IIT JEE Mathematics Paper 22007

This section contains 9 multiple choice questions numbered 1 to 9 . Each question has 4 choices (A), (B), (C) and (D), out of which only one is correct.

1. Let $\vec{a}, \vec{b}, \overrightarrow{c^{-}}$be unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Which one of the following is correct?
(A) $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{0}$
(B) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq \overrightarrow{0}$
(C) $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{0}$
(D) $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ are mutually perpendicular

Sol. (B)
Since $\vec{a}, \vec{b}, \vec{c}$ are unit vectors and $\vec{a}+\vec{b}+\vec{c}=0$,
$\vec{a}, \vec{b}, \vec{c}$ represent an equilateral triangle.
$\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq 0$.
2. Let $f x=\frac{x}{\left(1+x^{n}\right)^{1 / n}}$ for $n \geq 2$ and $g(x)=\underbrace{(\text { fofo } \ldots \text { of })}_{\text {foccurs } n \text { times }}(x)$. Then $\int x^{n-2} g(x) d x$ equals
(A) $\frac{1}{\mathrm{n}(\mathrm{n}-1)}\left(1+\mathrm{nx}^{\mathrm{n}}\right)^{1-\frac{1}{n}}+\mathrm{K}$
(B) $\frac{1}{n-1}\left(1+n x^{n}\right)^{1-\frac{1}{n}}+K$
(C) $\frac{1}{\mathrm{n}(\mathrm{n}+1)}\left(1+\mathrm{nx}^{\mathrm{n}}\right)^{1+\frac{1}{n}}+\mathrm{K}$
(D) $\frac{1}{\mathrm{n}+1}(1+\mathrm{nx})^{\mathrm{n}+\frac{1}{\mathrm{n}}}+\mathrm{K}$

Sol. (A)
Here $f f(x)=\frac{f(x)}{\left[1+f(x)^{n}\right]^{1 / n}}=\frac{x}{\left(1+2 x^{n}\right)^{1 / x}}$
$\mathrm{fff}(\mathrm{x})=\frac{\mathrm{x}}{\left(1+3 \mathrm{x}^{\mathrm{n}}\right)^{1 / \mathrm{n}}}$
$\Rightarrow \mathrm{g}(\mathrm{x})=\underset{\substack{\text { fofo...of } \\ \mathrm{n} \text { terms }}}{ }(\mathrm{x})=\frac{\mathrm{x}}{\left(1+\mathrm{nx}^{\mathrm{n}}\right)^{1 / \mathrm{n}}}$
Hence $I=\int x^{n-2} g(x) d x=\int \frac{x^{n-1} d x}{\left(1+n x^{n}\right)^{1 / n}}$
$=\frac{1}{\mathrm{n}^{2}} \int \frac{\mathrm{n}^{2} \mathrm{x}^{\mathrm{n}-1} \mathrm{dx}}{(1+\mathrm{nx})^{\mathrm{n}} \mathrm{m}^{1 / n}}=\frac{1}{\mathrm{n}^{2}} \int \frac{\frac{\mathrm{~d}}{\mathrm{dx}}\left(1+\mathrm{nx} \mathrm{x}^{\mathrm{n}}\right)}{\left(1+\mathrm{nx}^{\mathrm{n}}\right)^{1 / \mathrm{n}}} \mathrm{dx}$
$\therefore \mathrm{I}=\frac{1}{\mathrm{n}(\mathrm{n}-1)}\left(1+\mathrm{nx}^{\mathrm{n}}\right)^{1-\frac{1}{n}}+\mathrm{k}$.
3. $\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dy}^{2}}$ equals
(A) $\left(\frac{d^{2} y}{d^{2}}\right)^{-1}$
(B) $-\left(\frac{d^{2} y}{d x^{2}}\right)^{-1}\left(\frac{d y}{d x}\right)^{-3}$
(C) $\left(\frac{d^{2} y}{d x^{2}}\right)\left(\frac{d y}{d x}\right)^{-2}$
(D) $-\left(\frac{d^{2} y}{d x^{2}}\right)\left(\frac{d y}{d x}\right)^{-3}$

