IIT-JEE-Mathematics-Paper1-2007

1. Let a, β be the roots of the equation $x^{2}-p x+r=0$ and $a / 2,2 \beta$ be the roots of the equation $x^{2}-q x+r=0$. Then the value of r is
(A) $2 / 9(p-q)(2 q-p)$
(B) $2 / 9(q-p)(2 p-q)$
(C) $2 / 9(q-2 p)(2 q-p)$
(D) $2 / 9(2 p-q)(2 q-p)$
2. Let $f(x)$ be differentiable on the interval $(0, \infty)$ such that $f(1)=1$, and

$$
\lim _{t \rightarrow \infty}\left(t^{2} f(x)-x^{2} f(t)\right) /(t-x)-1
$$

for each $x>0$. Then $f(x)$ is
(A) $1 / 3 x+\left(2 x^{2}\right) / 3$
(B) $(-1) / 3 x+\left(4 x^{2}\right) / 3$
(C) $(-1) / x+2 / x^{2}$
(D) $1 / x$
3. One Indian and four American men and their wives are to be seated randomly around a circular table. Then the conditional probability that the Indian man is seated adjacent to his wife given that each American man is seated adjacent to this wife is
(A) $1 / 2$
(B) $1 / 3$
(C) $2 / 5$
(D) $1 / 5$
4. The tangent to the curve $y=e x$ drawn at the point $\left(e, e^{e}\right)$ intersects the line joining the points (e-1, e^{e-1}) and ($e+1, e^{e+1}$)
(A) on the left of $x=e$
(B) on the right of $x=e$
(C) at no points
(D) at all points
5. $\quad \lim _{x->\pi / 4} \int_{2}{ }^{\sec 2 x} f(t) d t /\left(x^{2}-\pi^{2} / 16\right)$ equals
(A) $8 / \pi f(2)$
(B) $2 / \pi f(2)$
(C) $2 / \pi \mathrm{f}(1 / 2)$
(D) $4 f(2)$
6. A hyperbola, having the transverse axis of length 2 sin, is confocal with the ellipse $3 x^{2}+$ $4 y^{2}=12$. Then its equation is
(A) $x^{2} \operatorname{cosex}^{2} \theta-y^{2} \sec ^{2} \theta=1$
(B) $x^{2} \sec ^{2} \theta-y^{2} \operatorname{cosec}^{2} \theta=1$
(C) $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
(D) $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$
7. The number of distinct real values of λ, for which the vectors $-\lambda 2 \hat{\imath}+\hat{\jmath}+k, \hat{\imath}-\lambda 2 \hat{\jmath}+k$ and $\hat{\imath}+\hat{\jmath}-\lambda 2 k$ are coplanar, is
(A) zero
(B) one
(C) two
(D) three
8. A man walks a distance of 3 units from the origin towards the north-east ($\mathrm{N} 45^{\circ} \mathrm{E}$) direction. From there, he walks a distance of 4 units towards the north-west ($\mathrm{N} 45^{\circ} \mathrm{W}$) direction to reach a point P. Then the position of P in the Argand plane is
(A) $3 e^{i n / 4}+4 i$
(B) $(3-4 i) e^{i n / 4}$
(C) $(4+3 i) e^{i n / 4}$
(D) $(3+4 i) e^{i n / 4}$
9. The number of solutions of the pair of equations

$$
\begin{aligned}
& 2 \sin ^{2} q-\cos 2 q=0 \\
& 2 \cos ^{2} q-3 \sin q-0
\end{aligned}
$$

in the interval [0, 2p] is
(A) zero
(B) one
(C) two
(D) four
10. Let $H_{1}, H_{2}, \ldots \ldots, H_{n}$ be mutually exclusive and exhaustive events with $P\left(H_{i}\right)>0, i=1$, $2, \ldots \ldots, n$. Let E be any other event with $0<P(E)<1$.

STATEMENT-1
$P(H i \mid E)>P(E \mid H i) \cdot P(H i)$ for $i=1,2, \ldots \ldots n$
Because

STATEMENT-2
$\sum_{i=1}^{n} P\left(H_{i}\right)=1$.
(A) Statement- 1 is True, Staement- 2 is True, Statement-2 is a correct explanation for statement-1.
(B) Statement-1 is True, Staement-2 is True, Statement-2 is not a correct explanation for statement-1.
(C) Statement- 1 is True, Statement- 2 is False
(D) Statement-1 is False, Statement-2 is True
11. Tangents are drawn from the point $(17,7)$ to the circle $x^{2}+y^{2}=169$. STATEMENT-1

The tangents are mutually perpendicular
Because
STATEMENT-2
The locus of the points form which mutually perpendicular tangents can be drawn to the given circle is $x^{2}+y^{2}=338$.
(A) Statement- 1 is True, Staement- 2 is True, Statement- 2 is a correct explanation for statement-1.
(B) Statement-1 is True, Staement-2 is True, Statement-2 is not a correct explanation for statement-1.
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
12. Let the vectors $P Q, Q R, R S, S T, T U$ and $U P$ represent the sides of a regular hexagon. STATEMENT-1
$\mathrm{PQ}^{->} \times\left(\mathrm{RS}^{->}+\mathrm{ST}^{->}\right) \neq 0^{->}$.
Because
STATEMENT-2
$\mathrm{PQ}^{->} \times \mathrm{RS}^{->}=0^{->}$and $\mathrm{PQ}^{->} \times \mathrm{ST}^{->} \neq 0^{->}$.
(A) Statement-1 is True, Staement-2 is True, Statement-2 is a correct explanation for statement-1.
(B) Statement-1 is True, Staement-2 is True, Statement-2 is not a correct explanation for statement-1.
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
13. Let $F(x)$ be an indefinite integral of $\sin ^{2} x$.

