JEE(Advanced) - 2018 TEST PAPER - 2 WITH SOLUTION
 (Exam Date: 20-05-2018)

PART-1 : MATHEMATICS

SECTION 1

1. For any positive integer n , define $f_{\mathrm{n}}:(0, \infty) \rightarrow \mathbb{R}$ as

$$
f_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{j}=1}^{\mathrm{n}} \tan ^{-1}\left(\frac{1}{1+(\mathrm{x}+\mathrm{j})(\mathrm{x}+\mathrm{j}-1)}\right) \text { for all } \mathrm{x} \in(0, \infty) .
$$

(Here, the inverse trigonometric function $\tan ^{-1} \mathrm{x}$ assume values in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.)
Then, which of the following statement(s) is (are) TRUE ?
(A) $\sum_{\mathrm{j}=1}^{5} \tan ^{2}\left(f_{\mathrm{j}}(0)\right)=55$
(B) $\sum_{\mathrm{j}=1}^{10}\left(1+f_{\mathrm{j}}^{\prime}(0)\right) \sec ^{2}\left(f_{\mathrm{j}}(0)\right)=10$
(C) For any fixed positive integer $\mathrm{n}, \lim _{\mathrm{x} \rightarrow \infty} \tan \left(f_{\mathrm{n}}(\mathrm{x})\right)=\frac{1}{\mathrm{n}}$
(D) For any fixed positive integer $\mathrm{n}, \lim _{\mathrm{x} \rightarrow \infty} \sec ^{2}\left(f_{\mathrm{n}}(\mathrm{x})\right)=1$

Ans. (D)
Sol. $f_{n}(x)=\sum_{j=1}^{n} \tan ^{-1}\left(\frac{(x+j)-(x+j-1)}{1+(x+j)(x+j-1)}\right)$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\tan ^{-1}(\mathrm{x}+\mathrm{j})-\tan ^{-1}(\mathrm{x}+\mathrm{j}-1)\right] \\
& \mathrm{f}_{\mathrm{n}}(\mathrm{x})=\tan ^{-1}(\mathrm{x}+\mathrm{n})-\tan ^{-1} \mathrm{x} \\
& \therefore \tan \left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right)=\tan \left[\tan ^{-1}(\mathrm{x}+\mathrm{n})-\tan ^{-1} \mathrm{x}\right] \\
& \quad \tan \left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right)=\frac{(\mathrm{x}+\mathrm{n})-\mathrm{x}}{1+\mathrm{x}(\mathrm{x}+\mathrm{n})} \\
& \quad \tan \left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right)=\frac{\mathrm{n}}{1+\mathrm{x}^{2}+\mathrm{nx}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & \sec ^{2}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right)=1+\tan ^{2}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right) \\
& \sec ^{2}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right)=1+\left(\frac{\mathrm{n}}{1+\mathrm{x}^{2}+\mathrm{nx}}\right)^{2}
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty} \sec ^{2}\left(f_{n}(x)\right)=\lim _{x \rightarrow \infty} 1+\left(\frac{n}{1+x^{2}+n x}\right)^{2}=1
$$

2. Let T be the line passing through the points $P(-2,7)$ and $Q(2,-5)$. Let F_{1} be the set of all pairs of circles $\left(S_{1}, S_{2}\right)$ such that T is tangents to S_{1} at P and tangent to S_{2} at Q, and also such that S_{1} and S_{2} touch each other at a point, say, M. Let E_{1} be the set representing the locus of M as the pair $\left(S_{1}, S_{2}\right)$ varies in F_{1}. Let the set of all straight line segments joining a pair of distinct points of E_{1} and passing through the point $\mathrm{R}(1,1)$ be F_{2}. Let E_{2} be the set of the mid-points of the line segments in the set F_{2}. Then, which of the following statement(s) is (are) TRUE?
(A) The point $(-2,7)$ lies in E_{1}
(B) The point $\left(\frac{4}{5}, \frac{7}{5}\right)$ does NOT lie in E_{2}
(C) The point $\left(\frac{1}{2}, 1\right)$ lies in E_{2}
(D) The point $\left(0, \frac{3}{2}\right)$ does NOT lie in E_{1}

Ans. (D)

Sol.

$\mathrm{AP}=\mathrm{AQ}=\mathrm{AM}$
Locus of M is a circle having PQ as its diameter
Hence, $E_{1}:(x-2)(x+2)+(y-7)(y+5)=0$ and $x \neq \pm 2$

Locus of B (midpoint)
is a circle having RC as its diameter
$E_{2}: x(x-1)+(y-1)^{2}=0$
Now, after checking the options, we get (D)
3. Let S be the of all column matrices $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ such that $b_{1}, b_{2}, b_{3} \in \mathbb{R}$ and the system of equations (in real variables)

$$
\begin{gathered}
-x+2 y+5 z=b_{1} \\
2 x-4 y+3 z=b_{2} \\
x-2 y+2 z=b_{3}
\end{gathered}
$$