Sol. (D)

Page 1

Since, $\frac{d x}{d y}=\frac{1}{d y / d x}=\left(\frac{d y}{d x}\right)^{-1}$
$\Rightarrow \frac{d}{d y}\left(\frac{d x}{d y}\right)=\frac{d}{d x}\left(\frac{d y}{d x}\right)^{-1} \frac{d x}{d y}$
$\Rightarrow \frac{d^{2} x}{d y^{2}}=-\left(\frac{d^{2} y}{d x^{2}}\right)\left(\frac{d y}{d x}\right)^{-2}\left(\frac{d x}{d y}\right)=-\left(\frac{d^{2} y}{d x^{2}}\right)\left(\frac{d y}{d x}\right)^{-3}$.
*4. The letters of the word COCHIN are permuted and all the permutations are arranged in an alphabetical order as in an English dictionary. The number of words that appear before the word COCHIN is
(A) 360
(B) 192
(C) 96
(D) 48

Sol. (C)
COCHIN
The second place can be filled in ${ }^{4} C_{1}$ ways and the remaining four alphabets can be arranged in 4 ! ways in four different places. The next $97^{\text {th }}$ word will be COCHIN.
Hence, there are 96 words before COCHIN.
*5. If $|z|=1$ and $z \neq \pm 1$, then all the values of $\frac{z}{1-z}{ }_{2}$ lie on
(A) a line not passing through the origin
(B) $|z|=\sqrt{2}$
(C) the x -axis
(D) the y-axis

Sol. (D)
Let $\mathrm{z}=\cos \theta+\sin \theta$, so that
$\frac{z}{1-z^{2}}=\frac{\cos \theta+\sin \theta}{1-(\cos 2 \theta+i \sin 2 \theta)}$
$=\frac{\cos \theta+i \sin \theta}{2 \sin ^{2} \theta-2 i \sin \theta \cos \theta}=\frac{\cos \theta+i \sin \theta}{-2 i \sin \theta(\cos \theta+i \sin \theta)}$
$=\frac{\mathrm{i}}{2 \sin \theta}$
Hence $\frac{\mathrm{z}}{1-\mathrm{z}^{2}}$ lies on the imaginary axis i.e., $\mathrm{x}=0$.
Alternative
Let $E=\frac{z}{1-z^{2}}=\frac{z}{z \bar{z}-z^{2}}=\frac{1}{\bar{z}-z}$
which is imaginary.
*6. Let ABCD be a quadrilateral with area 18 , with side AB parallel to the side CD and $\mathrm{AB}=2 \mathrm{CD}$. Let AD be perpendicular to $A B$ and $C D$. If a circle is drawn inside the quadrilateral $A B C D$ touching all the sides, then its radius is
(A) 3
(B) 2
(C) $3 / 2$
(D) 1

Sol. (B)
$18=\frac{1}{2}(3 \alpha)(2 r) \Rightarrow \alpha r=6$
Line $y=-\frac{2 r}{\alpha}(x-2 \alpha)$ is tangent to $(x-r)^{2}+$
$(y-r)^{2}=r^{2}$
$2 \alpha=3 \mathrm{r}$ and $\alpha \mathrm{r}=6$
$\mathrm{r}=2$.

Alternate

Page 2

$\frac{1}{2}(x+2 x) \times 2 r=18$
$\mathrm{xr}=6$
$\tan \theta=\frac{\mathrm{x}-\mathrm{r}}{\mathrm{r}} \quad \tan (90-\theta)=\frac{2 \mathrm{x}-\mathrm{r}}{\mathrm{r}}$
$\frac{x-r}{r}=\frac{r}{2 x-r}$
$\mathrm{x}(2 \mathrm{x}-3 \mathrm{r})=0$
$x=\frac{3 r}{2}$
From (1) and (2)
$\mathrm{r}=2$.

