AB}=\left(\frac{a+3}{2}, \frac{b+8}{2}\right)$
The mid-point of line segment $A B$ will also satisfy line (1).
Hence, from equation (1), we have

$$
\begin{align*}
& \left(\frac{a+3}{2}\right)+3\left(\frac{b+8}{2}\right)=7 \\
& \Rightarrow a+3+3 b+24=14 \\
& \Rightarrow a+3 b=-13 \tag{3}
\end{align*}
$$

On solving equations (2) and (3), we obtain $a=\hat{a} € " 1$ and $b=\hat{a} € " 4$.
Thus, the image of the given point with respect to the given line is (â€"1, â€"4).

Q7 :

If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$, find the value of m.

Answer :

The equations of the given lines are
$y=3 x+1 \ldots$ (1) $2 y=x+3 \ldots$ (2)
$y=m x+4 \ldots$ (3)
Slope of line (1), $m_{1}=3$

Slope of line (2), $m_{2}=\frac{1}{2}$
Slope of line (3), $m_{3}=m$
It is given that lines (1) and (2) are equally inclined to line (3). This means that
the angle between lines (1) and (3) equals the angle between lines (2) and (3).

$$
\begin{aligned}
& \therefore\left|\frac{m_{1}-m_{3}}{1+m_{1} m_{3}}\right|=\left|\frac{m_{2}-m_{3}}{1+m_{2} m_{3}}\right| \\
& \Rightarrow\left|\frac{3-m}{1+3 m}\right|=\left|\frac{\frac{1}{2}-m}{1+\frac{1}{2} m}\right| \\
& \Rightarrow\left|\frac{3-m}{1+3 m}\right|=\left|\frac{1-2 m}{m+2}\right| \\
& \Rightarrow \frac{3-m}{1+3 m}= \pm\left(\frac{1-2 m}{m+2}\right) \\
& \Rightarrow \frac{3-m}{1+3 m}=\frac{1-2 m}{m+2} \text { or } \frac{3-m}{1+3 m}=-\left(\frac{1-2 m}{m+2}\right) \\
& \text { If } \frac{3-m}{1+3 m}=\frac{1-2 m}{m+2}, \text { then } \\
& (3-m)(m+2)=(1-2 m)(1+3 m) \\
& \Rightarrow-m^{2}+m+6=1+m-6 m^{2} \\
& \Rightarrow 5 m^{2}+5=0 \\
& \Rightarrow\left(m^{2}+1\right)=0 \\
& \Rightarrow m=\sqrt{-1}, \text { which is not real }
\end{aligned}
$$

Hence, this case is not posible.

If $\frac{3-m}{1+3 m}=-\left(\frac{1-2 m}{m+2}\right)$, then
$\Rightarrow(3-m)(m+2)=-(1-2 m)(1+3 m)$
$\Rightarrow-m^{2}+m+6=-\left(1+m-6 m^{2}\right)$
$\Rightarrow 7 m^{2}-2 m-7=0$
$\Rightarrow m=\frac{2 \pm \sqrt{4-4(7)(-7)}}{2(7)}$
$\Rightarrow m=\frac{2 \pm 2 \sqrt{1+49}}{14}$
$\Rightarrow m=\frac{1 \pm 5 \sqrt{2}}{7}$
Thus, the required value of m is $\frac{1 \pm 5 \sqrt{2}}{7}$

Q8 :
If sum of the perpendicular distances of a variable point $P(x, y)$ from the lines $x+y-5=0$ and $3 x-2 y+7=0$ is always 10 . Show that P must move on a line.

Answer :
The equations of the given lines are
$x+y$ ấ $\epsilon^{\prime} 5=0$
$3 x$ âє" $2 y+7=0$
The perpendicular distances of $P(x, y)$ from lines (1) and (2) are respectively given by
$d_{1}=\frac{|x+y-5|}{\sqrt{(1)^{2}+(1)^{2}}}$ and $d_{2}=\frac{|3 x-2 y+7|}{\sqrt{(3)^{2}+(-2)^{2}}}$
i.e., $d_{1}=\frac{|x+y-5|}{\sqrt{2}}$ and $d_{2}=\frac{|3 x-2 y+7|}{\sqrt{13}}$

