IIT - JEE ADVANCED - 2012
 PAPER-2 [Code - 8]
 PART - III: MATHEMATICS

SECTION I : Single Correct Answer Type

This section contains $\mathbf{8}$ multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
41. Let $a_{1}, a_{2}, a_{3}, \ldots$. be in harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<0$
(A) 22
(B) 23
(C) 24
(D) 25

Sol. (D)
a_{1}, a_{2}, a_{3}, are in H.P.
$\Rightarrow \frac{1}{a_{1}}, \frac{1}{a_{2}}, \frac{1}{a_{3}}, \ldots$ are in A.P.
$\Rightarrow \frac{1}{a_{n}}=\frac{1}{a_{1}}+(n-1) d<0$, where $\frac{\frac{1}{25}-\frac{5}{25}}{19}=d=\left(\frac{-4}{9 \times 25}\right)$
$\Rightarrow \frac{1}{5}+(n-1)\left(\frac{-4}{19 \times 25}\right)<0$
$\frac{4(n-1)}{19 \times 5}>1$
$n-1>\frac{19 \times 5}{4}$
$n>\frac{19 \times 5}{4}+1 \Rightarrow n \geq 25$.
42. The equation of a plane passing through the line of intersection of the planes $x+2 y+3 z=2$ and $x-y+z$ $=3$ and at a distance $\frac{2}{\sqrt{3}}$ from the point $(3,1,-1)$ is
(A) $5 x-11 y+z=17$
(B) $\sqrt{2} x+y=3 \sqrt{2}-1$
(C) $x+y+z=\sqrt{3}$
(D) $x-\sqrt{2} y=1-\sqrt{2}$

Sol. (A)
Equation of required plane is
$\mathrm{P} \equiv(x+2 y+3 z-2)+\lambda(x-y+z-3)=0$
$\Rightarrow(1+\lambda) x+(2-\lambda) y+(3+\lambda) z-(2+3 \lambda)=0$
Its distance from $(3,1,-1)$ is $\frac{2}{\sqrt{3}}$
$\Rightarrow \frac{2}{\sqrt{3}}=\frac{|3(1+\lambda)+(2-\lambda)-(3+\lambda)-(2+3 \lambda)|}{\sqrt{(\lambda+1)^{2}+(2-\lambda)^{2}+(3+\lambda)^{2}}}$
$=\frac{4}{3}=\frac{(-2 \lambda)^{2}}{3 \lambda^{2}+4 \lambda+14} \Rightarrow 3 \lambda^{2}+4 \lambda+14=3 \lambda^{2}$
$\Rightarrow \lambda=-\frac{7}{2} \Rightarrow-\frac{5}{2} x+\frac{11}{2} y-\frac{z}{2}+\frac{17}{2}=0$
$-5 x+11 y-z+17=0$.
43. Let PQR be a triangle of area Δ with $a=2, b=\frac{7}{2}$ and $\mathrm{c}=\frac{5}{2}$, where a, b, and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2 \sin P-\sin 2 P}{2 \sin P+\sin 2 P}$ equals
(A) $\frac{3}{4 \Delta}$
(B) $\frac{45}{4 \Delta}$
(C) $\left(\frac{3}{4 \Delta}\right)^{2}$
(D) $\left(\frac{45}{4 \Delta}\right)^{2}$

Sol. (C)
$\frac{2 \sin \mathrm{P}-2 \sin \mathrm{P} \cos \mathrm{P}}{2 \sin \mathrm{P}+2 \sin \mathrm{P} \cos \mathrm{P}}=\frac{1-\cos \mathrm{P}}{1+\cos \mathrm{P}}=\frac{2 \sin ^{2} \frac{\mathrm{P}}{2}}{2 \cos ^{2} \frac{\mathrm{P}}{2}}=\tan ^{2} \frac{\mathrm{P}}{2}$
$=\frac{(s-b)(s-c)}{s(s-a)}$
$=\frac{((s-b)(s-c))^{2}}{\Delta^{2}}=\frac{\left(\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)\right)^{2}}{\Delta^{2}}=\left(\frac{3}{4 \Delta}\right)^{2}$

44. If \vec{a} and \vec{b} are vectors such that $|\vec{a}+\vec{b}|=\sqrt{29}$ and $\vec{a} \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times \vec{b}$, then a possible value of $(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k})$ is
(A) 0
(B) 3
(C) 4
(D) 8

