JEE(Advanced) - 2018 TEST PAPER - 2 WITH SOLUTION
 (Exam Date: 20-05-2018)

PART-1 : CHEMISTRY

1. The correct option(s) regarding the complex $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$:(en $=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$) is (are)
(A) It has two geometrical isomers
(B) It will have three geometrical isomers if bidentate 'en' is replaced by two cyanide ligands
(C) It is paramagnetic
(D) It absorbs light at longer wavelength as compared to $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{4}\right]^{3+}$

Ans. (A,B,D)
Sol. (A) $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+3}$ complex is type of $\left[\mathrm{M}(\mathrm{AA}) \mathrm{b}_{3} \mathrm{c}\right]$ have two G.I.

(B) If (en) is replaced by two cynide ligand, complex will be type of $\left[\mathrm{Ma}_{3} \mathrm{~b}_{2} \mathrm{c}\right]$ and have 3 G.I.

(C) $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ have d^{6} configuration $\left(\mathrm{t}_{2 \mathrm{~g}}^{6}\right)$ on central metal with SFL therefore it is dimagnetic in nature.
(D) Complex $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ have lesser CFSE $\left(\Delta_{\mathrm{O}}\right)$ value than $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{4}\right]^{3+}$ therefore complex $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$absorbs longer wavelength for $\mathrm{d}-\mathrm{d}$ transition.
2. The correct option(s) to distinguish nitrate salts of Mn^{2+} and Cu^{2+} taken separately is (are) :-
(A) Mn^{2+} shows the characteristic green colour in the flame test
(B) Only Cu^{2+} shows the formation of precipitate by passing $\mathrm{H}_{2} \mathrm{~S}$ in acidic medium
(C) Only Mn^{2+} shows the formation of precipitate by passing $\mathrm{H}_{2} \mathrm{~S}$ in faintly basic medium
(D) $\mathrm{Cu}^{2+} / \mathrm{Cu}$ has higher reduction potential than $\mathrm{Mn}^{2+} / \mathrm{Mn}$ (measured under similar conditions)

Ans. (B,D)

Sol. (A) Cu^{+2} and Mn^{+2} both gives green colour in flame test and cannot distinguished.
(B) Cu^{+2} belongs to group-II of cationic radical will gives ppt. of CuS in acidic medium.
(C) Cu^{+2} and Mn^{+2} both form ppt. in basic medium.
(D) $\mathrm{Cu}^{+2} / \mathrm{Cu}=+0.34 \mathrm{~V}$ (SRP)
$\mathrm{Mn}^{+2} / \mathrm{Mn}=-1.18 \mathrm{~V}$ (SRP)
3. Aniline reacts with mixed acid (conc. HNO_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$) at 288 K to give $\mathrm{P}(51 \%), \mathrm{Q}(47 \%)$ and $\mathrm{R}(2 \%)$. The major product(s) the following reaction sequence is (are) :-
$\xrightarrow[\substack{\text { 2 } \\ \begin{array}{l}\text { 3) } \mathrm{H}_{3} \mathrm{O}^{+} \\ \text {4) } \mathrm{NaNO}, \mathrm{HCl} / 273-278 \mathrm{~K} \\ \text { 5) } \mathrm{EtOH}, \Delta\end{array}}]{\substack{\text { 1) } \mathrm{Ac}_{2} \mathrm{O} \text {, pyridine } \\ \text { 2) } \mathrm{Br}_{2}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}} \xrightarrow[\begin{array}{l}\text { 3) } \mathrm{NaNO}_{2}, \mathrm{HCl} / 273-278 \mathrm{~K} \\ \text { 4) } \mathrm{H}_{3} \mathrm{PO}_{2}\end{array}]{\substack{\text { 1) } \mathrm{Sn} / \mathrm{HCl} \\ \text { 2) } \mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O} \text { (excess) }}}$ major product(s)
(A)

(B)

(C)

(D)

Ans. (D)

Sol.

4. The Fischer presentation of D-glucose is given below.

D-glucose
The correct structure(s) of β-L-glucopyranose is (are) :-
(A)

(B)

(C)

(D)

Ans. (D)

Sol.

