IIT-JEE-Mathematics-Screening-2005

SCREENING

1. The area of the equilateral triangle, in which three coins of radius 1 cm are placed, as shown in the figure, is:

(a) $6 + 4\sqrt{3}$ (b) 4√3 – 6 (c) 7 + $4\sqrt{3}$ (d) 4√3 **2.** The area bounded by the curves $y = (x - 1)^2$, $y = (x + 1)^2$ and y = 1/4 is: (a) 1/3 (b) 2/3 (c) 1/4 (d) 1/5 **3.** The value of $\int_{-2}^{0} [x^3 + 3x^2 + 3x + 3 + (x+1)\cos(x+1)dx]$ is: (a) 0 (b) 3 (c) 4 (d) 1 **4.** The tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c$ = 0 at : (a) (6, 7) (b) (-6, 7) (c) (6, -7) (d) (-6, -7) **5.** If $dy/dx = xy/(x^2 + y^2)$, y(1) = 1, then one of the values of x_0 satisfying $y(x_0) = e$ is given by (a) e√2 (b) e√3 (c) e√5 (c) e/√2 **6.** The locus of the centre of circle which touches $(y - 1)^2 + x^2 = 1$ externally also

6. The locus of the centre of circle which touches $(y - 1)^2 + x^2 = 1$ externally also touches x axis is:

(a) $x^2 = 4y \dot{E} (0, y), y < 0$ (b) $x^2 = y$ (c) $y = 4x^2$ (d) $y^2 = 4x \dot{E} (0, y), y \hat{I} R$

7. If $\int_{\sin x^{1}} t^{2} f(t) dt = 1 - \sin x \forall x \hat{1} [0, \Pi/2]$ then $f(1/\sqrt{3})$ is:

(a)	3
(b)	$\sqrt{3}$
(c)	1/3
(d)	none of these

8.

$\binom{30}{0}\binom{30}{10}$	$\binom{30}{1} - \binom{30}{1}$	$\binom{30}{11}+\ldots \ldots \binom{30}{20}\binom{30}{30}=$
(a)	³⁰ C ₁₁	
(b)	⁶⁰ C ₁₀	
(C)	³⁰ C ₁₀	
(d)	⁶⁵ C ₅₅	

9. A variable plane x/a + y/b + z/c = 1 at a unit distance from origin cuts the coordinate axes at A, B and C. Centroid (x, y, z) satisfies the equation $1/x^2 + 1/y^2 + 1/z^2 = K$. The value of K is :

(a) 9 (b) 3 (c) 1/9 (d) 1/3

10. Let $f(x) = ax^2 + bx + c$, a = 0 and $D = b^2 - 4ac$. If a + b, $a^2 + b^2$ and $a^3 + b^3$ are in G.P., then :

(a)	D 1 0
(b)	bD 1 0
(C)	cD 1 0
(d)	bc 1 0

11. Tangent at a point of the ellipse $x^2/a^2 + y^2/b^2 = 1$ is drawn which cuts the coordinate axes at A and B. The minimum area of the triangle OAB is (O being the origin) : (a) ab (b) $(a^3 + ab + b^3)/3$ (c) $a^2 + b^2$ (d) $((a^2 + b^2))/4$

12. A fair die is rolled. The probability that the first time 1 occurs at the even throw is : (a) 1/6

(b) 5/11 (c) 6/11 (d) 5/36 **13.** If xdy = y (dx + ydy), y(1) = 1 and y(x) > 0. Then y(-3) = : (a) 3 (b) 2 (c) 1

(d) 0

14.
$$f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases} \text{ and}$$
$$g(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ x, & \text{if } x \text{ is irrational}. \end{cases}$$
Then f - g is:

- (a) one-one and into
- (b) neither one-one nor onto

(c) many one and onto

(d) one-one and onto

15. A rectangle with sides (2n - 1) and (2m - 1) is divided into squares of unit length. The number of rectangle which can be formed with sides of odd length is : (a) $m^2 n^2$

(b) mn(m + 1) (n + 1)(c) $4^{m + n - 1}$ (d) none of these

16. The minimum value of $|a + bw + cw^2|$, where a, b and c are all not equal integers and w(¹ 1) is a cube root of unity, is:

(a) √3

(b) 1/3

(c) 1

(d) 0

17. If
$$P = \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and
 $Q = PAP^T$, then $P^T Q^{2005} P$ is:
(a) $\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$
(b) $\begin{bmatrix} 1 & 2005 \\ 2005 & 1 \end{bmatrix}$
(c) $\begin{bmatrix} 1 & 0 \\ 2005 & 1 \end{bmatrix}$
(d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

