# JEE(Advanced) – 2017 TEST PAPER WITH SOLUTION

(HELD ON SUNDAY 21st MAY, 2017)

## MATHEMATICS

#### **SECTION-I** : (Maximum Marks : 21)

- This section contains **SEVEN** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in <u>one of the following categories</u> :
   *Full Marks* : +3 If only the bubble corresponding to the correct option is darkened.
   *Zero Marks* : 0 If none of the bubbles is darkened.

Negative Marks : -1 In all other cases

37. Three randomly chosen nonnegative integers x, y and z are found to satisfy the equation x + y + z = 10. Then the probability that z is even, is

(A) 
$$\frac{36}{55}$$
 (B)  $\frac{6}{11}$  (C)  $\frac{5}{11}$  (D)  $\frac{1}{2}$ 

#### Ans. (B)

**Sol.** Let z = 2k, where k = 0, 1, 2, 3, 4, 5

$$\therefore \quad \mathbf{x} + \mathbf{y} = 10 - 2\mathbf{k}$$

Number of non negative integral solutions

$$\sum_{k=0}^{5} {}^{11-2k}C_1 = \sum_{k=0}^{5} 11 - 2k = 36$$
  
Total cases =  ${}^{10+3-1}C_{3-1} = 66$   
Reqd. prob. =  $\frac{36}{66} = \frac{6}{11}$ 

- **38.** Let S = {1, 2, 3,....,9}. For k = 1,2, ...., 5, let N<sub>k</sub> be the number of subsets of S, each containing five elements out of which exactly k are odd. Then N<sub>1</sub> + N<sub>2</sub> + N<sub>3</sub> + N<sub>4</sub> + N<sub>5</sub> =
  - (A) 125 (B) 252 (C) 210 (D) 126
- Ans. (D)

Sol.  $N_1 + N_2 + N_3 + N_4 + N_5$  = Total ways - {when no odd} Total ways =  ${}^9C_5$ Number of ways when no odd, is zero (:: only available even are 2, 4, 6, 8)  $\therefore$  Ans :  ${}^9C_5$  - zero = 126

**39.** If  $f : \mathbb{R} \to \mathbb{R}$  is a twice differentiable function such that f''(x) > 0 for all  $x \in \mathbb{R}$ , and  $f\left(\frac{1}{2}\right) = \frac{1}{2}$ , f(1) = 1, then

(A) 
$$0 < f'(1) \le \frac{1}{2}$$
 (B)  $f'(1) \le 0$  (C)  $f'(1) > 1$  (D)  $\frac{1}{2} < f'(1) \le 1$ 

Ans. (C)

**Sol.** Using LMVT on f(x) for  $x \in \left[\frac{1}{2}, 1\right]$ 

$$\frac{f(1) - f\left(\frac{1}{2}\right)}{1 - \frac{1}{2}} = f'(c), \text{ where } c \in \left(\frac{1}{2}, 1\right)$$
$$\frac{1 - \frac{1}{2}}{\frac{1}{2}} = f'(c) \Rightarrow f'(c) = 1, \text{ where } c \in \left(\frac{1}{2}, 1\right)$$
$$\therefore f'(x) \text{ is an increasing function } \forall x \in \mathbf{R}$$

∴ f'(1) > 1

**40.** If y = y(x) satisfies the differential equation

$$8\sqrt{x}\left(\sqrt{9+\sqrt{x}}\right)dy = \left(\sqrt{4+\sqrt{9+\sqrt{x}}}\right)^{-1}dx, \quad x > 0$$

and 
$$y(0) = \sqrt{7}$$
, then  $y(256) =$   
(A) 80 (B) 3 (C) 16 (D) 9

Ans. (B)

Sol. 
$$y = \frac{1}{8} \int \frac{dx}{\sqrt{4 + \sqrt{9 + x} \cdot \sqrt{x} \cdot \sqrt{9 + \sqrt{x}}}}$$
  
put  $\sqrt{9 + \sqrt{x}} = t \implies \frac{dx}{\sqrt{x} \cdot \sqrt{9 + \sqrt{x}}} = 4dt$   
 $\therefore \quad y = \frac{4}{8} \int \frac{dt}{\sqrt{4 + t}}$   
 $\Rightarrow \quad y = \sqrt{4 + t} + C$   
 $\Rightarrow \quad y(x) = \sqrt{4 + \sqrt{9 + \sqrt{x}}} + C$   
at  $x = 0 : y(0) = \sqrt{7} \implies C = 0$   
 $\therefore \quad y(x) = \sqrt{4 + \sqrt{9 + \sqrt{x}}}$   
 $\Rightarrow \quad y(256) = 3$ 

**41.** How many  $3 \times 3$  matrices M with entries from  $\{0,1,2\}$  are there, for which the sum of the diagonal entries of  $M^{T}M$  is 5 ?