Sol. (C)
$\vec{a} \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times \vec{b}$
$(\vec{a}+\vec{b}) \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=\overrightarrow{0}$
$\Rightarrow \vec{a}+\vec{b}= \pm(2 \hat{i}+3 \hat{j}+4 \hat{k}) \quad($ as $|\vec{a}+\vec{b}|=\sqrt{29})$
$\Rightarrow(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k})$
$= \pm(-14+6+12)= \pm 4$.
45. If P is a 3×3 matrix such that $P^{T}=2 P+I$, where P^{T} is the transpose of P and I is the 3×3 identity matrix, then there exists a column matrix $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ such that
(A) $P X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(B) $P X=X$
(C) $P X=2 X$
(D) $P X=-X$

Sol. (D)
Give $\mathrm{P}^{\mathrm{T}}=2 \mathrm{P}+\mathrm{I}$
$\Rightarrow \mathrm{P}=2 \mathrm{P}^{\mathrm{T}}+\mathrm{I}=2(2 \mathrm{P}+\mathrm{I})+\mathrm{I}$
$\Rightarrow \mathrm{P}+\mathrm{I}=0$
$\Rightarrow \mathrm{PX}+\mathrm{X}=0$
$P X=-X$.
46. Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $(\sqrt[3]{1+a}-1) x^{2}+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0$ where $a>-1$. Then $\lim _{a \rightarrow 0^{+}} \alpha(a)$ and $\lim _{a \rightarrow 0^{+}} \beta(a)$ are
(A) $-\frac{5}{2}$ and 1
(B) $-\frac{1}{2}$ and -1
(C) $-\frac{7}{2}$ and 2
(D) $-\frac{9}{2}$ and 3

Sol. (B)
Let $1+a=y$
$\Rightarrow\left(\mathrm{y}^{1 / 3}-1\right) \mathrm{x}^{2}+\left(\mathrm{y}^{1 / 2}-1\right) \mathrm{x}+\mathrm{y}^{1 / 6}-1=0$
$\Rightarrow\left(\frac{y^{1 / 3}-1}{y-1}\right) x^{2}+\left(\frac{y^{1 / 2}-1}{y-1}\right) x+\frac{y^{1 / 6}-1}{y-1}=0$
Now taking $\lim _{y \rightarrow 1}$ on both the sides
$\Rightarrow \frac{1}{3} x^{2}+\frac{1}{2} x+\frac{1}{6}=0$
$\Rightarrow 2 \mathrm{x}^{2}+3 \mathrm{x}+1=0$
$\mathrm{x}=-1,-\frac{1}{2}$.
47. Four fair dice D_{1}, D_{2}, D_{3} and D_{4}, each having six faces numbered $1,2,3,4,5$, and 6 , are rolled simultaneously. The probability that D_{4} shows a number appearing on one of D_{1}, D_{2} and D_{3} is
(A) $\frac{91}{216}$
(B) $\frac{108}{216}$
(C) $\frac{125}{216}$
(D) $\frac{127}{216}$

Sol. (A)
Required probability $=1-\frac{6 \cdot 5^{3}}{6^{4}}=1-\frac{125}{216}=\frac{91}{216}$.
48. The value of the integral $\int_{-\pi / 2}^{\pi / 2}\left(x^{2}+\ln \frac{\pi+x}{\pi-x}\right) \cos x d x$ is
(A) 0
(B) $\frac{\pi^{2}}{2}-4$
(C) $\frac{\pi^{2}}{2}+4$
(D) $\frac{\pi^{2}}{2}$

Sol. (B)
$\int_{-\pi / 2}^{\pi / 2}\left\{x^{2}+\ln \left(\frac{\pi+x}{\pi-x}\right)\right\} \cos x d x$
$=\int_{-\pi / 2}^{\pi / 2} x^{2} \cos x d x+\int_{-\pi / 2}^{\pi / 2} \ln \left(\frac{\pi+x}{\pi-x}\right) \cos x d x$
$=2 \int_{0}^{\pi / 2} x^{2} \cos x d x$
$=2\left[x^{2} \sin x+2 x \cos x-2 \sin x\right]_{0}^{\pi / 2}$

$$
=2\left[\frac{\pi^{2}}{4}-2\right]=\frac{\pi^{2}}{2}-4
$$

SECTION II : Paragraph Type

This section contains 6 multiple choice questions relating to three paragraphs with two questions on each paragraph. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Questions 49 and 50

