JEE (ADVANCE) - 2016 CHEMISTRY

SECTION 1 (Maximum Marks: 18)

- This section contains **SIX** questions
- Each question has FOUR option (A), (B), (C) and (D). **ONLY ONE** of these four option is correct.
- For each question, darken the bubble corresponding to the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:

Full Marks : +3 If only the bubble corresponding to the correct answer is darkened.

Zero Marks : 0 If none of the bubbles is darkened.

Negative Marks: -1 In all other cases.

19. For the following electrochemical cell at 298 K,

$$Pt(s)|H_2(g,1bar)|H^+(aq,1M)||M^{4+}(aq),M^{2+}(aq)|Pt(s)$$

$$E_{cell} = 0.092V \ when \frac{\left[M^{2+}\left(aq\right)\right]}{\left\lceil M^{4+}\left(aq\right)\right\rceil} = 10^{x}$$

Given:
$$E_{M^{4+}M^{2+}}^{0} = 0.151V; 2.303 \frac{RT}{F} = 0.059V$$

The value of x is

$$(A) -2$$

$$(B) -1$$

Key (D)

Sol:
$$H_2 + M^{4+} \rightarrow 2H^+ + M^{2+}$$

$$E_{cell} = 0.151 - \frac{0.059}{2} log \frac{\left[M^{^{2+}}\right] \left[H^{^{+}}\right]^2}{\left\lceil M^{^{4+}}\right\rceil}$$

$$\Rightarrow 0.092 = 0.151 - \frac{0.059}{2} log \frac{\left[M^{2+}\right]}{\left[M^{4+}\right]}$$

$$\Rightarrow -.059 = -\frac{0.059}{2} log \frac{\left[M^{2^{+}}\right]}{\left[M^{4^{+}}\right]}$$

$$\Rightarrow \log \frac{\left\lceil M^{2+} \right\rceil}{\left\lceil M^{4+} \right\rceil} = 2$$

$$\Rightarrow \frac{\left[M^{2+}\right]}{\left[M^{4+}\right]} = 10^2$$

$$\therefore x = 2$$

20. The correct order of acidity for the following compounds is

Key (A)

Sol: Due to ortho effect

II is more acidic than

III and IV

- 21. The geometries of the ammonia complexes of Ni²⁺, Pt²⁺ and Zn²⁺, respectively, are (A) octahedral, square planar and tetrahedral (B) square planar, octahedral and tetrahedral
 - (C) tetrahedral, square planar and octahedral (D) octahedral, tetrahedral and square planar

Key (A)

Sol: $\left[Ni(NH_3)_6\right]^{+2}$ Octahedral

 $\left[{\rm Pt} {\left({\rm NH_3} \right)_4} \right]^{ + 2} \qquad \qquad {\rm Square \; Planar}$

 $\left[\operatorname{Zn}(\operatorname{NH}_3)_4\right]^{+2}$ Tetrahedral

22. The qualitative sketches I, II and III given below show the variation of surface tension with molar concentration of three different aqueous solution of KCl, CH₃OH and CH₃(CH₂)₁₁OSO₃⁻ Na⁺ at room temperature. The correct assignment of the sketches is

(A) I : KCl

II: CH₃OH

III: CH₃(CH₂)₁₁OSO₃Na⁺

(B) $I: CH_3(CH_2)_{11} OSO_3^-Na^+ II: CH_3OH$

III: KCl

(C) I : KCl

 $II: CH_3 (CH_2)_{11} OSO_3^-Na^+$

III: CH₃OH

(D) I : CH₃OH

II: KCl

III : $CH_3(CH_2)_{11}OSO_3^-Na^+$

Key (D)

Sol: organic solvents decreases surface tension, electrolytes increases it partially. Surfactant drastically reduces the surface tension.