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least one solution of each $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \in S$?
(A) $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=\mathrm{b}_{1}, 4 \mathrm{y}+5 \mathrm{z}=\mathrm{b}_{2}$ and $\mathrm{x}+2 \mathrm{y}+6 \mathrm{z}=\mathrm{b}_{3}$
(B) $\mathrm{x}+\mathrm{y}+3 \mathrm{z}=\mathrm{b}_{1}, 5 \mathrm{x}+2 \mathrm{y}+6 \mathrm{z}=\mathrm{b}_{2}$ and $-2 \mathrm{x}-\mathrm{y}-3 \mathrm{z}=\mathrm{b}_{3}$
(C) $-\mathrm{x}+2 \mathrm{y}-5 \mathrm{z}=\mathrm{b}_{1}, 2 \mathrm{x}-4 \mathrm{y}+10 \mathrm{z}=\mathrm{b}_{2}$ and $\mathrm{x}-2 \mathrm{y}+5 \mathrm{z}=\mathrm{b}_{3}$
(D) $x+2 y+5 z=b_{1}, 2 x+3 z=b_{2}$ and $x+4 y-5 z=b_{3}$

Ans. (A,D)
Sol. We find $\mathrm{D}=0 \&$ since no pair of planes are parallel, so there are infinite number of solutions.
Let $\alpha \mathrm{P}_{1}+\lambda \mathrm{P}_{2}=\mathrm{P}_{3}$
$\Rightarrow P_{1}+7 P_{2}=13 P_{3}$
$\Rightarrow \mathrm{b}_{1}+7 \mathrm{~b}_{2}=13 \mathrm{~b}_{3}$
(A) $\mathrm{D} \neq 0 \Rightarrow$ unique solution for any $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$
(B) $\mathrm{D}=0$ but $\mathrm{P}_{1}+7 \mathrm{P}_{2} \neq 13 \mathrm{P}_{3}$
(C) As planes are parallel and there exist infinite ordered triplet for which they will be non coincident although satisfying $b_{1}+7 b_{2}=13 b_{3}$.
\therefore rejected.
(D) $\mathrm{D} \neq 0$
4. Consider two straight lines, each of which is tangent to both the circle $x^{2}+y^{2}=\frac{1}{2}$ and the parabola $y^{2}=4 x$. Let these lines intersect at the point Q. Consider the ellipse whose center is at the origin $\mathrm{O}(0,0)$ and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $\sqrt{2}$, then the which of the following statement(s) is (are) TRUE ?
(A) For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is 1
(B) For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$
(C) The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{4 \sqrt{2}}(\pi-2)$
(D) The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{16}(\pi-2)$

Ans. (A,C)

Sol.

Let equation of common tangent is $\mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$
$\therefore\left|\frac{0+0+\frac{1}{\mathrm{~m}}}{\sqrt{1+\mathrm{m}^{2}}}\right|=\frac{1}{\sqrt{2}} \Rightarrow \mathrm{~m}^{4}+\mathrm{m}^{2}-2=0 \Rightarrow \mathrm{~m}= \pm 1$
Equation of common tangents are $\mathrm{y}=\mathrm{x}+1$ and $\mathrm{y}=-\mathrm{x}-1$
point Q is $(-1,0)$
\therefore Equation of ellipse is $\frac{\mathrm{x}^{2}}{1}+\frac{\mathrm{y}^{2}}{1 / 2}=1$
(A) $\mathrm{e}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$ and $\quad \mathrm{LR}=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=1$
(C)

Area $\quad 2 . \int_{1 / \sqrt{2}}^{1} \frac{1}{\sqrt{2}} \cdot \sqrt{1-\mathrm{x}^{2}} d x=\sqrt{2}\left[\frac{\mathrm{x}}{2} \sqrt{1-\mathrm{x}^{2}}+\frac{1}{2} \sin ^{-1} \mathrm{x}\right]_{1 / \sqrt{2}}^{1}$

$$
=\sqrt{2}\left[\frac{\pi}{4}-\left(\frac{1}{4}+\frac{\pi}{8}\right)\right]=\sqrt{2}\left(\frac{\pi}{8}-\frac{1}{4}\right)=\frac{\pi-2}{4 \sqrt{2}}
$$

correct answer are (A) and (D)
5. Let s, t, r be the non-zero complex numbers and L be the set of solutions $\mathrm{z}=\mathrm{x}+\mathrm{iy}(\mathrm{x}, \mathrm{y} \in \mathbb{R}, i=\sqrt{-1})$ of the equation $\mathrm{sz}+\mathrm{t} \overline{\mathrm{z}}+\mathrm{r}=0$, where $\overline{\mathrm{z}}=\mathrm{x}-\mathrm{iy}$. Then, which of the following statement(s) is (are) TRUE ?
(A) If L has exactly one element, then $|\mathrm{s}| \neq|\mathrm{t}|$
(B) If $|s|=|t|$, then L has infinitely many elements
(C) The number of elements in $\mathrm{L} \cap\{\mathrm{z}:|\mathrm{z}-1+\mathrm{i}|=5\}$ is at most 2
(D) If L has more than one element, then L has infinitely many elements