A tangent $P T$ is drawn to the circle $x^{2}+y^{2}=4$ at the point $P(\sqrt{3}, 1)$. A straight line L, perpendicular to $P T$ is a tangent to the circle $(x-3)^{2}+y^{2}=1$.
49. A possible equation of L is
(A) $x-\sqrt{3} y=1$
(B) $x+\sqrt{3} y=1$
(C) $x-\sqrt{3} y=-1$
(D) $x+\sqrt{3} y=5$

Sol. (A)
Equation of tangent at $P(\sqrt{3}, 1)$
$\sqrt{3} x+y=4$
Slope of line perpendicular to above tangent is $\frac{1}{\sqrt{3}}$
So equation of tangents with slope $\frac{1}{\sqrt{3}}$ to $(x-3)^{2}+y^{2}=1$ will be
$y=\frac{1}{\sqrt{3}}(x-3) \pm 1 \sqrt{1+\frac{1}{3}}$
$\sqrt{3} y=x-3 \pm(2)$
$\sqrt{3} y=x-1$ or $\sqrt{3} y=x-5$.
50. A common tangent of the two circles is
(A) $x=4$
(B) $y=2$
(C) $x+\sqrt{3} y=4$
(D) $x+2 \sqrt{2} y=6$

Sol. (D)
Point of intersection of direct common tangents is $(6,0)$

so let the equation of common tangent be
$y-0=m(x-6)$
as it touches $\mathrm{x}^{2}+\mathrm{y}^{2}=4$
$\Rightarrow\left|\frac{0-0+6 m}{\sqrt{1+m^{2}}}\right|=2$
$9 m^{2}=1+m^{2}$
$m= \pm \frac{1}{2 \sqrt{2}}$
So equation of common tangent
$y=\frac{1}{2 \sqrt{2}}(x-6), y=-\frac{1}{2 \sqrt{2}}(x-6)$ and also $x=2$

Paragraph for Questions 51 and 52

Let $f(x)=(1-x)^{2} \sin ^{2} x+x^{2}$ for all $x \in I R$, and let $g(x)=\int_{1}^{x}\left(\frac{2(t-1)}{t+1}-\ln t\right) f(t) d t$ for all $x \in(1, \infty)$.
51. Consider the statements:
\mathbf{P} : There exists some $x \in \square$ such that $f(x)+2 x=2\left(1+x^{2}\right)$
Q : There exists some $x \in \square$ such that $2 f(x)+1=2 x(1+x)$
Then
(A) both \mathbf{P} and \mathbf{Q} are true
(B) \mathbf{P} is true and \mathbf{Q} is false
(C) \mathbf{P} is false and \mathbf{Q} is true
(D) both \mathbf{P} and \mathbf{Q} are false

Sol. (C)

$$
\begin{array}{ll}
f(x)=(1-x)^{2} \sin ^{2} x+x^{2} & \forall x \in \mathrm{R} \\
g(x)=\int_{1}^{x}\left(\frac{2(t-1)}{t+1}-\ln t\right) f(t) \mathrm{dt} & \forall x \in(1, \infty)
\end{array}
$$

For statement P :
$f(x)+2 x=2\left(1+x^{2}\right)$
$(1-x)^{2} \sin ^{2} x+x^{2}+2 x=2+2 x^{2}$
$(1-x)^{2} \sin ^{2} x=x^{2}-2 x+2=(x-1)^{2}+1$
$(1-x)^{2}\left(\sin ^{2} x-1\right)=1$
$-(1-x)^{2} \cos ^{2} x=1$
$(1-x)^{2} \cdot \cos ^{2} x=-1$
So equation (i) will not have real solution
So, P is wrong.
For statement Q :
$2(1-x)^{2} \sin ^{2} x+2 x^{2}+1=2 x+2 x^{2}$
$2(1-x)^{2} \sin ^{2} x=2 x-1$
$2 \sin ^{2} x=\frac{2 x-1}{(1-x)^{2}}$ Let $h(x)=\frac{2 x-1}{(1-x)^{2}}-2 \sin ^{2} x$
Clearly $h(0)=-\mathrm{ve}, \lim _{x \rightarrow 1^{-}} h(x)=+\infty$
So by IVT, equation (ii) will have solution.
So, Q is correct.
52. Which of the following is true?
(A) g is increasing on $(1, \infty)$
(B) g is decreasing on $(1, \infty)$
(C) g is increasing on $(1,2)$ and decreasing on $(2, \infty)$
(D) g is decreasing on $(1,2)$ and increasing on $(2, \infty)$