5. For a first order reaction $\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$ at constant volume and 300 K , the total pressure at the beginning $(t=0)$ and at time t are P_{0} and P_{t}, respectively. Initially, only A is present with concentration $[A]_{0}$, and $t_{1 / 3}$ is the time required for the partial pressure of A to reach $1 / 3^{\text {rd }}$ of its initial value. The correct option(s) is (are) :-
(Assume that all these gases behave as ideal gases)
(A)

(B)

(C)

(D)

Ans. (A,D)
Sol.

$$
\mathrm{K}=\frac{1}{\mathrm{t}} \ln \frac{2 \mathrm{P}_{0}}{3 \mathrm{P}_{0}-\mathrm{P}_{\mathrm{t}}} \Rightarrow-\mathrm{Kt}+\ln 2 \mathrm{P}_{0}=\ln \left(3 \mathrm{P}_{0}-\mathrm{P}_{\mathrm{t}}\right)
$$

and $\mathrm{t}_{1 / 3}=\frac{1}{\mathrm{~K}} \ln \frac{\mathrm{P}_{0}}{\mathrm{P}_{0} / 3}=\frac{1}{\mathrm{~K}} \ln 3=$ constan t
Rate constant does not depends on concentration
6. For a reaction, $\mathrm{A} \rightleftharpoons \mathrm{P}$, the plots of $[\mathrm{A}]$ and $[\mathrm{P}]$ with time at temperatures T_{1} and T_{2} are given below.

If $\mathrm{T}_{2}>\mathrm{T}_{1}$, the correct statement(s) is (are)
(Assume ΔH^{θ} and ΔS^{θ} are independent of temperature and ratio of $\ln K$ at T_{1} to $\ln K$ at T_{2} is greater

$$
\begin{aligned}
& \mathrm{t}=0 \quad \mathrm{P}_{0} \\
& \mathrm{t}=\mathrm{t} \quad \mathrm{P}_{0}-\mathrm{P} \quad 2 \mathrm{P} \quad \mathrm{P} \\
& \mathrm{P}_{0}+2 \mathrm{P}=\mathrm{P}_{\mathrm{t}} \\
& K=\frac{1}{t} \ln \frac{P_{0}}{P_{0}-P}=\frac{1}{t} \ln \frac{P_{0}}{P_{0}-\frac{\left(P_{t}-P_{0}\right)}{2}}
\end{aligned}
$$

than T_{2} / T_{1}. Here H,S, G and K are enthalpy, entropy, Gibbs energy and equilibrium constant, respectively.)
(A) $\Delta \mathrm{H}^{\theta}<0, \Delta \mathrm{~S}^{\theta}<0$
(B) $\Delta \mathrm{G}^{\theta}<0, \Delta \mathrm{H}^{\theta}>0$
(C) $\Delta \mathrm{G}^{\theta}<0, \Delta \mathrm{~S}^{\theta}<0$
(D) $\Delta \mathrm{G}^{\theta}<0, \Delta \mathrm{~S}^{\theta}>0$

Ans. (A,C)
Sol. $\quad \mathrm{A} \rightleftharpoons \mathrm{P}$
given $\quad T_{2}>T_{1}$

$$
\frac{\ln \mathrm{K}_{1}}{\ln \mathrm{~K}_{2}}>\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

$\Rightarrow \mathrm{T}_{1} \ln \mathrm{k}_{1}>\mathrm{T}_{2} \ln \mathrm{k}_{2}$
$\Rightarrow-\Delta \mathrm{G}_{1}^{\circ}>-\Delta \mathrm{G}^{\circ}{ }_{2}$
$\Rightarrow\left(-\Delta \mathrm{H}^{\circ}+\mathrm{T}_{1} \Delta \mathrm{~S}^{\circ}\right)>\left(-\Delta \mathrm{H}^{\circ}+\mathrm{T}_{2} \Delta \mathrm{~S}^{\circ}\right)$
$\Rightarrow \mathrm{T}_{1} \Delta \mathrm{~S}^{\circ}>\mathrm{T}_{2} \Delta \mathrm{~S}^{\circ}$
$\Rightarrow \Delta \mathrm{S}^{\circ}<0$
7. The total number of compounds having at least one bridging oxo group among the molecules given below is \qquad .
$\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{P}_{4} \mathrm{O}_{6}, \mathrm{P}_{4} \mathrm{O}_{7}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{5} \mathrm{P}_{3} \mathrm{O}_{10}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
Ans. (5 or 6)
Sol.