Ans. (A,C,D)

Sol. Given
$s z+t \bar{z}+r=0$
$\bar{z}=x-i y($ Conjugate of z$)$
Taking conjugate throughout $\overline{s z}+\bar{t} z+\bar{r}=0$
Adding (1) and (2)
$(s+\bar{t}) z+(\bar{s}+t) \bar{z}+(r+\bar{r})=0$
And Subtracting (1) and (2)
$(s-\bar{t}) z+(t-\bar{s}) \bar{z}+(r-\bar{r})=0$
For unique solution
$\frac{t+\bar{s}}{t-s} \neq \frac{s+\bar{t}}{s-\bar{t}}$

On further simplification $\Rightarrow|t| \neq|s|$
Hence option A proved.

If the lines coincide, then
$\frac{t+\bar{s}}{t-\bar{s}}=\frac{\bar{t}+s}{s-t}=\frac{r+\bar{r}}{r-\bar{r}}$
On comparing

$$
\frac{t+\bar{s}}{t-\bar{s}}=\frac{r+\bar{r}}{r-\bar{r}}
$$

and simplification, we get $\Rightarrow|s|=|t|$
The lines can be parallel or coincidental.
Since, no concrete outcome.
Hence, option B is not correct.

Clearly L is either a single or represents a line and $|z-1+i|=5$ represents a circle.
\therefore Intersection of L and $\{|z-1+i|=5\}$ is ATMOST 2.

Hence, option C is correct.
Let $s=\alpha_{1}+i \beta_{1} ; t=\alpha_{2}+i \beta_{2}$ and $r=\alpha_{3}+i \beta_{3}$
Then $s z+\bar{z}+r=0$
$\Rightarrow\left(\alpha_{1}+\alpha_{2}\right) x+\left(\beta_{2}-\beta_{1}\right) y+\alpha_{3}=0$
and $\left(\beta_{1}+\beta_{2}\right) x+\left(\alpha_{1}-\alpha_{2}\right) y+\beta_{3}=0$
If L has more than 1 element then it implies L will have \propto elements.
As L represents linear equation in x and y.
Hence, option D is correct.
6. Let $f:(0, \pi) \rightarrow \mathbb{R}$ be a twice differentiable function such that

$$
\lim _{t \rightarrow x} \frac{f(x) \sin t-f(t) \sin x}{t-x}=\sin ^{2} x \text { for all } x \in(0, \pi) .
$$

If $f\left(\frac{\pi}{6}\right)=-\frac{\pi}{12}$, then which of the following statement(s) is (are) TRUE ?
(A) $f\left(\frac{\pi}{4}\right)=\frac{\pi}{4 \sqrt{2}}$
(B) $f(\mathrm{x})<\frac{\mathrm{x}^{4}}{6}-\mathrm{x}^{2}$ for all $\mathrm{x} \in(0, \pi)$
(C) There exists $\alpha \in(0, \pi)$ such that $f^{\prime}(\alpha)=0$
(D) $f^{\prime \prime}\left(\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)=0$

Ans. (B,C,D)

Sol. $\lim _{\mathrm{t} \rightarrow \mathrm{x}} \frac{\mathrm{f}(\mathrm{x}) \sin \mathrm{t}-\mathrm{f}(\mathrm{t}) \sin \mathrm{x}}{\mathrm{t}-\mathrm{x}}=\sin ^{2} \mathrm{x}$
by using L'Hopital
$\lim _{t \rightarrow x} \frac{f(x) \cos t-f^{\prime}(t) \sin x}{1}=\sin ^{2} x$
$\Rightarrow \mathrm{f}(\mathrm{x}) \cos \mathrm{x}-\mathrm{f}^{\prime}(\mathrm{x}) \sin \mathrm{x}=\sin ^{2} \mathrm{x}$
$\Rightarrow \quad-\left(\frac{\mathrm{f}^{\prime}(\mathrm{x}) \sin \mathrm{x}-\mathrm{f}(\mathrm{x}) \cos \mathrm{x}}{\sin ^{2} \mathrm{x}}\right)=1$
$\Rightarrow-\mathrm{d}\left(\frac{\mathrm{f}(\mathrm{x})}{\sin \mathrm{x}}\right)=1$
$\Rightarrow \frac{\mathrm{f}(\mathrm{x})}{\sin \mathrm{x}}=-\mathrm{x}+\mathrm{c}$
Put $\mathrm{x}=\frac{\pi}{6} \& \mathrm{f}\left(\frac{\pi}{6}\right)=-\frac{\pi}{12}$
$\therefore \mathrm{c}=0 \Rightarrow \mathrm{f}(\mathrm{x})=-\mathrm{x} \sin \mathrm{x}$
(A) $\mathrm{f}\left(\frac{\pi}{4}\right)=\frac{-\pi}{4} \frac{1}{\sqrt{2}}$
(B) $f(x)=-x \sin x$
as $\sin x>x-\frac{x^{3}}{6},-x \sin x<-x^{2}+\frac{x^{4}}{6}$
$\therefore \mathrm{f}(\mathrm{x})<-\mathrm{x}^{2}+\frac{\mathrm{x}^{4}}{6} \forall \mathrm{x} \in(0, \pi)$
(C) $f^{\prime}(x)=-\sin x-x \cos x$
$f^{\prime}(x)=0 \Rightarrow \tan x=-x \quad \Rightarrow$ there exist $\alpha \in(0, \pi)$ for which $f^{\prime}(\alpha)=0$

