JEE(Advanced) - 2017 TEST PAPER WITH SOLUTION
 (HELD ON SUNDAY $21{ }^{\text {st }}$ MAY, 2017)
 MATHEMATICS

 SECTION-I : (Maximum Marks : 21)

 SECTION-I : (Maximum Marks : 21)}

- This section contains SEVEN questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories :

Full Marks $:+3$ If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks :-1 In all other cases
37. Three randomly chosen nonnegative integers x, y and z are found to satisfy the equation $x+y+z=10$. Then the probability that z is even, is
(A) $\frac{36}{55}$
(B) $\frac{6}{11}$
(C) $\frac{5}{11}$
(D) $\frac{1}{2}$

Ans. (B)
Sol. Let $\mathrm{z}=2 \mathrm{k}$, where $\mathrm{k}=0,1,2,3,4,5$
$\therefore \quad \mathrm{x}+\mathrm{y}=10-2 \mathrm{k}$
Number of non negative integral solutions

$$
\sum_{\mathrm{k}=0}^{5}{ }^{11-2 \mathrm{k}} \mathrm{C}_{1}=\sum 11-2 \mathrm{k}=36
$$

Total cases $={ }^{10+3-1} \mathrm{C}_{3-1}=66$
Reqd. prob. $=\frac{36}{66}=\frac{6}{11}$
38. Let $S=\{1,2,3, \ldots \ldots, 9\}$. For $k=1,2, \ldots \ldots, 5$, let N_{k} be the number of subsets of S, each containing five elements out of which exactly k are odd. Then $N_{1}+N_{2}+N_{3}+N_{4}+N_{5}=$
(A) 125
(B) 252
(C) 210
(D) 126

Ans. (D)
Sol. $\mathrm{N}_{1}+\mathrm{N}_{2}+\mathrm{N}_{3}+\mathrm{N}_{4}+\mathrm{N}_{5}=$ Total ways $-\{$ when no odd $\}$
Total ways $={ }^{9} \mathrm{C}_{5}$
Number of ways when no odd, is zero $\quad(\because$ only available even are $2,4,6,8)$
\therefore Ans: ${ }^{9} \mathrm{C}_{5}$ - zero $=126$
39. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a twice differentiable function such that $f^{\prime \prime}(\mathrm{x})>0$ for all $\mathrm{x} \in \mathbb{R}$, and $f\left(\frac{1}{2}\right)=\frac{1}{2}, f(1)=1$, then
(A) $0<f^{\prime}(1) \leq \frac{1}{2}$
(B) $f^{\prime}(1) \leq 0$
(C) $f^{\prime}(1)>1$
(D) $\frac{1}{2}<f^{\prime}(1) \leq 1$

Ans. (C)

Sol. Using LMVT on $f(\mathrm{x})$ for $\mathrm{x} \in\left[\frac{1}{2}, 1\right]$

$$
\begin{aligned}
& \frac{f(1)-f\left(\frac{1}{2}\right)}{1-\frac{1}{2}}=f^{\prime}(\mathrm{c}), \text { where } \mathrm{c} \in\left(\frac{1}{2}, 1\right) \\
& \frac{1-\frac{1}{2}}{\frac{1}{2}}=f^{\prime}(\mathrm{c}) \Rightarrow f^{\prime}(\mathrm{c})=1, \text { where } \mathrm{c} \in\left(\frac{1}{2}, 1\right)
\end{aligned}
$$

$\because f^{\prime}(x)$ is an increasing function $\forall x \in R$
$\therefore \quad f^{\prime}(1)>1$
40. If $y=y(x)$ satisfies the differential equation

$$
8 \sqrt{x}(\sqrt{9+\sqrt{x}}) d y=(\sqrt{4+\sqrt{9+\sqrt{x}}})^{-1} d x, \quad x>0
$$