8. Galena (an ore) is partially oxidized by passing air through it at high temperature. After some time, the passage of air is stopped, but the heating is continued in a closed furnance such that the contents undergo self-reduction. The weight (in kg) of Pb produced per kg of O_{2} consumed is \qquad .
(Atomic weights in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{O}=16, \mathrm{~S}=32, \mathrm{~Pb}=207$)
Ans. (6.47)
Sol. $\mathrm{PbS}+\mathrm{O}_{2} \longrightarrow \mathrm{~Pb}+\mathrm{SO}_{2}$

$$
\frac{1000}{32} \mathrm{~mol} \quad \frac{1000}{32} \times 207 \mathrm{gm}
$$

mol of $\mathrm{Pb}=\mathrm{mol}$ of O_{2}

$$
\begin{aligned}
& =\frac{1000}{32} \mathrm{~mol} \\
& \therefore \text { mass of } \mathrm{Pb}=\frac{1000}{32} \times 207 \mathrm{~g} \\
& =\frac{207}{32} \mathrm{~kg}=6.47 \mathrm{~kg}
\end{aligned}
$$

9. To measure the quantity of MnCl_{2} dissolved in an aqueous solution, it was completely converted to KMnO_{4} using the reaction,
$\mathrm{MnCl}_{2}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$ (equation not balanced).
Few drops of concentrated HCl were added to this solution and gently warmed. Further, oxalic acid $(225 \mathrm{~g})$ was added in portions till the colour of the permanganate ion disappeard. The quantity of MnCl_{2} (in mg) present in the initial solution is \qquad .
(Atomic weights in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{Mn}=55, \mathrm{Cl}=35.5$)
Ans. (126)

Sol. $\underset{\text { a mole }}{\mathrm{MnCl}_{2}}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\text { amole }}{\mathrm{KMnO}_{4}}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$
$\mathrm{C}_{2} \mathrm{O}_{4}^{--}+\mathrm{MnO}_{4}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{CO}_{2}$
$\mathrm{m}_{\text {eq }}$ of $\mathrm{C}_{2} \mathrm{O}_{4}^{--}=\mathrm{m}_{\text {eq }}$ of MnO_{4}^{-}
$2 \times 0.225 / 90=\mathrm{a} \times 5$
$\mathrm{a}=1 \times[55+71]$
$=126 \mathrm{mg}$
10. For the given compound X, the total number of optically active stereoisomers is \qquad .

X

- This type of bond indicates that the configuration at the specific carbon and the geometry of the double bond is fixed This type of bond indicates that the configuration at the
$m m$ specific carbon and the geometry of the double bond is NOT fixed

Ans. (7)
11. In the following reaction sequence, the amount of D (in g) formed from 10 moles of acetophenone is \qquad .
(Atomic weight in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Br}=80$. The yield (\%) corresponding to the product in each step is given in the parenthesis)

Ans. (495)

Sol.

12. The surface of copper gets tarnished by the formation of copper oxide. N_{2} gas was passed to prevent the oxide formation during heating of copper at 1250 K . However, the N_{2} gas contains 1 mole $\%$ of water vapour as impurity. The water vapour oxidises copper as per the reaction given below :
$2 \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{p}_{\mathrm{H}_{2}}$ is the minimum partial pressure of H_{2} (in bar) needed to prevent the oxidation at 1250 K . The value of $\ln \left(\mathrm{p}_{\mathrm{H}_{2}}\right)$ is \qquad .
$\left(\right.$ Given : total pressure $=1 \mathrm{bar}, \mathrm{R}$ (universal gas constant) $=8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \ln (10)=2.3 . \mathrm{Cu}(\mathrm{s})$ and $\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$ are mutually immiscible.
At $1250 \mathrm{~K}: 2 \mathrm{Cu}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s}) ; \Delta \mathrm{G}^{\theta}=-78,000 \mathrm{~J} \mathrm{~mol}^{-1}$

$$
\left.\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta \mathrm{G}^{\theta}=-1,78,000 \mathrm{~J} \mathrm{~mol}^{-1} ; \mathrm{G} \text { is the Gibbs energy }\right)
$$