(D) $\mathrm{f}^{\prime \prime}(\mathrm{x})=-2 \cos \mathrm{x}+\mathrm{x} \sin \mathrm{x}$

$$
\begin{aligned}
& \mathrm{f} \prime\left(\frac{\pi}{2}\right)=\frac{\pi}{2}, \mathrm{f}\left(\frac{\pi}{2}\right)=-\frac{\pi}{2} \\
& \mathrm{f} \prime\left(\frac{\pi}{2}\right)+\mathrm{f}\left(\frac{\pi}{2}\right)=0
\end{aligned}
$$

SECTION 2

7. The value of the integral

$$
\int_{0}^{\frac{1}{2}} \frac{1+\sqrt{3}}{\left((x+1)^{2}(1-x)^{6}\right)^{\frac{1}{4}}} d x
$$

is \qquad .

Ans. (2)

Sol. $\int_{0}^{\frac{1}{2}} \frac{(1+\sqrt{3}) d x}{\left[(1+x)^{2}(1-x)^{6}\right]^{1 / 4}}$
$\int_{0}^{\frac{1}{2}} \frac{(1+\sqrt{3}) d x}{(1+x)^{2}\left[\frac{(1-x)^{6}}{(1+x)^{6}}\right]^{1 / 4}}$

Put $\frac{1-\mathrm{x}}{1+\mathrm{x}}=\mathrm{t} \Rightarrow \frac{-2 \mathrm{dx}}{(1+\mathrm{x})^{2}}=\mathrm{dt}$
$I=\int_{1}^{1 / 3} \frac{(1+\sqrt{3}) d t}{-2 t^{6 / 4}}=\frac{-(1+\sqrt{3})}{2} \times\left|\frac{-2}{\sqrt{\mathrm{t}}}\right|_{1}^{1 / 3}=(1+\sqrt{3})(\sqrt{3}-1)=2$
8. Let P be a matrix of order 3×3 such that all the entries in P are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of P is \qquad .

Ans. (4)
Sol. $\Delta=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=\underbrace{\left(a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}\right)}_{x}-\underbrace{\left(a_{3} b_{2} c_{1}+a_{2} b_{1} c_{3}+a_{1} b_{3} c_{2}\right)}_{y}$
Now if $\mathrm{x} \leq 3$ and $\mathrm{y} \geq-3$
the Δ can be maximum 6
But it is not possible
as $x=3 \Rightarrow$ each term of $x=1$
and $y=3 \Rightarrow$ each term of $y=-1$
$\Rightarrow \prod_{\mathrm{i}=1}^{3} \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}=1$ and $\prod_{\mathrm{i}=1}^{3} \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}=-1$
which is contradiction
so now next possibility is 4
which is obtained as $\left|\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right|=1(1+1)-1(-1-1)+1(1-1)=4$
9. Let X be a set with exactly 5 elements and Y be a set with exactly 7 elements. If α is the number of oneone functions from X to Y and β is the number of onto functions from Y to X, then the value of $\frac{1}{5!}(\beta-\alpha)$ is \qquad .

Ans. (119)
Sol. $n(X)=5$
$\mathrm{n}(\mathrm{Y})=7$
$\alpha \rightarrow$ Number of one-one function $={ }^{7} \mathrm{C}_{5} \times 5$!
$\beta \rightarrow$ Number of onto function Y to X

$1,1,1,1,3 \quad 1,1,1,2,2$
$\frac{7!}{3!4!} \times 5!+\frac{7!}{(2!)^{3} 3!} \times 5!=\left({ }^{7} \mathrm{C}_{3}+3 .{ }^{7} \mathrm{C}_{3}\right) 5!=4 \times{ }^{7} \mathrm{C}_{3} \times 5!$
$\frac{\beta-\alpha}{5!}=4 \times{ }^{7} \mathrm{C}_{3}-{ }^{7} \mathrm{C}_{5}=4 \times 35-21=119$
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function with $f(0)=0$. If $\mathrm{y}=f(\mathrm{x})$ satisfies the differential equation

$$
\frac{d y}{d x}=(2+5 y)(5 y-2)
$$

then the value of $\lim _{x \rightarrow-\infty} f(x)$ is \qquad .

