IIT - JEE ADVANCED - 2012

PAPER-2 [Code – 8]

PART - III: MATHEMATICS

SECTION I : Single Correct Answer Type

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

41. Let a_1, a_2, a_3, \dots be in harmonic progression with $a_1 = 5$ and $a_{20} = 25$. The least positive integer *n* for which $a_n < 0$ (A) 22 (C) 24 (B) 23 (D) 25 Sol. (D)

$$a_{1}, a_{2}, a_{3}, \text{ are in H.P.}$$

$$\Rightarrow \frac{1}{a_{1}}, \frac{1}{a_{2}}, \frac{1}{a_{3}}, \dots \text{ are in A.P.}$$

$$\Rightarrow \frac{1}{a_{n}} = \frac{1}{a_{1}} + (n-1)d < 0, \text{ where } \frac{\frac{1}{25} - \frac{5}{25}}{19} = d = \left(\frac{-4}{9 \times 25}\right)$$

$$\Rightarrow \frac{1}{5} + (n-1)\left(\frac{-4}{19 \times 25}\right) < 0$$

$$\frac{4(n-1)}{19 \times 5} > 1$$

$$n - 1 > \frac{19 \times 5}{4}$$

$$n > \frac{19 \times 5}{4} + 1 \Rightarrow n \ge 25.$$

- 42. The equation of a plane passing through the line of intersection of the planes x + 2y + 3z = 2 and x y + z = 3 and at a distance $\frac{2}{\sqrt{3}}$ from the point (3, 1, -1) is
 - (A) 5x 11y + z = 17(B) $\sqrt{2}x + y = 3\sqrt{2} - 1$ (C) $x + y + z = \sqrt{3}$ (D) $x - \sqrt{2}y = 1 - \sqrt{2}$

Sol.

(A) Equation of required plane is $P \equiv (x + 2y + 3z - 2) + \lambda(x - y + z - 3) = 0$ $\Rightarrow (1 + \lambda)x + (2 - \lambda)y + (3 + \lambda)z - (2 + 3\lambda) = 0$ Its distance from (3, 1, -1) is $\frac{2}{\sqrt{3}}$ $\Rightarrow \frac{2}{\sqrt{3}} = \frac{|3(1 + \lambda) + (2 - \lambda) - (3 + \lambda) - (2 + 3\lambda)|}{\sqrt{(\lambda + 1)^2 + (2 - \lambda)^2 + (3 + \lambda)^2}}$ $= \frac{4}{3} = \frac{(-2\lambda)^2}{3\lambda^2 + 4\lambda + 14} \Rightarrow 3\lambda^2 + 4\lambda + 14 = 3\lambda^2$ $\Rightarrow \lambda = -\frac{7}{2} \Rightarrow -\frac{5}{2}x + \frac{11}{2}y - \frac{z}{2} + \frac{17}{2} = 0$ -5x + 11y - z + 17 = 0.

Let PQR be a triangle of area Δ with a = 2, $b = \frac{7}{2}$ and $c = \frac{5}{2}$, where *a*, *b*, and *c* are the lengths of the sides 43. of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2\sin P - \sin 2P}{2\sin P + \sin 2P}$ equals

Ρ

(A)
$$\frac{3}{4\Delta}$$
 (B) $\frac{45}{4\Delta}$
(C) $\left(\frac{3}{4\Delta}\right)^2$ (D) $\left(\frac{45}{4\Delta}\right)^2$

Sol.

(C)

$$\frac{2\sin P - 2\sin P \cos P}{2\sin P + 2\sin P \cos P} = \frac{1 - \cos P}{1 + \cos P} = \frac{2\sin^2 \frac{P}{2}}{2\cos^2 \frac{P}{2}} = \tan^2 \frac{P}{2}$$

$$= \frac{(s-b)(s-c)}{s(s-a)}$$

$$= \frac{\left((s-b)(s-c)\right)^2}{\Delta^2} = \frac{\left(\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)\right)^2}{\Delta^2} = \left(\frac{3}{4\Delta}\right)^2$$
Q