Ans. (-14.6)
Sol. $2 \mathrm{Cu}(\mathrm{s})+\frac{1}{4} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 1 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$ $\Delta \mathrm{G}^{\circ}=-78 \mathrm{~kJ}$
$\left[\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right.$
$\left.\Delta \mathrm{G}^{\circ}=-178 \mathrm{~kJ}\right] \times(-1)$
Hence, $2 \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}_{2}(\mathrm{~g})$
$\Delta \mathrm{G}^{\circ}=+100 \mathrm{~kJ}$
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
$0=+100+\frac{8}{1000} \times 1250 \ln \frac{\mathrm{p}_{\mathrm{H}_{2}}}{\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}}$
$-\frac{100 \times 1000}{8}=1250 \ln \frac{\mathrm{p}_{\mathrm{H}_{2}}}{\left(\frac{1}{100} \times 1\right)}$
$\ln \mathrm{p}_{\mathrm{H}_{2}}=-14.6$
13. Consider the following reversible reaction,

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{AB}(\mathrm{~g})
$$

The activition energy of the backward reaction exceeds that of the forward reaction by $2 \mathrm{RT}\left(\mathrm{in} \mathrm{J} \mathrm{mol}^{-1}\right)$. If the pre-exponential factor of the forward reaction is 4 times that of the reverse reaction, the absolute value of $\Delta \mathrm{G}^{\theta}$ (in $\mathrm{J} \mathrm{mol}^{-1}$) for the reaction at 300 K is \qquad —.
(Given ; ln (2) $=0.7, \mathrm{RT}=2500 \mathrm{~J} \mathrm{~mol}^{-1}$ at 300 K and G is the Gibbs energy)
Ans. (8500)
Sol. $\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftharpoons \mathrm{AB}_{(\mathrm{g})}$
$E_{a b}-E_{a f}=2 R T \quad \Rightarrow \Delta H=-2 R T \quad$ and $\frac{A_{f}}{A_{b}}=4$
$\mathrm{K}_{\text {eq }}=\left(\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}\right)=\frac{\mathrm{A}_{\mathrm{f}} \mathrm{e}^{-\mathrm{E}_{\mathrm{ef}} / \mathrm{RT}}}{\mathrm{A}_{\mathrm{b}} \mathrm{e}^{-\mathrm{E}_{\mathrm{ab}} / \mathrm{RT}}}=4\left(\mathrm{e}^{2}\right)$
$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}=-2500 \times \ln \left(4 \times \mathrm{e}^{2}\right)=-8500 \mathrm{~J} / \mathrm{mol}$
\therefore Absolute value of $\Delta \mathrm{G}^{\circ}=8500 \mathrm{~J} / \mathrm{mol}$
14. Consider an electrochemical cell: $A(s)\left|A^{n+}(a q, 2 M) \| B^{2 n+}(a q, 1 M)\right| B(s)$. The value of ΔH^{θ} for the cell reaction is twice that of $\Delta \mathrm{G}^{\theta}$ at 300 K . If the emf of the cell is zero, the $\Delta \mathrm{S}^{\theta}\left(\mathrm{in}^{-1} \mathrm{~mol}^{-1}\right)$ of the cell reaction per mole of B formed at 300 K is \qquad .
(Given : $\ln (2)=0.7, \mathrm{R}$ (universal gas constant) $=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} . \mathrm{H}, \mathrm{S}$ and G are enthalpy, entropy and Gibbs energy, respectively.)
Ans. (-11.62)

Sol. $A(s)\left|A^{+n}(a q, 2 M) \| B^{+2 n}(a q, 1 M)\right| B(s)$

$$
\Delta \mathrm{H}^{\circ}=2 \Delta \mathrm{G}_{0}^{\circ} \quad \mathrm{E}_{\text {cell }}=0
$$

Cell Rx $\left.\quad \mathrm{A} \rightarrow \mathrm{A}^{+n}+\mathrm{ne}^{-}\right] \times 2$

$$
\mathrm{B}^{+2 \mathrm{n}}+2 \mathrm{n}^{-} \rightarrow \mathrm{B}(\mathrm{~s})
$$

$2 \mathrm{~A}(\mathrm{~s})+\underset{1 \mathrm{M}}{\mathrm{B}^{+2 \mathrm{n}}}(\mathrm{aq}) \rightarrow \underset{2 \mathrm{M}}{2 \mathrm{~A}^{+\mathrm{n}}}(\mathrm{aq})+\mathrm{B}(\mathrm{s})$
$\Delta G=\Delta G^{\circ}+R T \ln \frac{\left[\mathrm{~A}^{+n}\right]^{2}}{\left[\mathrm{~B}^{+2 \mathrm{n}}\right]}$
$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \frac{\left[\mathrm{A}^{+\mathrm{n}}\right]^{2}}{\left[\mathrm{~B}^{+2 \mathrm{n}}\right]}=-\mathrm{RT} \cdot \ln \frac{2^{2}}{1}=-\mathrm{RT} \cdot \ln 4$
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$\Delta G^{\circ}=2 \Delta G^{\circ}-T \Delta S^{\circ}$
$\Delta \mathrm{S}^{\circ}=\frac{\Delta \mathrm{G}^{\circ}}{\mathrm{T}}=-\frac{\mathrm{RT} \ln 4}{\mathrm{~T}}$
$=-8.3 \times 2 \times 0.7=-11.62 \mathrm{~J} / \mathrm{K} . \mathrm{mol}$
15. Match each set of hybrid orbitals from LIST-I with complex (es) given in LIST-II.