Ans. (0.4)
Sol. $\frac{d y}{d x}=25 y^{2}-4$
So, $\frac{d y}{25 y^{2}-4}=d x$
Integrating, $\frac{1}{25} \times \frac{1}{2 \times \frac{2}{5}} \ln \left|\frac{y-\frac{2}{5}}{y+\frac{2}{5}}\right|=x+c$
$\Rightarrow \ln \left|\frac{5 y-2}{5 y+2}\right|=20(x+c)$
Now, $\mathrm{c}=0$ as $\mathrm{f}(0)=0$
Hence $\quad\left|\frac{5 y-2}{5 y+2}\right|=\mathrm{e}^{(20 \mathrm{x})}$
$\operatorname{let}_{x \rightarrow-\infty}\left|\frac{5 f(x)-2}{5 f(x)+2}\right|=\operatorname{let}_{x \rightarrow-\infty} \mathrm{e}^{(20 \mathrm{x})}$
Now, RHS $=0 \Rightarrow \operatorname{let}_{x \rightarrow-\infty}(5 f(x)-2)=0$
$\Rightarrow \operatorname{let}_{x \rightarrow-\infty} \mathrm{f}(\mathrm{x})=\frac{2}{5}$
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function with $f(0)=1$ and satisfying the equation

$$
f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f^{\prime}(\mathrm{y})+f^{\prime}(\mathrm{x}) f(\mathrm{y}) \text { for all } \mathrm{x}, \mathrm{y} \in \mathbb{R} .
$$

Then, then value of $\log _{\mathrm{e}}(f(4))$ is \qquad .
Ans. (2)
Sol. $\mathrm{P}(\mathrm{x}, \mathrm{y}): \mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}^{\prime}(\mathrm{y})+\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$
$P(0,0): f(0)=f(0) f^{\prime}(0)+f^{\prime}(0) f(0)$
$\Rightarrow 1=2 \mathrm{f}^{\prime}(0)$
$\Rightarrow \mathrm{f}^{\prime}(0)=\frac{1}{2}$
$P(x, 0): f(x)=f(x) \cdot f^{\prime}(0)+f^{\prime}(x) \cdot f(0)$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{1}{2} \mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2} \mathrm{f}(\mathrm{x})$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{e}^{\frac{1}{2} \mathrm{x}}$
$\Rightarrow \ln (\mathrm{f}(4))=2$
12. Let P be a point in the first octant, whose image Q in the plane $x+y=3$ (that is, the line segment $P Q$ is perpendicular to the plane $x+y=3$ and the mid-point of PQ lies in the plane $x+y=3$) lies on the z-axis. Let the distance of P from the x-axis be 5 . If R is the image of P in the $x y$-plane, then the length of PR is \qquad .

Ans. (8)
Sol. Let

$$
\begin{aligned}
& \mathrm{P}(\alpha, \beta, \gamma) \\
& \mathrm{Q}(0,0, \gamma) \quad \& \\
& \mathrm{R}(\alpha, \beta,-\gamma)
\end{aligned}
$$

Now, $\quad \overline{\mathrm{PQ}}\|\hat{\mathrm{i}}+\hat{\mathrm{j}} \Rightarrow(\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}})\|(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
$\Rightarrow \quad \alpha=\beta$
Also, mid point of PQ lies on the plane $\Rightarrow \frac{\alpha}{2}+\frac{\beta}{2}=3 \Rightarrow \alpha+\beta=6 \Rightarrow \alpha=3$

Now, distance of point P from X -axis is $\sqrt{\beta^{2}+\gamma^{2}}=5$
$\Rightarrow \beta^{2}+\gamma^{2}=25 \Rightarrow \gamma^{2}=16$
as $\beta=\alpha=3$
as $\gamma=4$
Hence, $\mathrm{PR}=2 \gamma=8$
13. Consider the cube in the first octant with sides $O P, O Q$ and $O R$ of length 1 , along the x-axis, y-axis and z-axis, respectively, where $\mathrm{O}(0,0,0)$ is the origin. Let $\mathrm{S}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagonal OT . If $\overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{SP}}, \overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{SQ}}$, $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{SR}}$ and $\overrightarrow{\mathrm{t}}=\overrightarrow{\mathrm{ST}}$, then the value of $|(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}) \times(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{t}})|$ is \qquad .

Ans. (0.5)

Sol.

$\overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{SP}}=\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)=\frac{1}{2}(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$

$$
\begin{aligned}
& \overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{SQ}}=\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)=\frac{1}{2}(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}) \\
& \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{SR}}=\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2}(-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}) \\
& \overrightarrow{\mathrm{t}}=\overrightarrow{\mathrm{ST}}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}) \\
& |(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}) \times(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{t}})|=\frac{1}{4}\left|\begin{array}{lll}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
1 & -1 & -1 \\
-1 & 1 & -1
\end{array}\right| \times \frac{1}{4}\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
-1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right| \\
& =\frac{1}{16}|(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}) \times(-2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}})|=\left|\frac{\hat{\mathrm{k}}}{2}\right|=\frac{1}{2}
\end{aligned}
$$

14. Let $\mathrm{X}=\left({ }^{10} \mathrm{C}_{1}\right)^{2}+2\left({ }^{10} \mathrm{C}_{2}\right)^{2}+3\left({ }^{10} \mathrm{C}_{3}\right)^{2}+\ldots+10\left({ }^{10} \mathrm{C}_{10}\right)^{2}$, where ${ }^{10} \mathrm{C}_{\mathrm{r}}, \mathrm{r} \in\{1,2, \ldots, 10\}$ denote binomial coefficients. Then, the value of $\frac{1}{1430} \mathrm{X}$ is \qquad .