*7. Let $\mathrm{O}(0,0), \mathrm{P}(3,4), \mathrm{Q}(6,0)$ be the vertices of the triangle OPQ . The point R inside the triangle OPQ is such that the triangles $O P R, P Q R, O Q R$ are of equal area. The coordinates of R are
(A) $\left(\frac{4}{3}, 3\right)$
(B) $\left(3, \frac{2}{3}\right)$
(C) $\left(3, \frac{4}{3}\right)$
(D) $\left(\frac{4}{3}, \frac{2}{3}\right)$

Sol. (C)
Since, Δ is isosceles, hence centroid is the desired point.

8. The differential equation $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ determines a family of circles with
(A) variable radii and a fixed centre at $(0,1)$
(B) variable radii and a fixed centre at $(0,-1)$
(C) fixed radius 1 and variable centres along the x -axis
(D) fixed radius 1 and variable centres along the y-axis

Sol. (C)
$\frac{d y}{d x}=\frac{\sqrt{1-\mathrm{y}^{2}}}{\mathrm{y}}$
$\Rightarrow \int \frac{y}{\sqrt{1-y^{2}}} d y=\int d x$
$\Rightarrow-\sqrt{1-y^{2}}=\mathrm{x}+\mathrm{c}$
$\Rightarrow(\mathrm{x}+\mathrm{c})^{2}+\mathrm{y}^{2}=1$
centre $(-\mathrm{c}, 0)$; radius $\sqrt{\mathrm{c}^{2}-\mathrm{c}^{2}+1}=1$.
9. Let E^{c} denote the complement of an event E. Let E, F, G be pairwise independent events with $P(G)>0$ and $P(E \cap F \cap G)$ $=0$. Then $\mathrm{P}\left(\mathrm{E}^{\mathrm{C}} \cap \mathrm{F}^{\mathrm{C}} \mid \mathrm{G}\right)$ equals
(A) $P\left(E^{C}\right)+P\left(F^{C}\right)$
(B) $P\left(E^{C}\right)-P\left(F^{C}\right)$
(C) $P\left(E^{C}\right)-P(F)$
(D) $\mathrm{P}(\mathrm{E})-\mathrm{P}\left(\mathrm{F}^{\mathrm{C}}\right)$

Sol. (C)
$\mathrm{P}\left(\frac{\mathrm{E}^{\mathrm{c}} \cap \mathrm{F}^{\mathrm{c}}}{\mathrm{G}}\right)=\frac{\mathrm{P}\left(\mathrm{E}^{\mathrm{c}} \cap \mathrm{F}^{\mathrm{c}} \cap \mathrm{G}\right)}{\mathrm{P}(\mathrm{G})}=\frac{\mathrm{P}(\mathrm{G})-\mathrm{P}(\mathrm{E} \cap \mathrm{G})-\mathrm{P}(\mathrm{G} \cap \mathrm{F})}{\mathrm{P}(\mathrm{G})}$

Page 3

$$
\begin{aligned}
& =\frac{P(G)(1-P(E)-P(F))}{P(G)} \quad[\because P(G) \neq 0] \\
& =1-P(E)-P(F) \\
& =P\left(E^{c}\right)-P(F)
\end{aligned}
$$

SECTION -II

Abstract

Assertion - Reason Type This section contains 4 questions numbered 54 to 57. Each question contains STATEMENT - 1 (Assertion) and STATEMENT -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

10. Let $f(x)=2+\cos x$ for all real x.

STATEMENT - 1 : For each real t, there exists a point c in $[t, t+\pi]$ such that $f^{\prime}(c)=0$.

because

STATEMENT - $2: f(t)=f(t+2 \pi)$ for each real t.
(A) Statement -1 is True, Statement -2 is True; Statement- 2 is a correct explanation for Statement-1
(B) Statement -1 is True, Statement -2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement -1 is True, Statement -2 is False
(D) Statement -1 is False, Statement -2 is True

Sol. (B)
$\mathrm{f}(\mathrm{x})=2+\cos \mathrm{x} \forall \mathrm{x} \in \mathrm{R}$
Statement: 1
There exists a point $\mathrm{c} \in[\mathrm{t}, \mathrm{t}+\pi]$ where $\mathrm{f}^{\prime}(\mathrm{c})=0$
Hence, statement 1 is true.
Statement 2:
$f(t)=f(t+2 \pi)$ is true.
But statement 2 is not a correct explanation for statement 1.
11. Consider the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.