LIST-I

P. dsp^{2}
Q. sp^{3}
R. $\mathrm{sp}^{3} \mathrm{~d}^{2}$
S. $d^{2} s p^{3}$

LIST-II

1. $\left[\mathrm{FeF}_{6}\right]^{4}$
2. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$
3. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
4. $\left[\mathrm{FeCl}_{4}\right]^{2-}$
5. $\mathrm{Ni}(\mathrm{CO})_{4}$
6. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

The correct option is
(A) $\mathrm{P} \rightarrow 5 ; \mathrm{Q} \rightarrow 4,6 ; \mathrm{R} \rightarrow 2,3 ; \mathrm{S} \rightarrow 1$
(B) $\mathrm{P} \rightarrow 5,6 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 1,2$
(C) $\mathrm{P} \rightarrow 6 ; \mathrm{Q} \rightarrow 4,5 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 2,3$
(D) $\mathrm{P} \rightarrow 4,6 ; \mathrm{Q} \rightarrow 5,6 ; \mathrm{R} \rightarrow 1,2 ; \mathrm{S} \rightarrow 3$

Ans. (C)
Sol. [1] $\left[\mathrm{FeF}_{6}\right]^{4-}$

[2] $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$

[3] $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

[4] $\left[\mathrm{FeCl}_{4}\right]^{2-}$

[5] [$\left.\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\mathrm{Ni}: 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$

Back pairing of electrons due to presence of strong field ligand

$\mathrm{Ni}:$| 3 d | |
| :--- | :--- | :--- | :--- |
| | |

[6] $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
$\mathrm{Ni}^{2+}: 3 \mathrm{~d}^{8}$
$\mathrm{Ni}^{24}: 11|1||1| 1 \mid 1$

Electron pairing take place due to presence of S.F.L.

16. The desired product X can be prepared by reacting the major product of the reactions in LIST-I with one or more appropriate reagents in LIST-II.
(given, order of migratory aptitude: aryl > alkyl > hydrogen)

LIST-I

P. ${\underset{\mathrm{Me}}{\mathrm{OH}}}_{\mathrm{Ph}}^{\mathrm{Ph}}+\mathrm{H}_{2} \mathrm{SO}_{4}$
Q.

R. $\overbrace{\mathrm{Me}}^{\mathrm{Me}} \mathrm{C}_{\mathrm{OH}}^{\mathrm{Ph}}+\mathrm{H}_{2} \mathrm{SO}_{4}$

LIST-II

1. $1_{2}, \mathrm{NaOH}$
2. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{OH}$
3. Fehling solution
4. $\mathrm{HCHO}, \mathrm{NaOH}$
5. NaOBr

The correct option is
(A) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2,3 ; \mathrm{R} \rightarrow 1,4 ; \mathrm{S} \rightarrow 2,4$
(B) $\mathrm{P} \rightarrow 1,5 ; \mathrm{Q} \rightarrow 3,4 ; \mathrm{R} \rightarrow 4,5 ; \mathrm{S} \rightarrow 3$
(C) $\mathrm{P} \rightarrow 1,5 ; \mathrm{Q} \rightarrow 3,4 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 2,4$
(D) $\mathrm{P} \rightarrow 1,5 ; \mathrm{Q} \rightarrow 2,3 ; \mathrm{R} \rightarrow 1,5 ; \mathrm{S} \rightarrow 2,3$

Ans. (D)
17. LIST-I contains reactions and LIST-II contains major products.

LIST-I

P. $>_{\mathrm{ONa}}+$

Q. $>_{\mathrm{OMe}}$ $+$ $\mathrm{HBr} \longrightarrow$
R.

$\mathrm{S} . \searrow_{\mathrm{ONa}}+\mathrm{MeBr} \longrightarrow$

LIST-II

1. λ_{OH}
2.