Ans. (646)

Sol. $\mathrm{X}=\sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{r} .\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}\right)^{2} ; \mathrm{n}=10$

$$
\begin{aligned}
& X=n \cdot \sum_{r=0}^{n}{ }^{n} C_{r} \cdot{ }^{n-1} C_{r-1} \\
& X=n \cdot \sum_{r=1}^{n}{ }^{n} C_{n-r} \cdot{ }^{n-1} C_{r-1} \\
& X=n \cdot{ }^{2 n-1} C_{n-1} ; n=10 \\
& X=10 \cdot{ }^{19} C_{9} \\
& \frac{X}{1430}=\frac{1}{143} \cdot{ }^{19} C_{9} \\
& =646
\end{aligned}
$$

SECTION 3

15. Let $E_{1}=\left\{x \in \mathbb{R}: x \neq 1\right.$ and $\left.\frac{x}{x-1}>0\right\}$
and $E_{2}=\left\{x \in E_{1}: \sin ^{-1}\left(\log _{e}\left(\frac{x}{x-1}\right)\right)\right.$ is a real number $\}$.
(Here, the inverse trigonometric function $\sin ^{-1} \mathrm{x}$ assumes values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.)

Let $f: \mathrm{E}_{1} \rightarrow \mathbb{R}$ be the function defined by $f(\mathrm{x})=\log _{\mathrm{e}}\left(\frac{\mathrm{x}}{\mathrm{x}-1}\right)$
and $g: E_{2} \rightarrow \mathbb{R}$ be the function defined by $g(x)=\sin ^{-1}\left(\log _{e}\left(\frac{x}{x-1}\right)\right)$.

LIST-I

P. The range of f is
Q. The range of g contains
R. The domain of f contains
S. The domain of g is

LIST-II

1. $\left(-\infty, \frac{1}{1-\mathrm{e}}\right] \cup\left[\frac{\mathrm{e}}{\mathrm{e}-1}, \infty\right)$
2. $(0,1)$
3. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
4. $(-\infty, 0) \cup(0, \infty)$
5. $\left(-\infty, \frac{\mathrm{e}}{\mathrm{e}-1}\right]$
6. $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{\mathrm{e}}{\mathrm{e}-1}\right]$

The correct option is :
(A) $\mathrm{P} \rightarrow \mathbf{4} ; \mathbf{Q} \rightarrow \mathbf{2} ; \mathrm{R} \rightarrow \mathbf{1} ; \mathrm{S} \rightarrow \mathbf{1}$
(B) $\mathbf{P} \rightarrow \mathbf{3 ;} \mathbf{Q} \rightarrow \mathbf{3} ; \mathbf{R} \rightarrow \mathbf{6 ; S} \boldsymbol{S}$
(C) $\mathrm{P} \rightarrow \mathbf{4 ;} \mathbf{Q} \rightarrow \mathbf{2} ; \mathrm{R} \rightarrow \mathbf{1 ; S} \rightarrow \mathbf{6}$
(D) $\mathrm{P} \rightarrow \mathbf{4 ;} \mathbf{Q} \rightarrow \mathbf{3 ;} \mathbf{R} \rightarrow \mathbf{6 ;} \mathrm{S} \rightarrow \mathbf{5}$

Ans. (A)

Sol. $E_{1}: \frac{x}{x-1}>0$

$$
\Rightarrow \quad \mathrm{E}_{1}: \mathrm{x} \in(-\infty, 0) \square \cup(1, \infty)
$$

$\mathrm{E}_{2}:-1 \leq \ell n\left(\frac{x}{x+1}\right) \leq 1$

$$
\frac{1}{e} \leq \frac{x}{x-1} \leq e
$$

Now $\frac{x}{x-1}-\frac{1}{e} \geq 0$
$\Rightarrow \quad \frac{(\mathrm{e}-1) \mathrm{x}+1}{\mathrm{e}(\mathrm{x}-1)} \geq 0$

$\Rightarrow \quad \mathrm{x} \in\left(-\infty, \frac{1}{1-\mathrm{e}}\right] \cup(1, \infty)$
also $\frac{x}{x-1}-e \leq 0$
$\frac{(e-1) x-e}{x-1} \geq 0$

,$+ \quad-\quad+$	
1	$\mathrm{e} /(\mathrm{e}-1)$

$\Rightarrow \quad x \in(-\infty, 1) \cup\left[\frac{\mathrm{e}}{\mathrm{e}-1}, \infty\right]$
So $\quad E_{2}:\left(-\infty, \frac{1}{1-e}\right) \cup\left[\frac{\mathrm{e}}{\mathrm{e}-1}, \infty\right]$
as Range of $\frac{x}{x-1}$ is $R^{+}-\{1\}$
\Rightarrow Range of f is $R-\{0\}$ or $(-\infty, 0) \cup(0, \infty)$