Sol. (B)
$g^{\prime}(x)=\left(\frac{2(x-1)}{x+1}-\ln x\right) f(x) . \quad$ For $x \in(1, \infty), f(x)>0$
Let $h(x)=\left(\frac{2(x-1)}{x+1}-\ln x\right) \Rightarrow h^{\prime}(x)=\left(\frac{4}{(x+1)^{2}}-\frac{1}{x}\right)=\frac{-(x-1)^{2}}{(x+1)^{2} x}<0$
Also $h(1)=0$ so, $h(x)<0 \quad \forall x>1$
$\Rightarrow g(x)$ is decreasing on $(1, \infty)$.

Paragraph for Questions 53 and 54

Let a_{n} denote the number of all n-digit positive integers formed by the digits 0,1 or both such that no consecutive digits in them are 0 . Let $b_{n}=$ the number of such n-digit integers ending with digit 1 and $c_{n}=$ the number of such n-digit integers ending with digit 0 .
53. The value of b_{6} is
(A) 7
(B) 8
(C) 9
(D) 11

Sol. (B)

$$
\begin{aligned}
& a_{n}=b_{n}+c_{n} \\
& b_{n}=a_{n-1} \\
& c_{n}=a_{n-2} \Rightarrow a_{n}=a_{n-1}+a_{n-2} \\
& \text { As } a_{1}=1, a_{2}=2, a_{3}=3, a_{4}=5, a_{5}=8 \Rightarrow b_{6}=8 .
\end{aligned}
$$

54. Which of the following is correct?
(A) $a_{17}=a_{16}+a_{15}$
(B) $c_{17} \neq c_{16}+c_{15}$
(C) $b_{17} \neq b_{16}+c_{16}$
(D) $a_{17}=c_{17}+b_{16}$

Sol. (A)
As $a_{n}=a_{n-1}+a_{n-2}$
for $n=17$
$\Rightarrow a_{17}=a_{16}+a_{15}$.

SECTION III : Multiple Correct Answer(s) Type

This section contains 6 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.
55. For every integer n, let a_{n} and b_{n} be real numbers. Let function f : IR \rightarrow IR be given by
$f(x)=\left\{\begin{array}{ll}a_{n}+\sin \pi x, & \text { for } x \in[2 n, 2 n+1] \\ b_{n}+\cos \pi x, & \text { for } x \in(2 n-1,2 n)\end{array}\right.$, for all integers n. If f is continuous, then which of the following hold(s) for all n ?
(A) $a_{n-1}-b_{n-1}=0$
(B) $a_{n}-b_{n}=1$
(C) $a_{n}-b_{n+1}=1$
(D) $a_{n-1}-b_{n}=-1$

Sol. (B, D)
At $\mathrm{x}=2 \mathrm{n}$
L.H.L. $=\lim _{h \rightarrow 0}\left(b_{n}+\cos \pi(2 n-h)\right)=b_{n}+1$
R.H.L. $=\lim _{h \rightarrow 0}\left(a_{n}+\sin \pi(2 n+h)\right)=a_{n}$
$f(2 n)=\mathrm{a}_{\mathrm{n}}$
For continuity $b_{n}+1=a_{n}$
At $x=2 n+1$
L.H.L $=\lim _{h \rightarrow 0}\left(a_{n}+\sin \pi(2 n+1-h)\right)=a_{n}$
R.H.L $=\lim _{h \rightarrow 0}\left(b_{n+1}+\cos (\pi(2 n+1-h))\right)=b_{n+1}-1$
$f(2 n+1)=a_{n}$
For continuity
$a_{n}=b_{n+1}-1$
$a_{n-1}-b_{n}=-1$.
56. If the straight lines $\frac{x-1}{2}=\frac{y+1}{k}=\frac{z}{2}$ and $\frac{x+1}{5}=\frac{y+1}{2}=\frac{z}{k}$ are coplanar, then the plane(s) containing these two lines is(are)
(A) $y+2 z=-1$
(B) $y+z=-1$
(C) $y-z=-1$
(D) $y-2 z=-1$