3. $>_{\mathrm{OMe}}$
4. 从
5. $\left.\pi^{\mathrm{O}}\right\rangle$

Match each reaction in LIST-I with one or more product in LIST-II and choose the correct option.
(A) $\mathrm{P} \rightarrow 1,5 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 4$
(B) $\mathrm{P} \rightarrow 1,4 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 3$
(C) $\mathrm{P} \rightarrow 1,4 ; \mathrm{Q} \rightarrow 1,2 ; \mathrm{R} \rightarrow 3,4 ; \mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 4,5 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 3,4$

Ans. (B)

(Elimination product)
Q.

R.

$\mathrm{S} . \lambda_{\mathrm{ONa}}+\mathrm{Me}-\mathrm{Br} \xrightarrow{\mathrm{SN}_{2}} \lambda_{\mathrm{OMe}}$
18. Dilution process of different aqueous solutions; with water, are given in LIST-I. The effects of dilution of the solutions on $\left[\mathrm{H}^{+}\right]$are given in LIST-II.
(Note : Degree of dissociation (α) of weak acid and weak base is $\ll 1$; degree of hydrolysis of salt $\ll 1 ;\left[\mathrm{H}^{+}\right]$represents the concentration of H^{+}ions)

LIST-I

P. (10 mL of $0.1 \mathrm{M} \mathrm{NaOH}+20 \mathrm{~mL}$ of 0.1 M acetic acid) diluted to 60 mL
Q. $(20 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{NaOH}+20 \mathrm{~mL}$ of 0.1 M acetic acid) diluted to 80 mL
R. $(20 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{HCl}+20 \mathrm{~mL}$ of
0.1 M ammonia solution) diluted to 80 mL
S. 10 mL saturated solution of $\mathrm{Ni}(\mathrm{OH})_{2}$ in equilibrium with excess solid $\mathrm{Ni}(\mathrm{OH})_{2}$ is diluted to 20 mL (solid $\mathrm{Ni}(\mathrm{OH})_{2}$ is still present after dilution).
5. the value of $\left[\mathrm{H}^{+}\right]$changes to $\sqrt{2}$ times of its initial value on dilution

Match each process given in LIST-I with one or more effect(s) in LIST-II. The correct option is
(A) $\mathrm{P} \rightarrow 4$; $\mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 1$
(B) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 3$
(C) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 3$
(D) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 5 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 1$

Ans. (D)
Sol. P.

$\mathrm{pH}=\mathrm{pKa} \Rightarrow\left[\mathrm{H}^{+}\right]$will not change on dilution
correct match : P-1
Q. $\underset{0.1 \mathrm{M}, 20 \mathrm{ml}}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{\substack{\mathrm{O} \\ 0.1 \mathrm{M}, 20 \mathrm{ml}}}{\mathrm{NaOH}} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& -0.05 \mathrm{M} \\
& {\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{H}} \mathrm{C}}=\sqrt{\left(\frac{\mathrm{k}_{\mathrm{w}}}{\mathrm{k}_{\mathrm{a}}} \mathrm{C}\right)}} \\
& {\left[\mathrm{H}^{+}\right]_{1}=\sqrt{\frac{\mathrm{k}_{\mathrm{w}} \mathrm{k}_{\mathrm{a}}}{\mathrm{C}}}} \\
& \frac{\left[\mathrm{H}^{+}\right]_{2}}{\left[\mathrm{H}^{+}\right]_{1}}=\sqrt{\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}}=\sqrt{\frac{0.05}{0.025}}=\sqrt{2}
\end{aligned}
$$

correct match : Q-5
R. $\underset{0.1 \mathrm{M}, 20 \mathrm{ml}}{\mathrm{NH}_{4} \mathrm{OH}}+\underset{0.1 \mathrm{M}, 20 \mathrm{ml}}{\mathrm{HCl}} \rightarrow \underset{0.05 \mathrm{M}}{\mathrm{NH}_{4} \mathrm{Cl}}$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\sqrt{\mathrm{K}_{\mathrm{H}} \mathrm{C}} \\
\frac{\left[\mathrm{H}^{+}\right]_{2}}{\left[\mathrm{H}^{+}\right]_{1}} & =\sqrt{\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

correct match : R-4
S. Because of dilution solubility does not change so $\left[\mathrm{H}^{+}\right]=$constant