(A) 198 (B) 126 (C) 135 (D) 162

Ans. (A)

Sol. Let 
$$M = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$
  
 $\therefore tr(M^TM) = a^2 + b^2 + c^2 + d^2 + c^2 + f^2 + g^2 + h^2 + i^2 = 5$ , where entries are {0,1,2}  
Only two cases are possible.  
(I) five entries 1 and other four zero  
 $\therefore {}^9C_5 \times 1$   
(II) One entry is 2, one entry is 1 and others are 0.  
 $\therefore {}^9C_2 \times 2!$   
Total = 126 + 72 = 198.

42. Let O be the origin and let PQR be an arbitrary triangle. The point S is such that  $\overrightarrow{OP.OQ} + \overrightarrow{OR.OS} = \overrightarrow{OR.OP} + \overrightarrow{OQ.OS} = \overrightarrow{OQ.OR} + \overrightarrow{OP.OS}$ 

Then the triangle PQR has S as its

(A) incentre (B) orthocenter (C) circumcentre (D) centroid

Ans. (B)

**Sol.** Let position vector of  $P(\vec{p})$ ,  $Q(\vec{q})$ ,  $R(\vec{r})$  &  $S(\vec{r})$  with respect to  $O(\vec{o})$ 

Now,  $\overrightarrow{OP}.\overrightarrow{OQ} + \overrightarrow{OR}.\overrightarrow{OS} = \overrightarrow{OR}.\overrightarrow{OP} + \overrightarrow{OQ}.\overrightarrow{OS}$  $\Rightarrow$   $\vec{p}.\vec{q} + \vec{r}.\vec{s} = \vec{r}.\vec{p} + \vec{q}.\vec{s}$  $\Rightarrow$   $(\vec{p} - \vec{s}).(\vec{q} - \vec{r}) = 0$  .....(1) Also,  $\overrightarrow{OR}.\overrightarrow{OP} + \overrightarrow{OQ}.\overrightarrow{OS} = \overrightarrow{OQ}.\overrightarrow{OR} + \overrightarrow{OP}.\overrightarrow{OS}$  $\Rightarrow$   $\vec{r}.\vec{p}+\vec{q}.\vec{s}=\vec{q}.\vec{r}+\vec{p}.\vec{s}$  $\Rightarrow$   $(\vec{r} - \vec{s}).(\vec{p} - \vec{q}) = 0$  .....(2) Also,  $\overrightarrow{OP}.\overrightarrow{OQ} + \overrightarrow{OR}.\overrightarrow{OS} = \overrightarrow{OQ}.\overrightarrow{OR} + \overrightarrow{OP}.\overrightarrow{OS}$  $\Rightarrow \vec{p}.\vec{q} + \vec{r}.\vec{s} = \vec{q}.\vec{r} + \vec{p}.\vec{s}$  $\Rightarrow (\vec{q} - \vec{s}).(\vec{p} - \vec{r}) = 0 \qquad \dots \dots (3)$  $P(\vec{p})$ S(š  $R(\vec{r})$  $Q(\vec{q})$  $\Rightarrow$  Triangle PQR has S as its orthocentre option (B) is correct. ·.

JEE-Adv-2017-P2 [Code - 9]

43. The equation of the plane passing through the point (1,1,1) and perpendicular to the planes 2x + y - 2z = 5 and 3x - 6y - 2z = 7, is-

(A) 14x + 2y + 15z = 31(B) 14x + 2y - 15z = 1(C) -14x + 2y + 15z = 3(D) 14x - 2y + 15z = 27

Ans. (A)

Sol. The normal vector of required plane is parallel to vector

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 3 & -6 & -2 \end{vmatrix} = -14\hat{i} - 2\hat{j} - 15\hat{k}$$

 $\therefore$  The equation of required plane passing through (1, 1, 1) will be

-14(x-1) - 2(y-1) - 15(z-1) = 0

$$\Rightarrow$$
  $|14x + 2y + 15z = 31$ 

 $\therefore$  Option (A) is correct

#### SECTION-2 : (Maximum Marks : 28)

- This section contains **SEVEN** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four options is (are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
- For each question, marks will be awarded in <u>one of the following categories</u> :

*Full Marks* : +4 If only the bubble(s) corresponding to all the correct option(s) is (are) darkened.

- Partial Marks : +1 For darkening a bubble corresponding to each correct option, Provided NO incorrect option is darkened.
- Zero Marks : 0 If none of the bubbles is darkened.