It is given that $d_{1}+d_{2}=10$
$\therefore \frac{|x+y-5|}{\sqrt{2}}+\frac{|3 x-2 y+7|}{\sqrt{13}}=10$
$\Rightarrow \sqrt{13}|x+y-5|+\sqrt{2}|3 x-2 y+7|-10 \sqrt{26}=0$
$\Rightarrow \sqrt{13}(x+y-5)+\sqrt{2}(3 x-2 y+7)-10 \sqrt{26}=0$
[Assuming $(x+y-5)$ and $(3 x-2 y+7)$ are positive]
$\Rightarrow \sqrt{13} x+\sqrt{13} y-5 \sqrt{13}+3 \sqrt{2} x-2 \sqrt{2} y+7 \sqrt{2}-10 \sqrt{26}=0$
$\Rightarrow x(\sqrt{13}+3 \sqrt{2})+y(\sqrt{13}-2 \sqrt{2})+(7 \sqrt{2}-5 \sqrt{13}-10 \sqrt{26})=0$, which is the equation of a line.
Similarly, we can obtain the equation of line for any signs of $(x+y-5)$ and $(3 x-2 y+7)$.
Thus, point P must move on a line.

Q9:
Find equation of the line which is equidistant from parallel lines $9 x+6 y-7=0$ and $3 x+2 y+6=0$.

Answer :

The equations of the given lines are

$$
\begin{align*}
& 9 x+6 y \text { â€" } 7=0 \tag{1}\\
& 3 x+2 y+6=0 \ldots \tag{2}
\end{align*}
$$

Let $P(h, k)$ be the arbitrary point that is equidistant from lines (1) and (2). The perpendicular distance of $P(h, k)$ from line (1) is given by

$$
d_{1}=\frac{|9 h+6 k-7|}{(9)^{2}+(6)^{2}}=\frac{|9 h+6 k-7|}{\sqrt{117}}=\frac{|9 h+6 k-7|}{3 \sqrt{13}}
$$

The perpendicular distance of $P(h, k)$ from line (2) is given by

$$
d_{2}=\frac{|3 h+2 k+6|}{\sqrt{(3)^{2}+(2)^{2}}}=\frac{|3 h+2 k+6|}{\sqrt{13}}
$$

Since $\mathrm{P}(h, k)$ is equidistant from lines (1) and (2), $d_{1}=d_{2}$

$$
\begin{aligned}
& \therefore \frac{9 h+6 k-7 \mid}{3 \sqrt{13}}=\frac{3 h+2 k+6}{\sqrt{13}} \\
& \Rightarrow|9 h+6 k-7|=3|3 h+2 k+6| \\
& \Rightarrow|9 h+6 k-7|= \pm 3(3 h+2 k+6) \\
& \Rightarrow 9 h+6 k-7=3(3 h+2 k+6) \text { or } 9 h+6 k-7=-3(3 h+2 k+6)
\end{aligned}
$$

The case $9 h+6 k-7=3(3 h+2 k+6)$ is not possible as
$9 h+6 k-7=3(3 h+2 k+6) \Rightarrow-7=18$ (which is absurd)

$$
9 h+6 k-7=-3(3 h+2 k+6)
$$

$9 h+6 k$ â $\epsilon^{"} 7=\hat{a ̂} \epsilon^{"} 9 h$ âє" $6 k \hat{a ̂} \epsilon^{"} 18$
$\Rightarrow 18 h+12 k+11=0$
Thus, the required equation of the line is $18 x+12 y+11=0$.

Q10 :

A ray of light passing through the point $(1,2)$ reflects on the x-axis at point A and the reflected ray passes through the point $(5,3)$. Find the coordinates of A.