and $\mathrm{y}(0)=\sqrt{7}$, then $\mathrm{y}(256)=$
(A) 80
(B) 3
(C) 16
(D) 9

Ans. (B)
Sol. $y=\frac{1}{8} \int \frac{d x}{\sqrt{4+\sqrt{9+x} \cdot \sqrt{x} \cdot \sqrt{9+\sqrt{x}}}}$ put $\sqrt{9+\sqrt{\mathrm{x}}}=\mathrm{t} \Rightarrow \frac{\mathrm{dx}}{\sqrt{\mathrm{x}} \cdot \sqrt{9+\sqrt{\mathrm{x}}}}=4 \mathrm{dt}$
$\therefore \quad \mathrm{y}=\frac{4}{8} \int \frac{\mathrm{dt}}{\sqrt{4+\mathrm{t}}}$
$\Rightarrow \quad y=\sqrt{4+t}+C$
$\Rightarrow \mathrm{y}(\mathrm{x})=\sqrt{4+\sqrt{9+\sqrt{x}}}+C$
at $\mathrm{x}=0: \mathrm{y}(0)=\sqrt{7} \Rightarrow \mathrm{C}=0$
$\therefore \mathrm{y}(\mathrm{x})=\sqrt{4+\sqrt{9+\sqrt{\mathrm{x}}}}$
$\Rightarrow y(256)=3$
41. How many 3×3 matrices M with entries from $\{0,1,2\}$ are there, for which the sum of the diagonal entries of $\mathrm{M}^{\mathrm{T}} \mathrm{M}$ is 5 ?
(A) 198
(B) 126
(C) 135
(D) 162

Ans. (A)

Sol. Let $\mathrm{M}=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & f \\ \mathrm{~g} & \mathrm{~h} & \mathrm{i}\end{array}\right|$
$\therefore \operatorname{tr}\left(M^{T} M\right)=a^{2}+b^{2}+c^{2}+d^{2}+c^{2}+f^{2}+g^{2}+h^{2}+i^{2}=5$, where entries are $\{0,1,2\}$
Only two cases are possible.
(I) five entries 1 and other four zero
$\therefore{ }^{9} \mathrm{C}_{5} \times 1$
(II) One entry is 2 , one entry is 1 and others are 0 .
$\therefore{ }^{9} \mathrm{C}_{2} \times 2$!
Total $=126+72=198$.
42. Let O be the origin and let $P Q R$ be an arbitrary triangle. The point S is such that $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OR}}+\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OS}}$

Then the triangle PQR has S as its
(A) incentre
(B) orthocenter
(C) circumcentre
(D) centroid

Ans. (B)
Sol. Let position vector of $\mathrm{P}(\overrightarrow{\mathrm{p}}), \mathrm{Q}(\overrightarrow{\mathrm{q}}), \mathrm{R}(\overrightarrow{\mathrm{r}}) \& \mathrm{~S}(\overrightarrow{\mathrm{r}})$ with respect to $\mathrm{O}(\overrightarrow{\mathrm{o}})$
Now, $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OS}}$
$\Rightarrow \quad \overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{s}}=\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{s}}$
$\Rightarrow \quad(\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{s}}) \cdot(\overrightarrow{\mathrm{q}}-\overrightarrow{\mathrm{r}})=0$
Also, $\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OR}}+\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OS}}$
$\Rightarrow \quad \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{s}}=\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{s}}$
$\Rightarrow \quad(\vec{r}-\vec{s}) \cdot(\vec{p}-\vec{q})=0$
Also, $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OR}}+\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OS}}$
$\Rightarrow \quad \overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{s}}=\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{p}} . \overrightarrow{\mathrm{s}}$
$\Rightarrow \quad(\overrightarrow{\mathrm{q}}-\overrightarrow{\mathrm{s}}) \cdot(\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{r}})=0$

\Rightarrow Triangle PQR has S as its orthocentre
\therefore option (B) is correct.
43. The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$, is-
(A) $14 x+2 y+15 z=31$
(B) $14 x+2 y-15 z=1$
(C) $-14 x+2 y+15 z=3$
(D) $14 x-2 y+15 z=27$

Ans. (A)
Sol. The normal vector of required plane is parallel to vector

$$
=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & -2 \\
3 & -6 & -2
\end{array}\right|=-14 \hat{i}-2 \hat{j}-15 \hat{k}
$$

\therefore The equation of required plane passing through $(1,1,1)$ will be

$$
-14(x-1)-2(y-1)-15(z-1)=0
$$

$\Rightarrow 14 \mathrm{x}+2 \mathrm{y}+15 \mathrm{z}=31$
\therefore Option (A) is correct

SECTION-2 : (Maximum Marks : 28)

- This section contains SEVEN questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four options is (are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
- For each question, marks will be awarded in one of the following categories :

Full Marks $\quad:+4$ If only the bubble(s) corresponding to all the correct option(s) is (are) darkened.
Partial Marks $:+1$ For darkening a bubble corresponding to each correct option, Provided NO incorrect option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks : - 2 In all other cases.