*Negative Marks* : -2 In all other cases.

for example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will get +4 marks; darkening only (A) and (D) will get +2 marks; and darkening (A) and (B) will get -2 marks, as a wrong option is also darkened

44. If  $I = \sum_{k=1}^{98} \int_{k}^{k+1} \frac{k+1}{x(x+1)} dx$ , then

(A) 
$$I < \frac{49}{50}$$
 (B)  $I < \log_e 99$  (C)  $I > \frac{49}{50}$  (D)  $I > \log_e 99$ 

Ans. (B,C)

Sol. 
$$I = \sum_{k=1}^{98} \left( \int_{k}^{k+1} \frac{(k+1)}{x(x+1)} dx \right)$$
$$= \sum_{k=1}^{98} (k+1) \left( \int_{k}^{k+1} \left( \frac{1}{x} - \frac{1}{x+1} \right) dx \right)$$
$$= \sum_{k=1}^{98} (k+1) \left( (\ell n \ x - \ell n \ (x+1))_{k}^{k+1} \right)$$
$$= \sum_{k=1}^{98} (k+1) \left( \ell n \ (k+1) - \ell n \ (k+2) - \ell n \ k + \ell n \ (k+1) \right)$$
$$= \sum_{k=1}^{98} \left( (k+1) \ell n \ (k+1) - k \cdot \ell n \ k \right) - \sum_{k=1}^{98} \left( (k+1) \cdot \ell n \ (k+2) - k \cdot \ell n \ (k+1) \right) + \sum_{k=1}^{98} \left( \ell n \ (k+1) - \ell n \ k \right)$$
(Difference series)

$$\therefore I = (99 \ \ln 99) + (-99 \ \ln 100 + \ln 2) + (\ln 99) = \ln \left( \frac{2 \times (99)^{100}}{(100)^{99}} \right) \qquad \dots \dots (1)$$

For option (B) :  
Now, consider 
$$(100)^{99} = (1 + 99)^{99}$$
  
 $= {}^{99}C_0 + {}^{99}C_1(99) + {}^{99}C_2(99)^2 + \dots + {}^{99}C_{97}(99)^{97} + {}^{99}C_{98}(99)^{98} + {}^{99}C_{99}(99)^{99} + {}^{99}C_{99}(99)^{99}$   
 $\Rightarrow (100)^{99} > 2.(99)^{99} \Rightarrow \frac{2 \times (99)^{99}}{(100)^{99}} < 1$   
 $\therefore \frac{2 \times (99)^{100}}{(100)^{99}} < 99$  (on multiplying by 99)  
 $\Rightarrow I < \ell n99$   
For option (C) :

Since, 
$$\sum_{k=1}^{98} \int_{k}^{k+1} \frac{k+1}{(x+1)^2} dx < \sum_{k=1}^{98} \int_{k}^{k+1} \frac{(k+1)dx}{x(x+1)}$$
  

$$\Rightarrow \sum_{k=1}^{98} \left(\frac{1}{k+2}\right) < I$$

(on integration)

$$\Rightarrow \underbrace{\left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{100}\right)}_{98 \text{ terms}} < I$$
$$\Rightarrow \frac{98}{100} < \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{100} < I$$
$$\therefore I > \frac{49}{50}$$

Hence option (C) is correct.