In the following reaction sequence in aqueous solution, the species X, Y and Z, respectively, 23. are

$$\begin{split} S_2O_3^{2-} \xrightarrow{Ag^+} & \underset{\text{Clear solution}}{X} \xrightarrow{Ag^+} & \underset{\text{precipitate}}{Y} \xrightarrow{\text{With time}} & \underset{\text{precipitate}}{Y} \\ (A) & \left[Ag(S_2O_3)_2\right]^{3-}, Ag_2S_2O_3, Ag_2S & (B) & \left[Ag(S_2O_3)_3\right]^{5-}, Ag_2SO_3, Ag_2S \\ (C) & \left[Ag(SO_3)_2\right]^{3-}, Ag_2S_2O_3, Ag & (D) & \left[Ag(SO_3)_3\right]^{3-}, Ag_2SO_4, Ag \end{split}$$

(A) Key

$$Sol: \quad S_2O_3^{2^-} \xrightarrow{Ag^+} \left[Ag \left(S_2O_3 \right)_2 \right]^{3^-} \xrightarrow{Ag^+} Ag_2S_2O_3 \xrightarrow{\text{With time}} Y_{\text{Black precipitate}}$$

$$Ag_2S_2O_3H_2O \rightarrow Ag_2S + H_2SO_4$$

The major product of the following reaction sequence is 24.

Key (D)

SECTION 2 (Maximum Marks: 18)

- This section contains **EIGHT** questions
- Each question has Four options (A), (B), (C) and (D) ONE OR MORE THAN ONE of these four option(s) is (are) correct.
- For each question, marks will be awarded in one of the following categories :

Full Marks : +4 if only the bubble(s) corresponding to all the correct option(s) is

(are) darkened.

Zero Marks : 0 if none of the bubbles is darkened.

Negative Marks: –2 in all other cases

- For example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (A) and (D) will result in +2 marks; and darkening (A) and (B) will result in -2 marks, as a wrong option is also darkened.
- 25. For "invert sugar" the correct statement(s) is (are)

(Given: specific rotations of (+)-sucrose, (+)-maltose, L-(-)-glucose and L-(+)-fructose in aqueous solution are $+66^{\circ}$, $+140^{\circ}$, $+66^{\circ}$, -52° , and $+92^{\circ}$, respectively)

- (A) invert sugar is prepared by acid catalyzed hydrolysis of maltose
- (B) invert sugar is an equimolar mixture of D-(+)glucose and D-(+)-fructose
- (C) specific rotation of invert sugar is -20°
- (D) on reaction with Br₂ water, invert sugar forms saccharic acid as one of the products

Key (B, C)

- Sol: Sucrose on hydrolysis gives equimolar mixture of glucose and fructose called invert sugar. The optical rotation of hydrolysis products are $+52.5^{\circ}$ and -92.8° . The resulting rotation of the solution is -20° .
- 26. mixture(s) showing positive deviation from Raoult's law at 35° is (are)
 - (A) carbon tetrachloride + methanol
 - (B) carbon disulphide + acetone
 - (C) benzene + toluene
 - (D) phenol + aniline

Key (A, B)

Sol: The intermolecular forces (hydrogen bonds in methanol) become weaker when carbon tetrachloride is added into methanol which results into positive deviation.

The intermolecular forces become weaker when CS_2 (non-polar) is added into acetone (polar) which results into positive deviation.

Benzene and toluene forms form ideal solution

Phenol and acetone leads to show negative deviation

- 27. The **CORRECT** statement(s) for cubic close (ccp) three dimensional structure is(are)
 - (A) the number of nearest neighboring of an atom present in the topmost layer is 12

JEE-Adv-2016-P2 4

- (B) the efficiency of atom packing is 74%
- (C) the number of octahedral and tetrahedral voids per atom are 1 and 2 respectively
- (D) thw unit cell edge length is $2\sqrt{2}$ times the radius of the atom

Key (B, C, D)

28. Reagent(s) which can be used to bring about the following transformation is (are)

(A) LiAlH₄ in $(C_2H_5)_2O$

(B) BH₃ in THF

(C) NaBH₄ in C₂H₅OH

(D) Raney Ni/H₂ in THF

Key (C

Sol: NaBH₄ in C₂H₅OH will reduce only aldehyde group in given structure to form desired product.