STATEMENT -1: The parametric equations of the line of intersection of the given planes are $\mathrm{x}=3+14$ t,

$$
y=1+2 t, z=15 t
$$

because

STATEMENT -2 : The vectors $14 \hat{i}+2 \hat{j}+15 \hat{k}$ is parallel to the line of intersection of the given planes.
(A) Statement -1 is True, Statement -2 is True; Statement- 2 is a correct explanation for Statement- 1
(B) Statement -1 is True, Statement -2 is True; Statement- 2 is NOT a correct explanation for Statement-1
(C) Statement -1 is True, Statement -2 is False
(D) Statement -1 is False, Statement -2 is True

Sol. (D)
$3 x-6 y-2 z=15$
$2 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=5$
for $z=0$, we get $x=3, y=-1$
Direction vectors of plane are
$<3-6-2>$ and $<21-2>$
then the dr's of line of intersection of planes is <14 2 15>
$\frac{x-3}{14}=\frac{y+1}{2}=\frac{z-0}{15}=\lambda$
$\Rightarrow \mathrm{x}=14 \lambda+3 \quad \mathrm{y}=2 \lambda-1 \quad \mathrm{z}=15 \lambda$
Hence, statement 1 is false.
But statement 2 is true.
*12. Lines $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q, respectively. The bisector of the acute angle between L_{1} and L_{2} intersects L_{3} at R.

STATEMENT -1: The ratio PR : RQ equals $2 \sqrt{2}: \sqrt{5}$.

because

STATEMENT - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles.
(A) Statement -1 is True, Statement -2 is true; Statement-2 is a correct explanation for Statement-1
(B) Statement -1 is True, Statement -2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement -1 is True, Statement -2 is False
(D) Statement -1 is False, Statement -2 is True

Sol. (C)
In $\triangle \mathrm{OPQ}$
Clearly $\frac{\mathrm{PR}}{\mathrm{RQ}}=\frac{\mathrm{OP}}{\mathrm{OQ}}=\frac{2 \sqrt{2}}{\sqrt{5}}$

*13. STATEMENT -1: The curve $\mathrm{y} \frac{-\mathrm{x}^{2}}{2}+\mathrm{x}+1$ is symmetric with respect to the line $\mathrm{x}=1$.

because

STATEMENT -2 : A parabola is symmetric about its axis.
(A) Statement -1 is True, Statement -2 is true; Statement-2 is a correct explanation for Statement-1
(B) Statement -1 is True, Statement -2 is true; Statement- 2 is NOT a correct explanation for Statement-1
(C) Statement -1 is True, Statement -2 is False
(D) Statement -1 is False, Statement -2 is True

Sol. (A)
$y=-\frac{x^{2}}{2}+x+1$
$\Rightarrow \mathrm{y}-\frac{3}{2}=-\frac{1}{2}(\mathrm{x}-1)^{2}$
\Rightarrow it is symmetric about $\mathrm{x}=1$.

SECTION - III

Linked Comprehension Type

This section contains 2 paragraphs M_{58-60} and $M_{61-63 .}$. Based upon each paragraph, 3 multiple choice questions have to be answered. Each question has 4 choice (A), (B), (C) and (D), out of which ONLY ONE is correct.