**45.** If  $f : \mathbb{R} \to \mathbb{R}$  is a differentiable function such that f'(x) > 2f(x) for all  $x \in \mathbb{R}$ , and f(0) = 1, then (A)  $f(x) > e^{2x}$  in  $(0,\infty)$ (B) f(x) is decreasing in  $(0,\infty)$ (D)  $f'(x) < e^{2x}$  in  $(0,\infty)$ (C) f(x) is increasing in  $(0,\infty)$ Ans. (A,C) Sol. Given that,  $f'(x) > 2f(x) \forall x \in R$  $\Rightarrow f'(x) - 2f(x) > 0 \quad \forall x \in R$  $\therefore e^{-2x} (f'(x) - 2f(x)) > 0 \ \forall \ x \in R$  $\Rightarrow \frac{d}{dx} \left( e^{-2x} f(x) \right) > 0 \ \forall \ x \in R$ Let  $g(x) = e^{-2x}f(x)$ Now,  $g'(x) > 0 \forall x \in R$  $\Rightarrow$  g(x) is strictly increasing  $\forall x \in R$ Also, g(0) = 1 $\therefore \forall x > 0$  $\Rightarrow$  g(x) > g(0) = 1  $\therefore e^{-2x} \cdot f(x) > 1 \ \forall \ x \in (0, \infty) \Rightarrow f(x) > e^{2x} \ \forall \ x \in (0, \infty)$  $\therefore$  option (A) is correct As,  $f'(x) > 2 f(x) > 2e^{2x} > 2 \forall x \in (0, \infty)$  $\Rightarrow$  f(x) is strictly increasing on x  $\in$  (0,  $\infty$ )  $\Rightarrow$  option (C) is correct As, we have proved above that  $f'(x) > 2.e^{2x} \forall x \in (0, \infty)$  $\Rightarrow$  option (D) is incorrect  $\therefore$  options (A) and (C) are correct  $|\cos(2x) \cos(2x) \sin(2x)|$ If  $f(x) = \begin{vmatrix} \cos(2\pi x) & \cos(2\pi x) & -\sin(2\pi x) \\ -\cos x & \cos x & -\sin x \\ \sin x & \sin x & \cos x \end{vmatrix}$ , then 46. (A) f'(x) = 0 at exactly three points in  $(-\pi, \pi)$ (B) f(x) attains its maximum at x = 0(C) f(x) attains its minimum at x = 0(D) f'(x) = 0 at more than three points in  $(-\pi, \pi)$ Ans. (B,D) Sol. Expansion of determinant  $f(\mathbf{x}) = \cos 2\mathbf{x} + \cos 4\mathbf{x}$ 4 0: (1 . 4 0

$$f'(x) = -2\sin 2x - 4\sin 4x = -2\sin x(1 + 4\cos 2x)$$

$$+ - - = 0$$

$$\therefore \quad \text{maxima at } x = 0$$

$$f'(x) = 0 \implies x = \frac{n\pi}{2}, \cos 2x = -\frac{1}{4}$$

 $\Rightarrow$  more than two solutions

47. Let  $\alpha$  and  $\beta$  be nonzero real numbers such that  $2(\cos\beta - \cos\alpha) + \cos\alpha \cos\beta = 1$ . Then which of the following is/are true ?

(A) 
$$\tan\left(\frac{\alpha}{2}\right) - \sqrt{3}\tan\left(\frac{\beta}{2}\right) = 0$$
  
(B)  $\sqrt{3}\tan\left(\frac{\alpha}{2}\right) - \tan\left(\frac{\beta}{2}\right) = 0$   
(C)  $\tan\left(\frac{\alpha}{2}\right) + \sqrt{3}\tan\left(\frac{\beta}{2}\right) = 0$   
(D)  $\sqrt{3}\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right) = 0$ 

### Ans. (A,C)

Sol. 
$$2(\cos\beta - \cos\alpha) + \cos\alpha \, \cos\beta - 1 = 0 \longrightarrow (1)$$
  
 $u \sec \cos\beta = \frac{1 - \tan^2 \frac{\beta}{2}}{1 + \tan^2 \frac{\beta}{2}} \text{ and } \cos\alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}} \text{ in (1)}$   
We get  $\tan^2 \left(\frac{\alpha}{2}\right) = 3\tan^2 \left(\frac{\beta}{2}\right) \implies \tan\left(\frac{\alpha}{2}\right) + \sqrt{3}\tan\frac{\beta}{2} = 0 \text{ or } \tan\left(\frac{\alpha}{2}\right) - \sqrt{3}\tan\left(\frac{\beta}{2}\right) = 0$   
Hence (A, C)

**48.** If 
$$g(x) = \int_{\sin x}^{\sin(2x)} \sin^{-1}(t) dt$$
, then

(A) 
$$g'\left(\frac{\pi}{2}\right) = -2\pi$$
 (B)  $g'\left(-\frac{\pi}{2}\right) = 2\pi$  (C)  $g'\left(\frac{\pi}{2}\right) = 2\pi$  (D)  $g'\left(-\frac{\pi}{2}\right) = -2\pi$ 

## Ans. (BONUS)

Sol. 
$$g(x) = \int_{\sin x}^{\sin 2x} \sin^{-1} t \, dt \implies g'(x) = 2\sin^{-1}(\sin 2x) \times \cos 2x - \sin^{-1}(\sin x)\cos x$$

$$\Rightarrow g'\left(\frac{\pi}{2}\right) = 0 \& g'\left(-\frac{\pi}{2}\right) = 0$$

No option matches the result

 $\Rightarrow$  BONUS

**49.** If the line  $x = \alpha$  divides the area of region  $R = \{(x, y) \in \mathbb{R}^2 : x^3 \le y \le x, 0 \le x \le 1\}$  into two equal parts, then