C = 5/2

Q

a = 2

C = 5/2

Q

If \vec{a} and \vec{b} are vectors such that $|\vec{a} + \vec{b}| = \sqrt{29}$ and $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$, then a possible 44. value of $(\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is (A) 0 (B) 3 (C) 4 (D) 8

Sol. (C)

$$\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$$

 $(\vec{a} + \vec{b}) \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = \vec{0}$
 $\Rightarrow \vec{a} + \vec{b} = \pm (2\hat{i} + 3\hat{j} + 4\hat{k})$ (as $|\vec{a} + \vec{b}| = \sqrt{29}$)
 $\Rightarrow (\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$
 $= \pm (-14 + 6 + 12) = \pm 4.$

If P is a 3 × 3 matrix such that $P^T = 2P + I$, where P^T is the transpose of P and I is the 3 × 3 identity matrix, 45. then there exists a column matrix $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ such that (A) $PX = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$ (B) PX = X(C) PX = 2X(D) PX = -XSol. **(D**) Give $P^T = 2P + I$

 \Rightarrow P = 2P^T + I = 2(2P + I) + I $\Rightarrow P + I = 0$ \Rightarrow PX + X = 0 PX = -X.

46. Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $(\sqrt[3]{1+a}-1)x^2 + (\sqrt{1+a}-1)x + (\sqrt[6]{1+a}-1) = 0$ where a > -1. Then $\lim_{a \to o^+} \alpha(a)$ and $\lim_{a \to o^+} \beta(a)$ are

(A)
$$-\frac{5}{2}$$
 and 1
(B) $-\frac{1}{2}$ and -1
(C) $-\frac{7}{2}$ and 2
(D) $-\frac{9}{2}$ and 3

Sol.

(B)

Let
$$1 + a = y$$

 $\Rightarrow (y^{1/3} - 1) x^2 + (y^{1/2} - 1) x + y^{1/6} - 1 = 0$
 $\Rightarrow \left(\frac{y^{1/3} - 1}{y - 1}\right) x^2 + \left(\frac{y^{1/2} - 1}{y - 1}\right) x + \frac{y^{1/6} - 1}{y - 1} = 0$

Now taking $\lim_{y \to 1}$ on both the sides

$$\Rightarrow \frac{1}{3}x^2 + \frac{1}{2}x + \frac{1}{6} = 0$$
$$\Rightarrow 2x^2 + 3x + 1 = 0$$
$$x = -1, -\frac{1}{2}.$$

47. Four fair dice D_1 , D_2 , D_3 and D_4 , each having six faces numbered 1, 2, 3, 4, 5, and 6, are rolled simultaneously. The probability that D_4 shows a number appearing on one of D_1 , D_2 and D_3 is

(A) $\frac{91}{216}$	(B) $\frac{108}{216}$
(C) $\frac{125}{216}$	(D) $\frac{127}{216}$

Sol. (A)

Required probability = $1 - \frac{6 \cdot 5^3}{6^4} = 1 - \frac{125}{216} = \frac{91}{216}$.

48. The value of the integral
$$\int_{-\pi/2}^{\pi/2} \left(x^2 + \ln \frac{\pi + x}{\pi - x} \right) \cos x \, dx$$
 is

(A) 0
(B)
$$\frac{\pi^2}{2} - 4$$

(C) $\frac{\pi^2}{2} + 4$
(D) $\frac{\pi^2}{2}$

Sol.

(B)

$$\int_{-\pi/2}^{\pi/2} \left\{ x^2 + \ln\left(\frac{\pi + x}{\pi - x}\right) \right\} \cos x dx$$

=
$$\int_{-\pi/2}^{\pi/2} x^2 \cos x dx + \int_{-\pi/2}^{\pi/2} \ln\left(\frac{\pi + x}{\pi - x}\right) \cos x dx$$

=
$$2 \int_{0}^{\pi/2} x^2 \cos x dx$$

=
$$2 \left[x^2 \sin x + 2x \cos x - 2 \sin x \right]_{0}^{\pi/2}$$

$$= 2\left[\frac{\pi^2}{4} - 2\right] = \frac{\pi^2}{2} - 4.$$

SECTION II : Paragraph Type

This section contains **6 multiple choice questions** relating to three paragraphs with **two questions on each paragraph.** Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE is correct.**

Paragraph for Questions 49 and 50

A tangent *PT* is drawn to the circle $x^2 + y^2 = 4$ at the point $P(\sqrt{3}, 1)$. A straight line *L*, perpendicular to *PT* is a tangent to the circle $(x-3)^2 + y^2 = 1$.