M_{58-60} : Paragraph for question Nos. 58 to 60

If a continuous f defined on the real line R, assumes positive and negative values in R then the equation $f(x)=0$ has a root in R. For example, if it is known that a continuous function f on R is positive at some point and its minimum values is negative then the equation $f(x)=0$ has a root in R.
Consider $\mathrm{f}(\mathrm{x})=\mathrm{ke}^{\mathrm{x}}-\mathrm{x}$ for all real x where k is a real constant.
14. The line $\mathrm{y}=\mathrm{x}$ meets $\mathrm{y}=\mathrm{ke}^{\mathrm{x}}$ for $\mathrm{k} \leq 0$ at
(A) no point
(B) one point
(C) two points
(D) more than two points

Sol. (B)
Line $\mathrm{y}=\mathrm{x}$ intersect the curve $\mathrm{y}=\mathrm{ke}^{\mathrm{x}}$ at exactly one point when $\mathrm{k} \leq 0$.

15. The positive value of k for which kex $-x=0$ has only one root is
(A) $1 / \mathrm{e}$
(B) 1
(C) e
(D) $\log _{\mathrm{e}} 2$

Sol. (A)
Let $\mathrm{f}(\mathrm{x})=\mathrm{ke}^{\mathrm{x}}-\mathrm{x}$
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{ke}^{\mathrm{x}}-1=0 \Rightarrow \mathrm{x}=-\ln \mathrm{k}$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=k \mathrm{e}^{\mathrm{x}}$
$\left.\mathrm{f}^{\prime \prime}(\mathrm{x})\right|_{\mathrm{x}=-\ln k}=1>0$
Hence $\mathrm{f}(-\operatorname{lnk})=1+\operatorname{lnk}$
For one root of given equation
$1+\operatorname{lnk}=0$
hence $\mathrm{k}=\frac{1}{\mathrm{e}}$.
16. For $\mathrm{k}>0$, the set of all values of k for which $\mathrm{k} \mathrm{e}-\mathrm{x}=0$ has two distinct roots is
(A) $\left(0, \frac{1}{\mathrm{e}}\right)$
(B) $\left(\frac{1}{\mathrm{e}}, 1\right)$
(C) $\left(\frac{1}{\mathrm{e}}, \infty\right)$
(D) $(0,1)$

Sol. (A)
For two distinct roots $1+\ln \mathrm{k}<0 \quad(\mathrm{k}>0)$
$\ln k<-1$
$\mathrm{k}<\frac{1}{\mathrm{e}}$
hence $\mathrm{k} \in\left(0, \frac{1}{\mathrm{e}}\right)$.

M_{61-63} : Paragraph for Question Nos. 61 to 63

Let A_{1}, G_{1}, H_{1} denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $n \geq 2$, let A_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_{n}, G_{n}, H_{n} respectively.
*17. Which one of the following statements is correct?
(A) $\mathrm{G}_{1}>\mathrm{G}_{2}>\mathrm{G}_{3}>\ldots$
(B) $\mathrm{G}_{1}<\mathrm{G}_{2}<\mathrm{G}_{3}<\ldots$
(C) $\mathrm{G}_{1}=\mathrm{G}_{2}=\mathrm{G}_{3}=\ldots$
(D) $\mathrm{G}_{1}<\mathrm{G}_{3}<\mathrm{G}_{5}<\ldots$ and $\mathrm{G}_{2}>\mathrm{G}_{4}>\mathrm{G}_{6}>\ldots$

Sol. (C)
$A_{1}=\frac{a+b}{2} ; G_{1}=\sqrt{a b} ; H_{1}=\frac{2 a b}{a+b}$
$A_{n}=\frac{A_{n-1}+H_{n-1}}{2}, G_{n}=\sqrt{A_{n-1} H_{n-1}}, H_{n}=\frac{2 A_{n-1} H_{n-1}}{A_{n-1}+H_{n-1}}$