(A) 
$$\frac{1}{2} < \alpha < 1$$
 (B)  $\alpha^4 + 4\alpha^2 - 1 = 0$  (C)  $0 < \alpha \le \frac{1}{2}$  (D)  $2\alpha^4 - 4\alpha^2 + 1 = 0$ 

Ans. (A,D)



Ans. (A,C)

Sol. 
$$f(x) = \begin{cases} (1-x)\cos\frac{1}{1-x} & , x < 1 \\ -(1+x)\cos\frac{1}{1-x} & , x > 1 \end{cases}$$

$$\lim_{x \to 1^{+}} f(x) = \text{d.n.e, } \lim_{x \to 1^{-}} f(x) = 0$$

#### SECTION-3 : (Maximum Marks : 12)

- This section contains **TWO** paragraphs.
- Based on each paragraph, there are **TWO** questions.
- Each question has **FOUR** options (A), (B), (C) and (D) **ONLY ONE** of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in <u>one of the following categories</u> :
   *Full Marks* : +3 If only the bubble corresponding to the correct option is darkened.
   *Zero Marks* : 0 In all other cases.

## PARAGRAPH 1

Let O be the origin, and  $\overrightarrow{OX}, \overrightarrow{OY}, \overrightarrow{OZ}$  be three unit vectors in the directions of the sides  $\overrightarrow{QR}, \overrightarrow{RP}, \overrightarrow{PQ}$ , respectively, of a triangle PQR.

**51.**  $|\overrightarrow{OX} \times \overrightarrow{OY}| =$ 

| (A) $sin(Q + R)$ | (B) $\sin(P + R)$ | (C) sin 2R | (D) $sin(P + Q)$ |
|------------------|-------------------|------------|------------------|
|------------------|-------------------|------------|------------------|

#### Ans. (D)

Sol. 
$$\overrightarrow{OX} = \frac{QR}{QR}$$
  
 $\overrightarrow{OY} = \frac{\overrightarrow{RP}}{\overrightarrow{RP}}$   
 $\left|\overrightarrow{OX} \times \overrightarrow{OY}\right| = \sin R = \sin(P+Q)$ 

**52.** If the triangle PQR varies, then the minimum value of cos(P + Q) + cos(Q + R) + cos(R + P) is

(A) 
$$\frac{3}{2}$$
 (B)  $-\frac{3}{2}$  (C)  $\frac{5}{3}$  (D)  $-\frac{5}{3}$ 

Ans. (B)

Sol.  $-(\cos P + \cos Q + \cos R) \ge -\frac{3}{2}$  as we know  $\cos P + \cos Q + \cos R$  will take its maximum value when  $P = Q = R = \frac{\pi}{3}$ 

## PARAGRAPH 2

Let p,q be integers and let  $\alpha,\beta$  be the roots of the equation,  $x^2 - x - 1 = 0$ , where  $\alpha \neq \beta$ . For n = 0,1,2,..., let  $a_n = p\alpha^n + q\beta^n$ .

FACT : If a and b are rational numbers and  $a + b\sqrt{5} = 0$ , then a = 0 = b.

53. If 
$$a_4 = 28$$
, then  $p + 2q =$   
(A) 14 (B) 7 (C) 12 (D) 21  
Ans. (C)  
Sol.  $\alpha^2 = \alpha + 1 \Rightarrow \alpha^4 = 3\alpha + 2$   
 $\therefore a_4 = 28 \Rightarrow p\alpha^4 + q\beta^4 = p(3\alpha + 2) + q(3\beta + 2) = 28$   
 $\Rightarrow p(3\alpha + 2) + q(3 - 3\alpha + 2) = 28$   
 $\Rightarrow \alpha(3p - 3q) + 2p + 5q = 28$  (as  $\alpha \in Q^6$ )  
 $\Rightarrow p = q, 2p + 5q = 28 \Rightarrow p = q = 4$   
 $\therefore p + 2q = 12$  Ans : C  
54.  $a_{12} =$   
(A)  $2a_{11} + a_{10}$  (B)  $a_{11} - a_{10}$  (C)  $a_{11} + a_{10}$  (D)  $a_{11} + 2a_{10}$   
Ans. (C)  
Sol.  $\alpha^2 = \alpha + 1 \Rightarrow \alpha^n = \alpha^{n-1} + \alpha^{n-2}$   
 $\Rightarrow p\alpha^n + q\beta^n = p(\alpha^{n-1} + \alpha^{n-2}) + q(\beta^{n-1} + \beta^{n-2})$   
 $a_n = a_{n-1} + a_{n-2}$   
 $\Rightarrow a_{12} = a_{11} + a_{10}$