IIT-JEE-Mathematics-Screening-2005

SCREENING

1. The area of the equilateral triangle, in which three coins of radius 1 cm are placed, as shown in the figure, is:
(a) $6+4 \sqrt{ } 3$
(b) $4 \sqrt{ } 3-6$
(c) $7+4 \sqrt{ } 3$
(d) $4 \sqrt{ } 3$
2. The area bounded by the curves $y=(x-1)^{2}, y=(x+1)^{2}$ and $y=1 / 4$ is:
(a) $1 / 3$
(b) $2 / 3$
(c) $1 / 4$
(d) $1 / 5$
3. The value of $\int-2^{0}\left[x^{3}+3 x^{2}+3 x+3+(x+1) \cos (x+1) d x\right]$ is:
(a) 0
(b) 3
(c) 4
(d) 1
4. The tangent at $(1,7)$ to the curve $x^{2}=y-6$ touches the circle $x^{2}+y^{2}+16 x+12 y+c$ $=0$ at :
(a) $(6,7)$
(b) $(-6,7)$
(c) $(6,-7)$
(d) $(-6,-7)$
5. If $d y / d x=x y /\left(x^{2}+y^{2}\right), y(1)=1$, then one of the values of x_{0} satisfying $y\left(x_{0}\right)=e$ is given by
(a) $e \sqrt{ } 2$
(b) $e \sqrt{ } 3$
(c) $e \sqrt{ } 5$
(c) e/ $\sqrt{ } 2$
6. The locus of the centre of circle which touches $(y-1)^{2}+x^{2}=1$ externally also touches x axis is:
(a) $x^{2}=4 y$ È $(0, y), y<0$
(b) $\quad x^{2}=y$
(c) $y=4 x^{2}$
(d) $y^{2}=4 x$ È $(0, y), y \hat{I} R$
7. If $\int_{\sin } x^{1} t^{2} f(t) d t=1-\sin x \forall x \hat{I}[0, \Pi / 2]$ then $f(1 / \sqrt{ } 3)$ is:
(a) 3
(b) $\sqrt{ } 3$
(c) $1 / 3$
(d) none of these
8.

$\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}+\ldots \ldots\binom{30}{20}\binom{30}{30}=$
(a) ${ }^{30} \mathrm{C}_{11}$
(b) ${ }^{60} \mathrm{C}_{10}$
(c) $\quad{ }^{30} \mathrm{C}_{10}$
(d) ${ }^{65} \mathrm{C}_{55}$
9. A variable plane $x / a+y / b+z / c=1$ at a unit distance from origin cuts the coordinate axes at A, B and C. Centroid (x, y, z) satisfies the equation $1 / x^{2}+1 / y^{2}+1 / z^{2}=$ K. The value of K is :
(a) 9
(b) 3
(c) $1 / 9$
(d) $1 / 3$
10. Let $f(x)=a x^{2}+b x+c, a^{1} 0$ and $D=b^{2}-4 a c$. If $a+b, a^{2}+b^{2}$ and $a^{3}+b^{3}$ are in G.P., then :
(a) $D^{1} 0$
(b) $\mathrm{bD}^{1} 0$
(c) $\mathrm{CD}{ }^{1} 0$
(d) $b c^{1} 0$
11. Tangent at a point of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is drawn which cuts the coordinate axes at A and B. The minimum area of the triangle $O A B$ is (O being the origin) :
(a) ab
(b) $\left(a^{3}+a b+b^{3}\right) / 3$
(c) $a^{2}+b^{2}$
(d) $\left(\left(a^{2}+b^{2}\right)\right) / 4$
12. A fair die is rolled. The probability that the first time 1 occurs at the even throw is:
(a) $1 / 6$
(b) $5 / 11$
(c) $6 / 11$
(d) $5 / 36$
13. If $x d y=y(d x+y d y), y(1)=1$ and $y(x)>0$. Then $y(-3)=$:
(a) 3
(b) 2
(c) 1
(d) 0
14. $f(x)=\left\{\begin{array}{ll}x, & \text { if } x \text { is rational } \\ 0, & \text { if } x \text { is irrational }\end{array}\right.$ and

$$
g(x)=\left\{\begin{array}{ll}
0, & \text { if } x \text { is rational } \\
x, & \text { if } x \text { is irrational. } .
\end{array} \text { Then } \mathrm{f}-\mathrm{g}\right. \text { is: }
$$