Clearly, $\mathrm{G}_{1}=\mathrm{G}_{2}=\mathrm{G}_{3}=\ldots=\sqrt{\mathrm{ab}}$.
*18. Which of the following statements is correct?
(A) $A_{1}>A_{2}>A_{3}>\ldots$
(B) $\mathrm{A}_{1}<\mathrm{A}_{2}<\mathrm{A}_{3}<\ldots$
(C) $\mathrm{A}_{1}>\mathrm{A}_{3}>\mathrm{A}_{5}>\ldots$ and $\mathrm{A}_{2}<\mathrm{A}_{4}<\mathrm{A}_{6}<\ldots$
(D) $\mathrm{A}_{1}<\mathrm{A}_{3}<\mathrm{A}_{5}<\ldots$ and $\mathrm{A}_{2}>\mathrm{A}_{4}>\mathrm{A}_{6}>\ldots$

Sol. (A)
A_{2} is A.M. of A_{1} and H_{1} and $A_{1}>H_{1} \Rightarrow A_{1}>A_{2}>H_{1}$
A_{3} is A.M. of A_{2} and H_{2} and $\mathrm{A}_{2}>\mathrm{H}_{2} \Rightarrow \mathrm{~A}_{2}>\mathrm{A}_{3}>\mathrm{H}_{2}$
$\therefore \mathrm{A}_{1}>\mathrm{A}_{2}>\mathrm{A}_{3}>\ldots$
*19. Which of the following statements is correct?
(A) $\mathrm{H}_{1}>\mathrm{H}_{2}>\mathrm{H}_{3}>\ldots$
(B) $\mathrm{H}_{1}<\mathrm{H}_{2}<\mathrm{H}_{3}<\ldots$
(C) $\mathrm{H}_{1}>\mathrm{H}_{3}>\mathrm{H}_{5}>\ldots$ and $\mathrm{H}_{2}<\mathrm{H}_{4}<\mathrm{H}_{6}<\ldots$
(D) $\mathrm{H}_{1}<\mathrm{H}_{3}<\mathrm{H}_{5}<\ldots$ and $\mathrm{H}_{2}>\mathrm{H}_{4}>\mathrm{H}_{6}>\ldots$

Sol. (B)

As above $\mathrm{A}_{1}>\mathrm{H}_{2}>\mathrm{H}_{1}, \mathrm{~A}_{2}>\mathrm{H}_{3}>\mathrm{H}_{2}$
$\therefore \mathrm{H}_{1}<\mathrm{H}_{2}<\mathrm{H}_{3}<\ldots$

SECTION -IV

Matrix - Match Type

This section contains 3 questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column I have to be matched with statements (p, q, r, s) in Column II. The answers to these questions have to be appropriately bubbled as illustrated in the following example.

If the correct matches are $A-p, A-s, B-q, B-r, C-p, C-q$ and $D-s$, then the correctly bubbled 4×4 matrix should be as follows:

20. Let $f(x)=\frac{x^{2}-6 x+5}{x^{2}-5 x+6}$.

Match the conditions / expressions in Column I with statements in Column II and indicate your answers by darkening the appropriate bubbles in 4×4 matrix given in the ORS.

Column I

Column II
(A) If $-1<x<1$, then $f(x)$ satisfies
(p) $0<\mathrm{f}(\mathrm{x})<1$
(B) If $1<\mathrm{x}<2$, then $\mathrm{f}(\mathrm{x})$ satisfies
(q) $\mathrm{f}(\mathrm{x})<0$
(C) If $3<x<5$, then $f(x)$ satisfies
(r) $\mathrm{f}(\mathrm{x})>0$
(D) If $x>5$, then $f(x)$ satisfies
(s) $\mathrm{f}(\mathrm{x})<1$

Sol. $\quad \mathbf{A} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s} ; \mathbf{B} \rightarrow \mathbf{q}, \mathrm{s} ; \mathbf{C} \rightarrow \mathbf{q}, \mathrm{s} ; \mathbf{D} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s}$

Page 7

$f(x)=\frac{(x-1)(x-5)}{(x-2)(x-3)}$
The graph of $f(x)$ is shown
(A)

If $-1<x<1$ $\Rightarrow 0<\mathrm{f}(\mathrm{x})<1$
(B) If $1<\mathrm{x}<2 \Rightarrow \mathrm{f}$ (x) <0
(C) If $3<x<5 \Rightarrow \mathrm{f}(\mathrm{x})<0$
(D) If $\mathrm{x}>5 \Rightarrow 0<\mathrm{f}(\mathrm{x})<1$
*21. Let (x, y) be such that

$$
\sin ^{-1}(a x)+\cos ^{-1}(y)+\cos ^{-1}(b x y)=\frac{\pi}{2} .
$$

Match the statements in Column I with the statements in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in the ORS.