29. Among the following, reaction(s) *tert*-butyl benzene as the major product is (are)

$$(A) \qquad NaOC_2H_5 \qquad (B) \qquad AlCl_3$$

$$(C) \qquad H_2SO_4 \qquad (D) \qquad BF_3OEt_2$$

Key (B, C, D)

Sol:

$$H_{3}C-CH-CH_{2}-Cl\xrightarrow{AlCl_{3}} H_{3}C-CH-\overset{\oplus}{C}H_{2}\xrightarrow{1,2H^{-}\atop Shift}} H_{3}C-\overset{C}{C}-CH_{3}$$

$$\downarrow CH_{3}$$

$$\downarrow CH_{3}$$

$$\downarrow CCH_{3}$$

⇒ In BF₃.OEt₂ alcohol will give carbocation

30. Extraction of copper from copper pyrite (CuFeS₂) involves (A) crushing followed by concentration of the ore by froth flotation

- (B) removal of iron as slag
- (C) self-reduction step to produce 'Blister copper' following evolution of SO₂
- (D) refining of 'blister copper' by carbon reduction
- Key (A, B, C)
- Sol: $CuFeS_2 \xrightarrow{Crushed}$ concentration by froth floatation method

$$CuFeS_2 + O_2 \longrightarrow Cu_2S + 2FeS + SO_2$$

$$2\text{FeS} + 3\text{O}_2 \longrightarrow 2\text{FeO} + 2\text{SO}_2$$

$$\text{FeO} + \underset{\text{Flux}}{\text{SiO}_2} \longrightarrow \text{FeSiO}_3 \left(\text{slag}\right)$$

$$2Cu_2O + Cu_2S \xrightarrow{\text{Auto}} 6Cu_2 + 4g_2$$

Blister—copper

- 31. According to Molecular Orbital Theory,
 - (A) C₂²⁻ is expected to be diamagnetic
 - (B) O_2^{2+} is expected to have a longer bond length than O_2
 - $(C) N_2^+$ and N_2^- have same bond order
 - (D) He₂⁺ has the same energy as two isolated He atom
- Key (A, C)

Sol:
$$\begin{pmatrix} C_z^{2-} \\ (14e^-) \end{pmatrix}$$
 $\sigma ls^2 \sigma^* ls^2, \sigma 2s^2 \sigma^* 2s^2, \pi 2p_x^2 = \pi 2p_y^2, \sigma 2p_z^2$

: It is diamagnetic

$$O_2^{2^-}$$
 $(14e^-)$ $\sigma ls^2 \sigma^* ls^2, \sigma 2s^2 \sigma^* 2s^2, \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2$

 \therefore Bond order = 3

Whereas O_2 has bond order = 2

 \therefore O_2^{2+} has less bond length than O_2

$$\frac{N_{2}^{+}}{\left(13e^{-}\right)} \ \sigma ls^{2} \ \sigma^{*} ls^{2}, \sigma 2s^{2} \ \sigma^{*} 2s^{2}, \pi 2p_{x}^{2} = \pi 2p_{y}^{2}, \pi 2p_{z}^{1}$$

:. Bond order = (9-4)/2 = 2.5

$$\frac{N_{2}^{-}}{(15e^{-})} \sigma ls^{2} \sigma^{*} ls^{2}, \sigma 2s^{2} \sigma^{*} 2s^{2}, \pi 2p_{x}^{2} = \pi 2p_{y}^{2}, \pi 2p_{z}^{2}$$

 \therefore Bond order= (10-5)/2 = 2.5

 He_2^+ has bond order = 0.5

- :. It has different energy than two isolated He atom
- 32. The nitrogen containing compound produced in the reaction of HNO₃with P₄O₁₀
 - (A) can also be prepared by reaction of P₄ and HNO₃
 - (B) is diamagnetic

(C) contains one N-N bond

(D) reacts with Na metal producing a brown gas

Key (B, D)

Sol:
$$HNO_3 + P_4O_{10} \rightarrow N_2O_5 + HPO_3$$

Section 3 (Maximum Marks: 12)

- This section contains TWO paragraph.
- Based on each paragraph, there are **TWO** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is correct.
- For each question darken the bubble corresponding to the correct option in the ORS.
- For each question marks will e awarded in one of the following categories

Full marks: +3 If only the bubble corresponding to the correct option is darkened.