(a) one-one and into
(b) neither one-one nor onto
(c) many one and onto
(d) one-one and onto
15. A rectangle with sides $(2 n-1)$ and $(2 m-1)$ is divided into squares of unit length. The number of rectangle which can be formed with sides of odd length is :
(a) $m^{2} n^{2}$
(b) $m n(m+1)(n+1)$
(c) 4^{m+n-1}
(d) none of these
16. The minimum value of $\left|a+b w+c w^{2}\right|$, where a, b and c are all not equal integers and $w\left(\begin{array}{ll}1 & 1)\end{array}\right.$ is a cube root of unity, is:
(a) $\sqrt{ } 3$
(b) $1 / 3$
(c) 1
(d) 0
17. If $P=\left[\begin{array}{cc}\sqrt{3} / 2 & 1 / 2 \\ -1 / 2 & \sqrt{3} / 2\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $\mathrm{Q}=P A P^{\top}$, then $\mathrm{P}^{\top} \mathrm{Q}^{2005} \mathrm{P}$ is:
(a) $\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 2005 \\ 2005 & 1\end{array}\right]$
(c)
1
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
18. The shaded region, where
$P \equiv(-1,0), Q \equiv(-1+\sqrt{ } 2, \sqrt{ } 2)$
$R \equiv(-1+\sqrt{ } 2,-\sqrt{ } 2), S \equiv(1,0)$ is represented by:
(a) $|z+1|>2$, $|\arg (z+1)|<\pi / 4$
(b) $|z+1|<2$, $|\arg (z+1)|<\pi / 2$
(c) $|z-1|>2,|\arg (z+1)|>\pi / 4$
(d) $|z-1|<2$, $|\arg (z+1)|>\pi / 2$
19. The number of ordered pairs (a, β), where $a, \beta \hat{I}(-\Pi, \Pi)$ satisfying $\cos (a-\beta)=1$ and $\cos (a+\beta)=1 / e$ is :
(a) 0
(b) 1
(c) 2
(d) 4
20. Let $f(x)=|x|-1$, then points where $f(x)$ is not differentiable is/(are):
(a) $0,+1$
(b) +1
(c) 0
(d) 1
21. The second degree polynomial $f(x)$, satisfying $f(0)=0, f(1)=1, f^{\prime}(x)>0$ for all xî $(0$, 1) :
(a) $f(x)=f$
(b) $f(x)=a x+(1-a) x^{2} ; \forall a \hat{I}(0, ¥)$
(c) $f(x)=a x+(1-a) x^{2} ; \forall a \hat{I}(0,2)$
(d) no such polynomial
22. If f is a differentiable function satisfying $f(1 / n)=0$ for all $n>1$, $n \hat{I}$ I, then :
(a) $f(x)=0, x$ Î $(0,1]$
(b) $f^{\prime}(0)=0=f(0)$
(c) $f(0)=0$ but $f^{\prime}(0)$ not necessarily zero
(d) $|\mathrm{f}(\mathrm{x})|<1, \mathrm{x}$ Î $(0,1]$
23. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right]$,
$6 A^{-1}=A^{2}+c A+d I$, then (c, d) is:
(a) $(-6,11)$
(b) $(-11,6)$
(c) $(11,6)$
(d) $(6,11)$
24. In a $\triangle A B C$, among the following which one is true?
(a) $(b+c) \cos A / 2=a \sin ((B+C) / 2)$
(b) $(b+c) \cos ((B+C) / 2)=a \sin A / 2$
(c) $(b-c) \cos ((B-C) / 2)=a \cos (A / 2)$
(d) $(b-c) \cos A / 2=a \cos ((B-C) / 2)$
25. If $\vec{a}, \vec{b}, \vec{c}$ are three non zero, non coplanar vectors and $\vec{b}_{1}=\vec{b}-\frac{\vec{b} \cdot \bar{a}}{|\vec{a}|^{2}} \vec{a}$, $\vec{b}_{2}=\vec{b}+\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}$, And $\vec{c}_{1}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\vec{c} \cdot \vec{b}}{|\vec{b}|^{2}} \vec{b}, \quad \vec{c}_{2}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\vec{c} \cdot \vec{b}}{\left|\vec{b}_{1}\right|^{2}} \vec{b}_{1}$, $\vec{c}_{3}=\vec{c}-\frac{\bar{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\vec{c} \cdot \vec{b}}{\left|\overrightarrow{b_{2}}\right|^{2}} \vec{b}_{2}, \vec{c}_{4}=\vec{a}-\frac{\bar{c} \cdot \bar{a}}{|\vec{a}|^{2}} \vec{a}$.
Then which of the following is a set of mutually orthogonal vectors:
(a) $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right)$
(b) $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{2}\right)$
(c) $\left(\vec{a}, \vec{b}, \vec{b}_{3}\right)$
(d) $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{4}\right)$
26. If $y=f(x)$ and $y \cos x+x \cos y=\Pi$, then the value of $f^{\prime}(0)$ is :
(a) Π
(b) $-\Pi$
(c) 0
(d) 2Π
27. Let f be twice differentiable function satisfying $f(1)=1, f(2)=4, f(3)=9$, then :
(a) $f^{\prime}(x)=2, \forall x$ Î (R)
(b) $f^{\prime}(x)=5=f^{\prime \prime}(x)$, for some $x \hat{I}(1,3)$
(c) There exists at least one $x \hat{I}(1,3)$ such that $f^{\prime}(x)=2$
(d) none of these
28. If X and Y are two non-empty sets where $f: X-->Y$ is function is defined such that $f(c)=\{f(x): x$ Î C $\}$ for C í X and $f^{-1}(D)=\{x: f(x)$ Î $D\}$ for Dí y, for any A Í X and B Í Y then :
(a) $f^{-1}(f(A))=A$
(b) $f^{-1}(f(A))=A$ only if $f(X)=Y$
(c) $f\left(f^{-1}(B)\right)=B$ only if B Í $f(x)$
(d) $f\left(f^{-1}(B)\right)=B$