49. A possible equation of *L* is (A) $x - \sqrt{3}y = 1$ (B) $x + \sqrt{3}y = 1$ (C) $x - \sqrt{3}y = -1$ (D) $x + \sqrt{3}y = 5$

Sol. (A)

Equation of tangent at $P(\sqrt{3}, 1)$

$$\sqrt{3}x + y = 4$$

Slope of line perpendicular to above tangent is $\frac{1}{\sqrt{3}}$

So equation of tangents with slope $\frac{1}{\sqrt{3}}$ to $(x - 3)^2 + y^2 = 1$ will be

$$y = \frac{1}{\sqrt{3}} (x-3) \pm 1 \sqrt{1 + \frac{1}{3}}$$

$$\sqrt{3} y = x - 3 \pm (2)$$

$$\sqrt{3} y = x - 1 \text{ or } \sqrt{3} y = x - 5.$$

A common tangent of the two circles is (A) x = 4(B) y = 2(C) $x + \sqrt{3}y = 4$ (D) $x + 2\sqrt{2}y = 6$

Sol.

(D)

50.

Point of intersection of direct common tangents is (6, 0)

so let the equation of common tangent be y - 0 = m(x - 6)as it touches $x^2 + y^2 = 4$ $\Rightarrow \left| \frac{0 - 0 + 6m}{\sqrt{1 + m^2}} \right| = 2$

$$9m^{2} = 1 + m^{2}$$

$$m = \pm \frac{1}{2\sqrt{2}}$$
So equation of common tangent
$$y = \frac{1}{2\sqrt{2}}(x-6), \quad y = -\frac{1}{2\sqrt{2}}(x-6) \text{ and also } x = 2$$

Paragraph for Questions 51 and 52

Let $f(x) = (1-x)^2 \sin^2 x + x^2$ for all $x \in IR$, and let $g(x) = \int_{1}^{x} \left(\frac{2(t-1)}{t+1} - \ln t\right) f(t) dt$ for all $x \in (1, \infty)$.

51.Consider the statements:
 \mathbf{P} : There exists some $x \in$
 \mathbf{Q} : There exists some $x \in$

Then

(A) both \mathbf{P} and \mathbf{Q} are true

(C) \mathbf{P} is false and \mathbf{Q} is truesuch that $f(x) + 2x = 2(1 + x^2)$

such that 2f(x) + 1 = 2x(1 + x)

(B) \mathbf{P} is true and \mathbf{Q} is false

(D) both \mathbf{P} and \mathbf{Q} are false

Sol.

(C)

$$f(x) = (1 - x)^{2} \sin^{2} x + x^{2} \qquad \forall x \in \mathbb{R}$$

$$g(x) = \int_{1}^{x} \left(\frac{2(t - 1)}{t + 1} - \ln t\right) f(t) \, dt \qquad \forall x \in (1, \infty)$$
For statement P :

For statement P :

$$f(x) + 2x = 2(1 + x^{2}) \qquad \dots(i)$$

$$(1 - x)^{2} \sin^{2}x + x^{2} + 2x = 2 + 2x^{2}$$

$$(1 - x)^{2} \sin^{2}x = x^{2} - 2x + 2 = (x - 1)^{2} + 1$$

$$(1 - x)^{2} (\sin^{2}x - 1) = 1$$

$$-(1 - x)^{2} \cos^{2}x = -1$$
So equation (i) will not have real solution
So, P is wrong.
For statement Q :

$$2(1 - x)^{2} \sin^{2}x + 2x^{2} + 1 = 2x + 2x^{2} \qquad \dots(ii)$$

$$2(1 - x)^{2} \sin^{2}x + 2x^{2} + 1 = 2x + 2x^{2} \qquad \dots(ii)$$

$$2(1 - x)^{2} \sin^{2}x = 2x - 1$$

$$2\sin^{2}x = \frac{2x - 1}{(1 - x)^{2}} \text{ Let } h(x) = \frac{2x - 1}{(1 - x)^{2}} - 2\sin^{2}x$$
Clearly $h(0) = -\text{ve}, \lim_{x \to 1^{-}} h(x) = +\infty$
So by IVT, equation (ii) will have solution.
So, Q is correct.