Zero marks: 0 In all other cases

COMPREHENSIVE

PARAGRAPH 1

Thermal decomposition of gaseous X_2 to gaseous X at 298 K takes place according to the following equations

$$X_2(g)$$
 † $^{\uparrow}$ $^{\uparrow}$ $2X(g)$

The standard reaction Gibbs energy, Δ , G^o , of this reaction is positive. At the start of the reaction, there is one mole of X_2 and no X as the reaction proceed the number of moles of X formed is given by β . Thus $\beta_{equilbrium}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally.(Given: R = 0.083 L bar $K^{-1}mol^{-1}$

33. The equilibrium K_P for this reaction at 298 K, in terms of $\beta_{equilibrium}$, is

(A)
$$\frac{8\beta_{equilibrium}^2}{2 - \beta_{equilibrium}}$$

(B)
$$\frac{8\beta_{equilibrium}^2}{4 - \beta_{equilibrium}^2}$$

(C)
$$\frac{4\beta_{equilibrium}^2}{2 - \beta_{equilibrium}}$$

(D)
$$\frac{4\beta_{equilibrium}^2}{4-\beta_{equilibrium}^2}$$

Key (B)

$$\begin{aligned} \text{Sol:} \qquad & x_2(g) \hat{\ddagger} \ \hat{\uparrow} \ 2 \times (g) \\ & x_2(g) \hat{\ddagger} \ \hat{\uparrow} \ 2 \times (g) \\ & t = 0 \qquad 1 \qquad 0 \\ & t = t_{eq} \qquad 1 - \alpha \qquad 2\alpha \\ & 2\alpha = \beta_{eq} \\ & \Rightarrow 4\alpha^2 = \left(\beta_{eq}\right)^2 ...(i) \\ & k_p = \frac{\left(\frac{2\alpha}{1+\alpha}.P_t\right)^2}{\left(\frac{1-\alpha}{1+\alpha}.P_t\right)} = \left(\frac{4\alpha^2}{1-\alpha^2}\right) (P_t) \\ & K_P = \frac{8\beta_{eq}^2}{4 - \left(\beta_{eq}\right)^2} \end{aligned}$$

Hence Ans. B

34. The **INCORRECT** statement among the following for this reaction, is

(A) Decrease in the total pressure will result in formation of more moles of gaseous X

(B) At the start of the reaction, dissociation of gaseous X_2 takes places spontaneously

(C)
$$\beta_{equilibrium} = 0.7$$

(D)
$$K_C < 1$$

Key (C

Sol: As pressure decrease equilibrium shift towards more number of moles as $\Delta G^o > 0$ reaction is nonspontaneous & we know that

as
$$\Delta, G^{\circ} \rightarrow -RT \ln(K_C)$$

As
$$\Delta G^{\circ} \rightarrow +ve$$

K_c should be < 1

Hence incorrect statement is (C)

PARAGRAPH 2

Treatment of compound \mathbf{O} with $KMnO_4/H$ gave \mathbf{P} , which on heating with ammonia gave \mathbf{Q} . The compound \mathbf{Q} on treatment with $Br_2/NaOH$ produced \mathbf{R} . On strong heating \mathbf{Q} gave \mathbf{S} , which on further treatment with ethyl 2-bromopropanoate in the presence of KOH followed by acidification gave a compound \mathbf{T} .

35. The compound \mathbf{R} is

Key (A)

Sol:

36. The compound **T** is

(A) Glycine

(B) alanine

(C) valine

(D) serine

Key (B)

Sol: From the above (Q. 35) solution