STATEMENT-1
The function $F(x)$ satisfies $F(x+p)-F(x)$ for all real x.
STATEMTN-2
$\sin ^{2}(x+p)=\sin ^{2} x$ for all real x.
(A) Statement-1 is True, Staement-2 is True, Statement-2 is a correct explanation for statement-1.
(B) Statement-1 is True, Staement-2 is True, Statement-2 is not a correct explanation for statement-1.
(C) Statement- 1 is True, Statement- 2 is False
(D) Statement-1 is False, Statement-2 is True

Paragraph

Let V_{r} denote the sum of the first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is $(2 r-1)$. Let

$$
T_{r}=V_{r+1}-V_{r}-2 \text { and } Q_{r}=T_{r+1}-T_{r} \text { for } r=1,2, \ldots \ldots
$$

14. The sum of $V_{1}+V_{2}+\ldots \ldots+V_{n}$ is
(A) $1 / 12 n(n+1)\left(3 n^{2}-n+1\right)$
(B) $1 / 12 n(n+1)\left(3 n^{2}+n+1\right)$
(C) $1 / 12 n\left(2 n^{2}-n+1\right)$
(D) $1 / 12 n\left(2 n^{2}-2 n+3\right)$
15. T_{r} is always
(A) an odd number
(B) an even number
(C) a prime number
(D) a composite number
16. Which one of the following is a correct statement?
(A) $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \ldots .$. are in A.P. with common difference 5
(B) $Q_{1}, Q_{2}, Q_{3}, \ldots \ldots$ are in A.P. with common difference 6
(C) $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \ldots .$. are in A.P. with common difference 11
(D) $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}=\ldots \ldots$

Paragraph

Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in the first the fourth quadrants, respectively. Tangents to the circle at P and Q intersect the x axis at R and tangents to the parabola at P and Q intersect the x-axis at S.
17. The ratio of the areas of the triangles $P Q S$ and $P Q R$ is
(A) $1: \sqrt{ } 2$
(B) $1: 2$
(C) $1: 4$
(D) $1: 8$
18. The radius of the circumcircle of the triangle PRS is
(A) 5
(B) $3 \sqrt{ } 3$
(C) $3 \sqrt{ } 2$
(D) $2 \sqrt{ } 3$
19. The radius of the incircle of the triangle $P Q R$ is
(A) 4
(B) 3
(C) $8 / 3$
(D) 2
20. Consider the following linear equations

$$
\begin{aligned}
& a x+b y+c z=0 \\
& b x+c y+a z=0 \\
& c x+a y+b z=0
\end{aligned}
$$

Match the conditions/expressions in Column I with statements in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in the ORS.

Column I		Column II	
(A)	$a+b+c^{1} 0$ and $a^{2}+b^{2}+c^{2}=a b+b c+c a$	(p)	the equations represent planes meeting only at a single point.
(B)	$a+b+c=0$ and $a^{2}+b^{2}+c^{2}=a b+b c+c a$	(q)	the equations represent the line $x=y=z$.
(C)	$a+b+c^{1} 0$ and $a^{2}+b^{2}+c^{2} 1$ $a b+b c+c a$	(r)	the equations represent identical planes.
(D)	$a+b+c=0$ and $a^{2}+b^{2}+c^{2}=a b+b c+c a$	(s)	the equations represent the whole of the three dimensional space.

21. In the following [x] denotes the greatest integer less than or equal to x. Match the functions in Column I with the properties in Column II.

Column I		Column II	
(A)	$x\|x\|$	(p)	continuous in $(-1,1)$
(B)	$\sqrt{ }\|x\|$	(q)	differentiable in $(-1,1)$
(C)	$x+\|x\|$	(r)	strictly increasing in $(-1,1)$
(D)	$\|x-1\|+\|x+1\|$	(s)	not differentiable at least at one point in $(-1,1)$

22. Match the integrals in Column I with the values in Column II.

Column I		Column II	
(A)	$\int_{-1}{ }^{1} d x /\left(1+x^{2}\right)$	(p)	$1 / 2 \log (2 / 3)$
(B)	$\int_{0}{ }^{1} d x / \sqrt{ }\left(1-x^{2}\right)$	(q)	$2 \log (2 / 3)$

(C)	$\int_{2}^{3} d x /\left(1-x^{2}\right)$	(r)	$\pi / 3$
(D)	$\int_{1}^{2} d x /\left(x \sqrt{ }\left(x^{2}-1\right)\right)$	(s)	$-\Pi / 2$