52. Which of the following is true?
(A) g is increasing on (1, ∞)
(B) g is decreasing on (1, ∞)
(C) g is increasing on (1, 2) and decreasing on (2, ∞)
(D) g is decreasing on (1, 2) and increasing on (2, ∞)

(B)

$$g'(x) = \left(\frac{2(x-1)}{x+1} - \ln x\right) f(x). \quad \text{For } x \in (1, \infty), \ f(x) > 0$$
Let $h(x) = \left(\frac{2(x-1)}{x+1} - \ln x\right) \Rightarrow h'(x) = \left(\frac{4}{(x+1)^2} - \frac{1}{x}\right) = \frac{-(x-1)^2}{(x+1)^2 x} < 0$
Also $h(1) = 0$ so, $h(x) < 0 \quad \forall x > 1$
 $\Rightarrow g(x)$ is decreasing on $(1, \infty)$.

Sol.

Paragraph for Questions 53 and 54

Let a_n denote the number of all *n*-digit positive integers formed by the digits 0, 1 or both such that no consecutive digits in them are 0. Let b_n = the number of such *n*-digit integers ending with digit 1 and c_n = the number of such *n*-digit integers ending with digit 0.

53.	The value of b_6 is	
	(A) 7	(B) 8
	(C) 9	(D) 11
Sol.	(B)	
	$a_n = b_n + c_n$	
	$b_n = a_{n-1}$	
	$c_n = a_{n-2} \Longrightarrow a_n = a_{n-1} + a_{n-2}$	
	As $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, $a_4 = 5$, $a_5 = 8 \Longrightarrow b_6 = 8$.	
54.	Which of the following is correct?	
	(A) $a_{17} = a_{16} + a_{15}$	(B) $c_{17} \neq c_{16} + c_{15}$
	(C) $b_{17} \neq b_{16} + c_{16}$	(D) $a_{17} = c_{17} + b_{16}$
Sol.	(A)	
	As $a_n = a_{n-1} + a_{n-2}$	
	for $n = 17$	

 $\Rightarrow a_{17} = a_{16} + a_{15}.$

SECTION III : Multiple Correct Answer(s) Type

This section contains 6 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.

55. For every integer *n*, let a_n and b_n be real numbers. Let function $f: \mathbb{IR} \to \mathbb{IR}$ be given by $f(x) = \begin{cases} a_n + \sin \pi x, & \text{for } x \in [2n, 2n+1] \\ b_n + \cos \pi x, & \text{for } x \in (2n-1, 2n) \end{cases}$, for all integers *n*. If *f* is continuous, then which of the following hold(s) for all *n*? (B) $a_n - b_n = 1$ (A) $a_{n-1} - b_{n-1} = 0$ (C) $a_n - b_{n+1} = 1$ (D) $a_{n-1} - b_n = -1$ (**B**, **D**) Sol. At x = 2nL.H.L. = $\lim_{h \to 0} (b_n + \cos \pi (2n - h)) = b_n + 1$ R.H.L. = $\lim_{h \to 0} (a_n + \sin \pi (2n + h)) = a_n$ $f(2n) = a_n$ For continuity $b_n + 1 = a_n$ At x = 2n + 1L.H.L = $\lim_{h \to 0} (a_n + \sin \pi (2n + 1 - h)) = a_n$ R.H.L = $\lim_{h \to 0} (b_{n+1} + \cos(\pi(2n+1-h))) = b_{n+1} - 1$ $f(2n+1) = a_n$ For continuity $a_n = b_{n+1} - 1$ $a_{n-1}-b_n=-1.$