Sol. (B, C)
For given lines to be coplanar, we get
$\left|\begin{array}{ccc}2 & k & 2 \\ 5 & 2 & k \\ 2 & 0 & 0\end{array}\right|=0 \Rightarrow k^{2}=4, k= \pm 2$
For $k=2$, obviously the plane $y+1=z$ is common in both lines
For $k=-2$, family of plane containing first line is $x+y+\lambda(x-z-1)=0$.
Point ($-1,-1,0$) must satisfy it
$-2+\lambda(-2)=0 \Rightarrow \lambda=-1$
$\Rightarrow y+z+1=0$.
57. If the adjoint of a 3×3 matrix P is $\left[\begin{array}{lll}1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3\end{array}\right]$, then the possible value(s) of the determinant of P is (are)
(A) -2
(B) -1
(C) 1
(D) 2

Sol. (A, D)
$|\operatorname{Adj} \mathrm{P}|=|\mathrm{P}|^{2} \quad$ as $\left(|\operatorname{Adj}(\mathrm{P})|=|\mathrm{P}|^{\mathrm{n}-1}\right)$
Since $|\operatorname{Adj} P|=1(3-7)-4(6-7)+4(2-1)$
$=4$
$|\mathrm{P}|=2$ or -2 .
58. Let $f:(-1,1) \rightarrow$ IR be such that $f(\cos 4 \theta)=\frac{2}{2-\sec ^{2} \theta}$ for $\theta \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Then the value(s) of $f\left(\frac{1}{3}\right)$ is (are)
(A) $1-\sqrt{\frac{3}{2}}$
(B) $1+\sqrt{\frac{3}{2}}$
(C) $1-\sqrt{\frac{2}{3}}$
(D) $1+\sqrt{\frac{2}{3}}$

Sol. (A, B)
For $\theta \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.
Let $\cos 4 \theta=1 / 3$
$\Rightarrow \cos 2 \theta= \pm \sqrt{\frac{1+\cos 4 \theta}{2}}= \pm \sqrt{\frac{2}{3}}$
$f\left(\frac{1}{3}\right)=\frac{2}{2-\sec ^{2} \theta}=\frac{2 \cos ^{2} \theta}{2 \cos ^{2} \theta-1}=1+\frac{1}{\cos 2 \theta}$
$f\left(\frac{1}{3}\right)=1-\sqrt{\frac{3}{2}}$ or $1+\sqrt{\frac{3}{2}}$.
59. Let X and Y be two events such that $P(X \mid Y)=\frac{1}{2}, P(Y \mid X)=\frac{1}{3}$ and $P(X \cap Y)=\frac{1}{6}$. Which of the following is (are) correct?
(A) $P(X \cup Y)=\frac{2}{3}$
(B) X and Y are independent
(C) X and Y are not independent
(D) $P\left(X^{C} \cap Y\right)=\frac{1}{3}$

Sol. (A, B)
$P\left(\frac{X}{Y}\right)=\frac{P(X \cap Y)}{P(Y)}=\frac{1}{2}$ and $\frac{P(X \cap Y)}{P(X)}=\frac{1}{3}$
$P(X \cap Y)=\frac{1}{6} \Rightarrow \mathrm{P}(\mathrm{Y})=\frac{1}{3}$ and $\mathrm{P}(\mathrm{X})=\frac{1}{2}$
Clearly, X and Y are independent
Also, $P(X \cup Y)=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}=\frac{2}{3}$.
60. If $f(x)=\int_{0}^{x} e^{t^{2}}(t-2)(t-3) d t$ for all $x \in(0, \infty)$, then
(A) f has a local maximum at $x=2$
(B) f is decreasing on $(2,3)$
(C) there exists some $c \in(0, \infty)$ such that $f^{\prime \prime}(c)=0$
(D) f has a local minimum at $x=3$

Sol. (A, B, C, D)

$\mathrm{f}^{\prime}(\mathrm{x})=e^{x^{2}}(x-2)(x-3)$
Clearly, maxima at $x=2$, minima at $x=3$ and decreasing in $x \in(2,3)$.
$f^{\prime}(x)=0$ for $x=2$ and $x=3 \quad$ (Rolle's theorem)
so there exist $\mathrm{c} \in(2,3)$ for which $f^{\prime \prime}(c)=0$.