Range of g is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \backslash\{0\}$ or $\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$
Now $\mathrm{P} \rightarrow 4, \mathrm{Q} \rightarrow 2, \mathrm{R} \rightarrow 1, \mathrm{~S} \rightarrow 1$
Hence A is correct
16. In a high school, a committee has to be formed from a group of 6 boys $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}$ and 5 girls $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{G}_{4}, \mathrm{G}_{5}$.
(i) Let α_{1} be the total number of ways in which the committee can be formed such that the committee has 5 members, having exactly 3 body and 2 girls.
(ii) Let α_{2} be the total number of ways in which the committe can be formed such that the committee has at least 2 members, and having an equal number of boys and girls.
(iii) Let α_{3} be the total number of ways in which the committe can be formed such that the committee has 5 members, at least 2 of them being girls.
(iv) Let α_{4} be the total number of ways in which the committee can be formed such that the commitee has 4 members, having at least 2 girls and such that both M_{1} and G_{1} are NOT in the committee together.

LIST-I

P. The value of α_{1} is $\mathbf{1}$. 136
Q. The value of α_{2} is $\mathbf{2}$. 189
R. The value of α_{3} is 3. 192
S. The value of α_{4} is
4. 200
5. 381
6. 461

The correct option is :-
(A) $\mathbf{P} \rightarrow 4 ; \mathbf{Q} \rightarrow \mathbf{6}, \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow \mathbf{1}$
(B) $\mathbf{P} \rightarrow \mathbf{1 ;} \mathbf{Q} \rightarrow 4 ; \mathbf{R} \rightarrow 2 ; S \rightarrow 3$
(C) $\mathbf{P} \rightarrow 4 ; \mathbf{Q} \rightarrow \mathbf{6}, \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 2$
(D) $\mathbf{P} \rightarrow 4 ; \mathbf{Q} \rightarrow 2 ; \mathbf{R} \rightarrow 3 ; \mathrm{S} \rightarrow \mathbf{1}$

Ans. (C)
Sol. (1) $\alpha_{1}=\binom{6}{3}\binom{5}{2}=200$

$$
\text { So } \mathrm{P} \rightarrow 4
$$

(2) $\quad \alpha_{2}=\binom{6}{1}\binom{5}{1}+\binom{6}{2}\binom{5}{2}+\binom{6}{3}\binom{5}{3}+\binom{6}{4}\binom{5}{4}+\binom{6}{5}\binom{5}{5}$
$=\binom{11}{5}-1$
$=46$!
So $\mathrm{Q} \rightarrow 6$
(3) $\quad \alpha_{3}=\binom{5}{2}\binom{6}{3}+\binom{5}{3}\binom{6}{2}+\binom{5}{4}\binom{6}{1}+\binom{5}{5}\binom{6}{0}$
$=\binom{11}{5}-\binom{5}{0}\binom{6}{5}-\binom{5}{1}\binom{6}{4}$
$=381$
So R $\rightarrow 5$
(4) $\alpha_{2}=\binom{5}{2}\binom{6}{2}-\binom{4}{1}\binom{5}{1}+\binom{5}{3}\binom{6}{1}-\binom{4}{2}\binom{1}{1}+\binom{5}{4}=189$

So $S \rightarrow 2$
17. Let $\mathrm{H}: \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$, where $\mathrm{a}>\mathrm{b}>0$, be a hyperbola in the xy -plane whose conjugate axis LM subtends an angle of 60° at one of its vertices N. Let the area of the triangle LMN be $4 \sqrt{3}$.

LIST-I

\mathbf{P}. The length of the conjugate axis of H is
Q. The eccentricity of H is
R. The distance between the foci of H is
S. The length of the latus rectum of H is The correct option is :
(A) $\mathbf{P} \rightarrow \mathbf{4 ;} \mathbf{Q} \rightarrow \mathbf{2 , R} \rightarrow \mathbf{1 ; ~ S} \rightarrow \mathbf{3}$
(B) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow \mathbf{3} ; \mathrm{R} \rightarrow \mathbf{1 ; ~} \mathrm{S} \rightarrow 2$
(C) $\mathbf{P} \rightarrow 4 ; \mathbf{Q} \rightarrow 1, \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 2$
(D) $\mathbf{P} \rightarrow 3 ; \mathbf{Q} \rightarrow 4 ; \mathbf{R} \rightarrow 2 ; S \rightarrow \mathbf{1}$

LIST-II

1. 8
2. $\frac{4}{\sqrt{3}}$
3. $\frac{2}{\sqrt{3}}$
4. 4

Ans. (B)

Sol.