If the straight lines $\frac{x-1}{2} = \frac{y+1}{k} = \frac{z}{2}$ and $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{k}$ are coplanar, then the plane(s) containing these 56. two lines is(are) (B) y + z = -1(D) y - 2z = -1(A) y + 2z = -1(C) y - z = -1Sol. (**B**. **C**) For given lines to be coplanar, we get $\begin{vmatrix} 2 & k \end{vmatrix}$ $\begin{vmatrix} 5 & 2 & k \end{vmatrix} = 0 \implies k^2 = 4, \ k = \pm 2$ 2 0 0 For k = 2, obviously the plane y + 1 = z is common in both lines For k = -2, family of plane containing first line is $x + y + \lambda (x - z - 1) = 0$. Point (-1, -1, 0) must satisfy it $-2 + \lambda (-2) = 0 \Longrightarrow \lambda = -1$ \Rightarrow y + z + 1 = 0. If the adjoint of a 3 × 3 matrix *P* is $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$, then the possible value(s) of the determinant of *P* is (are) 57. (A) - 2(B) - 1(C) 1 (D) 2 Sol. (\mathbf{A}, \mathbf{D}) $|Adj P| = |P|^2$ as $(|Adj (P)| = |P|^{n-1})$ Since |Adj P| = 1 (3 - 7) - 4 (6 - 7) + 4 (2 - 1)= 4 $|\mathbf{P}| = 2 \text{ or } - 2.$ Let $f: (-1, 1) \to IR$ be such that $f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta}$ for $\theta \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Then the value(s) of 58. $f\left(\frac{1}{3}\right)$ is (are) (A) $1 - \sqrt{\frac{3}{2}}$ (B) $1 + \sqrt{\frac{3}{2}}$ (D) $1 + \sqrt{\frac{2}{2}}$ (C) $1 - \sqrt{\frac{2}{3}}$ (**A**, **B**) For $\theta \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Sol. Let $\cos 4\theta = 1/3$ $\Rightarrow \cos 2\theta = \pm \sqrt{\frac{1+\cos 4\theta}{2}} = \pm \sqrt{\frac{2}{2}}$ $f\left(\frac{1}{3}\right) = \frac{2}{2-\sec^2\theta} = \frac{2\cos^2\theta}{2\cos^2\theta-1} = 1 + \frac{1}{\cos^2\theta}$ $f\left(\frac{1}{3}\right) = 1 - \sqrt{\frac{3}{2}}$ or $1 + \sqrt{\frac{3}{2}}$. Let X and Y be two events such that $P(X | Y) = \frac{1}{2}$, $P(Y | X) = \frac{1}{3}$ and $P(X \cap Y) = \frac{1}{6}$. Which of the 59. following is (are) correct?

(A)
$$P(X \cup Y) = \frac{2}{3}$$

(B) X and Y are independent

(C) X and Y are not independent

(D)
$$P(X^C \cap Y) = \frac{1}{3}$$

$$P\left(\frac{X}{Y}\right) = \frac{P(X \cap Y)}{P(Y)} = \frac{1}{2} \text{ and } \frac{P(X \cap Y)}{P(X)} = \frac{1}{3}$$
$$P(X \cap Y) = \frac{1}{6} \Rightarrow P(Y) = \frac{1}{3} \text{ and } P(X) = \frac{1}{2}$$
Clearly, X and Y are independent

Also,
$$P(X \cup Y) = \frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{2}{3}$$
.

60. If
$$f(x) = \int_0^x e^{t^2} (t-2)(t-3) dt$$
 for all $x \in (0, \infty)$, then
(A) *f* has a local maximum at $x = 2$ (B) *f* is decreasing on
(C) there exists some $c \in (0, \infty)$ such that $f''(c) = 0$ (D) *f* has a local minim

_

f' (x) =
$$e^{x^2} (x-2)(x-3)$$

Clearly, maxima at $x = 2$, minima at $x = 3$ and
decreasing in $x \in (2, 3)$.
f'(x) = 0 for $x = 2$ and $x = 3$ (Rolle's theorem)
so there exist $c \in (2, 3)$ for which
f''(c) = 0.

(B)
$$f$$
 is decreasing on (2, 3)
(D) f has a local minimum at $x = 3$

JEE-Adv-2012-P2