18. The shaded region, where $P \equiv (-1, 0), Q \equiv (-1 + \sqrt{2}, \sqrt{2})$ $R \equiv (-1 + \sqrt{2}, -\sqrt{2}), S \equiv (1, 0) \text{ is represented by:}$ (a) |z + 1| > 2, $|\arg (z + 1)| < \pi/4$ (b) |z + 1| < 2, $|\arg (z + 1)| < \pi/2$ (c) |z - 1| > 2, $|\arg (z + 1)| > \pi/4$ (d) |z - 1| < 2, $|\arg (z + 1)| > \pi/2$

19. The number of ordered pairs (α, β) , where $\alpha, \beta \hat{I}(-\Pi, \Pi)$ satisfying $\cos(\alpha - \beta) = 1$ and $\cos(\alpha + \beta) = 1/e$ is : (a) 0 (b) 1 (c) 2 (d) 4 **20.** Let f(x) = |x|-1, then points where f(x) is not differentiable is/(are) : (a) 0, + 1 (b) + 1(c) 0 (d) 1 **21.** The second degree polynomial f(x), satisfying f(0) = 0, f(1) = 1, f'(x) > 0 for all $x\hat{I}(0, x)$ 1): (a) f(x) = f(b) $f(x) = ax + (1 - a) x^2$; $\forall a \hat{I} (0, \xi)$ (c) $f(x) = ax + (1 - a) x^2$; $\forall a \hat{I} (0, 2)$

(d) no such polynomial

22. If f is a differentiable function satisfying f(1/n) = 0 for all n > 1, n Î I, then : (a) f(x) = 0, x Î (0, 1] (b) f'(0) = 0 = f(0) (c) f(0) = 0 but f'(0) not necessarily zero (d) $|f(x)| < 1, x \hat{I} (0, 1]$

23. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}$$
,

 $6A^{-1} = A^2 + cA + dI$, then (c, d) is:

(a) (-6, 11) (b) (-11, 6) (c) (11, 6) (d) (6, 11)

24. In a $\triangle ABC$, among the following which one is true? (a) (b + c) cos A/2 = a sin ((B+C)/2) (b) (b + c) cos ((B+C)/2) = a sin A/2 (c) (b - c) cos ((B-C)/2) = a cos (A/2) (d) (b - c) cos A/2 = a cos ((B-C)/2)

25. If $\vec{a}, \vec{b}, \vec{c}$ are three non zero, non coplanar vectors and $\vec{b}_1 = \vec{b} - \frac{\vec{b}\cdot\vec{a}}{|\vec{a}|^2}\vec{a}$, $\vec{b}_2 = \vec{b} + \frac{\vec{b}\cdot\vec{a}}{|\vec{a}|^2}\vec{a}$, And $\vec{c}_1 = \vec{c} - \frac{\vec{c}\cdot\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}\cdot\vec{b}}{|\vec{b}|^2}\vec{b}$, $\vec{c}_2 = \vec{c} - \frac{\vec{c}\cdot\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}\cdot\vec{b}}{|\vec{b}_1|^2}\vec{b}_1$, $\vec{c}_3 = \vec{c} - \frac{\vec{c}\cdot\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}\cdot\vec{b}}{|\vec{b}_2|^2}\vec{b}_2$, $\vec{c}_4 = \vec{a} - \frac{\vec{c}\cdot\vec{a}}{|\vec{a}|^2}\vec{a}$. Then which of the following is a set of mutually orthogonal vectors: (a) $(\vec{a}, \vec{b}_1, \vec{c}_1)$ (b) $(\vec{a}, \vec{b}_1, \vec{c}_2)$ (c) $(\vec{a}, \vec{b}_2, \vec{c}_3)$ (d) $(\vec{a}, \vec{b}_2, \vec{c}_4)$

26. If y = f(x) and y cos x + x cos y = Π, then the value of f'(0) is :
(a) Π
(b) - Π
(c) 0
(d) 2Π

27. Let f be twice differentiable function satisfying f(1) = 1, f(2) = 4, f(3) = 9, then : (a) f'(x) = 2, $\forall x \hat{1}$ (R) (b) f'(x) = 5 = f''(x), for some $x \hat{1}$ (1, 3) (c) There exists at least one $x \hat{1}$ (1, 3) such that f'(x) = 2

(c) There exists at least one x \hat{I} (1, 3) such that f'(x) = 2

(d) none of these

28. If X and Y are two non-empty sets where $f : X \rightarrow Y$ is function is defined such that $f(c) = \{f(x) : x \hat{1} C\}$ for C $\hat{1} X$ and $f^{-1}(D) = \{x : f(x) \hat{1} D\}$ for D $\hat{1} y$, for any A $\hat{1} X$ and B $\hat{1} Y$ then :

(a) f¹ (f(A)) = A
(b) f¹ (f(A)) = A only if f(X) = Y
(c) f(f¹ (B)) = B only if B Í f(x)
(d) f(f¹ (B)) = B