$\tan 30^{\circ}=\frac{\mathrm{b}}{\mathrm{a}}$
$\Rightarrow \quad \mathrm{a}=\mathrm{b} \sqrt{3}$

Now area of $\Delta \mathrm{LMN}=\frac{1}{2} \cdot 2 \mathrm{~b} \cdot \mathrm{~b} \sqrt{3}$
$4 \sqrt{3}=\sqrt{3} b^{2}$
$\Rightarrow \quad \mathrm{b}=2 \quad \& \quad \mathrm{a}=2 \sqrt{3}$
$\Rightarrow \quad e=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\frac{2}{\sqrt{3}}$
P. Length of conjugate axis $=2 b=4$

So $\mathrm{P} \rightarrow 4$
Q. \quad Eccentricity $\mathrm{e}=\frac{2}{\sqrt{3}}$

So $\mathrm{Q} \rightarrow 3$
R. Distance between foci $=2 \mathrm{ae}$

$$
=2(2 \sqrt{3})\left(\frac{2}{\sqrt{3}}\right)=8
$$

So $R \rightarrow 1$
S. Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2(2)^{2}}{2 \sqrt{3}}=\frac{4}{\sqrt{3}}$

So $S \rightarrow 2$
18. Let $\mathrm{f}_{1}: \mathbb{R} \rightarrow \mathbb{R}, \mathrm{f}_{2}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \mathrm{f}_{3}:\left(-1, \mathrm{e}^{\frac{\pi}{2}}-2\right) \rightarrow \mathbb{R}$ and $\mathrm{f}_{4}: \mathbb{R} \rightarrow \mathbb{R}$ be functions defined by
(i) $\mathrm{f}_{1}(\mathrm{x})=\sin \left(\sqrt{1-\mathrm{e}^{-\mathrm{x}^{2}}}\right)$
(ii) $\mathrm{f}_{2}(\mathrm{x})=\left\{\begin{array}{ll}\frac{|\sin \mathrm{x}|}{\tan ^{-1} \mathrm{x}} & \text { if } \mathrm{x} \neq 0 \\ 1 & \text { if } \mathrm{x}=0\end{array}\right.$, where the inverse trigonometric function $\tan ^{-1} \mathrm{x}$ assumes values in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,
(iii) $f_{3}(x)=\left[\sin \left(\log _{e}(x+2)\right]\right.$, where for $t \in \mathbb{R},[t]$ denotes the greatest integer less than or equal to t,
(iv) $f_{4}(x)=\left\{\begin{array}{ccc}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$

List-I

P. the function f_{1} is
Q. The function f_{2} is
R. The function f_{3} is
S. The function f_{4} is

The correct option is :
(A) $\mathbf{P} \rightarrow \mathbf{2} ; \mathbf{Q} \rightarrow \mathbf{3}, \mathrm{R} \rightarrow \mathbf{1} ; \mathrm{S} \rightarrow \mathbf{4}$
(B) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 3$
(C) $\mathbf{P} \rightarrow 4 ; \mathbf{Q} \rightarrow 2, \mathrm{R} \rightarrow \mathbf{1 ; S} \rightarrow 3$
(D) $\mathbf{P} \rightarrow 2 ; \mathbf{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 3$

List-II

1. NOT continuous at $x=0$
2. continuous at $x=0$ and NOT differentiable at $\mathrm{x}=0$
3. differentiable at $x=0$ and its derivative is NOT continuous at $\mathrm{x}=0$
4. differentiable at $\mathrm{x}=0$ and its derivative is continuous at $\mathrm{x}=0$

Ans. (D)

Sol. (i) $f(x)=\sin \sqrt{1-e^{-x^{2}}}$

$$
\mathrm{f}_{1}^{\prime}(\mathrm{x})=\cos \sqrt{1-\mathrm{e}^{-\mathrm{x}^{2}}} \cdot \frac{1}{2 \sqrt{1-\mathrm{e}^{-\mathrm{x}^{2}}}}\left(0-\mathrm{e}^{-\mathrm{x}^{2}} \cdot(-2 \mathrm{x})\right)
$$

at $\mathrm{x}=0 \quad \mathrm{f}_{1}^{\prime}(\mathrm{x})$ does not exist
So. $\mathrm{P} \rightarrow 2$
(ii) $\mathrm{f}_{2}(\mathrm{x})=\left\{\begin{array}{cc}\frac{|\sin \mathrm{x}|}{\tan ^{-1} \mathrm{x}}, & \mathrm{x} \neq 0 \\ 0 & \mathrm{x}=0\end{array}\right.$

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \frac{x}{\tan ^{-1} x}=1
$$

$\Rightarrow \mathrm{f}_{2}(\mathrm{x})$ does not continuous at $\mathrm{x}=0$
So $\mathrm{Q} \rightarrow 1$
(iii) $\mathrm{f}_{3}(\mathrm{x})=[\sin \ell \mathrm{n}(\mathrm{x}+2)]=0$
$1<\mathrm{x}+2<\mathrm{e}^{\pi / 2}$
$\Rightarrow 0<\ln (\mathrm{x}+2)<\frac{\pi}{2}$
$\Rightarrow \quad 0<\sin (\ell n(x+2)<1$
$\Rightarrow \mathrm{f}_{3}(\mathrm{x})=0$
So $R \rightarrow 4$
(iv) $f_{4}(x)=\left\{\begin{array}{cc}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$

So $\mathrm{S} \rightarrow 3$