Column I

(A) If $a=1$ and $b=0$, then (x, y)
(B) If $\mathrm{a}=1$ and $\mathrm{b}=1$, then (x, y)
(C) If $\mathrm{a}=1$ and $\mathrm{b}=2$, then (x, y)
(D) If $\mathrm{a}=2$ and $\mathrm{b}=2$, then (x, y)

Column II
(p) lies on the circle $x^{2}+y^{2}=1$
(q) lies on $\left(x^{2}-1\right)\left(y^{2}-1\right)=0$
(r) lies on $y=x$
(s) lies on $\left(4 \mathrm{x}^{2}-1\right)\left(\mathrm{y}^{2}-1\right)=0$

Sol. $\quad \mathbf{A} \rightarrow \mathbf{p} ; \mathbf{B} \rightarrow \mathbf{q} ; \mathbf{C} \rightarrow \mathbf{p} ; \mathbf{D} \rightarrow \mathbf{s}$
(A) If $\mathrm{a}=1, \mathrm{~b}=0$
then $\sin ^{-1} x+\cos ^{-1} y=0$
$\Rightarrow \sin ^{-1} \mathrm{x}=-\cos ^{-1} \mathrm{y}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=1$.
If $a=1$ and $b=1$, then
$\sin ^{-1} x+\cos ^{-1} y+\cos ^{-1} x y=\frac{\pi}{2}$
$\Rightarrow \cos ^{-1} \mathrm{x}-\cos ^{-1} \mathrm{y}=\cos ^{-1} \mathrm{xy}$
$\Rightarrow x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}=x y \quad$ (taking sine on both the sides)
(C) If $\mathrm{a}=1, \mathrm{~b}=2$
$\Rightarrow \sin ^{-1} x+\cos ^{-1} y+\cos ^{-1}(2 x y)=\frac{\pi}{2}$
$\Rightarrow \sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}=\sin ^{-1}(2 \mathrm{xy})$
$\Rightarrow x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}=2 x y$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=1$ (on squaring).
(D) If $a=2$ and $b=2$ then
$\sin ^{-1}(2 x)+\cos ^{-1}(y)+\cos ^{-1}(2 x y)=\frac{\pi}{2}$
$\Rightarrow 2 x y+\sqrt{1-4 x^{2}} \sqrt{1-y^{2}}=2 x y$
$\Rightarrow\left(4 \mathrm{x}^{2}-1\right)\left(\mathrm{y}^{2}-1\right)=0$.
*22. Match the statements in Column I with the properties Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in the ORS.

Column I

(A) Two intersecting circles
(B) Two mutually external circles
(C) two circles, one strictly inside the other
(D) two branches of a hyperbola

Column II

(p) have a common tangent
(q) have a common normal
(r) do not have a common tangent
(s) do not have a common normal

Sol. $\quad \mathrm{A} \rightarrow \mathbf{p}, \mathbf{q} ; \mathbf{B} \rightarrow \mathbf{p}, \mathbf{q} ; \mathbf{C} \rightarrow \mathbf{q}, \mathbf{r} ; \mathbf{D} \rightarrow \mathbf{q}, \mathbf{r}$
(A) When two circles are intersecting they have a common normal and common tangent.
(B) Two mutually external circles have a common normal and common tangent.
(C) When one circle lies inside of other then, they have a common normal but no common tangent.
(D) Two branches of a hyperbola have a common normal but no common tangent.