Answer :

Let the coordinates of point A be $(a, 0)$.
Draw a line (AL) perpendicular to the x-axis.
We know that angle of incidence is equal to angle of reflection. Hence, let
$\angle \mathrm{BAL}=\angle \mathrm{CAL}=\Phi$
Let $\angle C A X=\theta$
$\therefore \angle \mathrm{OAB}=180^{\circ}$ â $€^{\prime \prime}(\theta+2 \Phi)=180^{\circ}$ â $€^{\prime \prime}\left[\theta+2\left(90^{\circ} \hat{a} €^{\prime \prime} \theta\right)\right]$
$=180^{\circ} \hat{a} €^{\prime \prime} \theta$ â€" $180^{\circ}+2 \theta$
$=\theta$
$\therefore \angle B A X=180^{\circ}$ â€ " θ
Now, slope of line $\mathrm{AC}=\frac{3-0}{5-a}$
$\Rightarrow \tan \theta=\frac{3}{5-a}$
Slope of line $\mathrm{AB}=\frac{2-0}{1-a}$
$\Rightarrow \tan \left(180^{\circ}-\theta\right)=\frac{2}{1-a}$
$\Rightarrow-\tan \theta=\frac{2}{1-a}$
$\Rightarrow \tan \theta=\frac{2}{a-1}$
From equations (1) and (2), we obtain
$\frac{3}{5-a}=\frac{2}{a-1}$
$\Rightarrow 3 a-3=10-2 a$
$\Rightarrow a=\frac{13}{5}$
Thus, the coordinates of point A are $\left(\frac{13}{5}, 0\right)$.

Q11 :
Prove that the product of the lengths of the perpendiculars drawn from the
points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ is b^{2}.

Answer :

The equation of the given line is

$$
\begin{align*}
& \frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1 \\
& \text { Or, } b x \cos \theta+a y \sin \theta-a b=0 \tag{1}
\end{align*}
$$

Length of the perpendicular from point $\sqrt{\left(\sqrt{a^{2}-b^{2}}, 0\right)}$ to line (1) is
$p_{1}=\frac{\left|b \cos \theta\left(\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}$
Length of the perpendicular from point $\sqrt{\left(-\sqrt{a^{2}-b^{2}}, 0\right)}$ to line (2) is

$$
\begin{equation*}
p_{2}=\frac{\left|b \cos \theta\left(-\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \tag{3}
\end{equation*}
$$

On multiplying equations (2) and (3), we obtain

$$
\begin{aligned}
& p_{1} p_{2}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right|\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right)\right|}{\left(\sqrt{\left.b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)^{2}}\right.} \\
& =\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right)\left(b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right)\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}\right)^{2}-(a b)^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left|b^{2} \cos ^{2} \theta\left(a^{2}-b^{2}\right)-a^{2} b^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left|a^{2} b^{2} \cos ^{2} \theta-b^{4} \cos ^{2} \theta-a^{2} b^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2} \sin ^{2} \theta-a^{2} \cos ^{2} \theta\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left|-\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)\right|}{b^{2} \theta+\cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =b^{2}
\end{aligned}
$$

Hence, proved.

Q12 :

A person standing at the junction (crossing) of two straight paths represented by the equations $2 x-3 y+4=$ 0 and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find equation of the path that he should follow.

Answer :

The equations of the given lines are
$2 x$ â€" $3 y+4=0$.
$3 x+4 y$ â ${ }^{\prime \prime} 5=0$
$6 x$ â€" $7 y+8=0$
The person is standing at the junction of the paths represented by lines (1) and (2).
On solving equations (1) and (2), $\quad x=-\frac{1}{17}$ and $y=\frac{22}{17} \quad$ we obtain.

$$
\left(-\frac{1}{17}, \frac{22}{17}\right)
$$

Thus, the person is standing at $\quad\left(-\frac{1}{17}, \frac{22}{17}\right)$. we obtain. point

The person can reach path (3) in the least time if he walks along the perpendicular line to (3) from point $\left(-\frac{1}{17}, \frac{22}{17}\right)$.

Slope of the line (3) $=\frac{6}{7}$
..Slope of the line perpendicular to line

$$
=-\frac{1}{\left(\frac{6}{7}\right)}=-\frac{7}{6}
$$

(3) through and having a slope of $-\frac{7}{6}$ is given by
The equation of the line passing

$$
\left(-\frac{1}{17}, \frac{22}{17}\right)
$$

$\left(y-\frac{22}{17}\right)=-\frac{7}{6}\left(x+\frac{1}{17}\right)$
$6(17 y-22)=-7(17 x+1)$
$102 y-132=-119 x-7$
$119 x+102 y=125$
Hence, the path that the person should follow is $119 x+102 y=125$.