- for example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will get +4 marks; darkening only (A) and (D) will get +2 marks; and darkening (A) and (B) will get -2 marks, as a wrong option is also darkened

44. If $\mathrm{I}=\sum_{\mathrm{k}=1}^{98} \int_{\mathrm{k}}^{\mathrm{k}+1} \frac{\mathrm{k}+1}{\mathrm{x}(\mathrm{x}+1)} \mathrm{dx}$, then
(A) I $<\frac{49}{50}$
(B) I $<\log _{\mathrm{e}} 99$
(C) I $>\frac{49}{50}$
(D) I $>\log _{e} 99$

Ans. (B,C)

Sol. $\quad I=\sum_{k=1}^{98}\left(\int_{k}^{k+1} \frac{(k+1)}{x(x+1)} d x\right)$
$=\sum_{k=1}^{98}(k+1)\left(\int_{k}^{k+1}\left(\frac{1}{x}-\frac{1}{x+1}\right) d x\right)$
$=\sum_{k=1}^{98}(k+1)\left((\ell \ln x-\ell n(x+1))_{k}^{k+1}\right)$
$=\sum_{\mathrm{k}=1}^{98}(\mathrm{k}+1)(\ell \mathrm{n}(\mathrm{k}+1)-\ell \mathrm{n}(\mathrm{k}+2)-\ell \mathrm{n} \mathrm{k}+\ell \mathrm{n}(\mathrm{k}+1))$
$=\sum_{k=1}^{98}((k+1) \ell n(k+1)-k \cdot \ell n k)-\sum_{k=1}^{98}((k+1) \cdot \ell n(k+2)-k \cdot \ell n(k+1))+\sum_{k=1}^{98}(\ell n(k+1)-\ell n k)$
(Difference series)
$\therefore \mathrm{I}=(99 \ln 99)+(-99 \ln 100+\ln 2)+(\ell \mathrm{n} 99)=\ln \left(\frac{2 \times(99)^{100}}{(100)^{99}}\right)$
For option (B) :
Now, consider $(100)^{99}=(1+99)^{99}$
$={ }^{99} \mathrm{C}_{0}+{ }^{99} \mathrm{C}_{1}(99)+{ }^{99} \mathrm{C}_{2}(99)^{2}+\ldots \ldots .+{ }^{99} \mathrm{C}_{97}(99)^{97}+\underbrace{{ }^{99} \mathrm{C}_{98}(99)^{98}}_{\left.\text {(value }(99)^{999}\right)}+\underbrace{{ }^{99} \mathrm{C}_{99}(99)}_{\left.\text {(value }(99)^{99}\right)}{ }^{99}$
$\Rightarrow(100)^{99}>2 .(99)^{99} \Rightarrow \frac{2 \times(99)^{99}}{(100)^{99}}<1$
$\therefore \frac{2 \times(99)^{100}}{(100)^{99}}<99$ (on multiplying by 99)
$\Rightarrow \mathrm{I}<\ell \mathrm{n} 99$
For option (C) :
Since, $\sum_{k=1}^{98} \int_{\mathrm{k}}^{\mathrm{k}+1} \frac{\mathrm{k}+1}{(\mathrm{x}+1)^{2}} \mathrm{dx}<\sum_{\mathrm{k}=1}^{98} \int_{\mathrm{k}}^{\mathrm{k}+1} \frac{(\mathrm{k}+1) \mathrm{dx}}{\mathrm{x}(\mathrm{x}+1)}$
$\Rightarrow \sum_{\mathrm{k}=1}^{98}\left(\frac{1}{\mathrm{k}+2}\right)<\mathrm{I}$
(on integration)
$\Rightarrow \underbrace{\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots \ldots+\frac{1}{100}\right)}_{98 \text { terms }}<\mathrm{I}$
$\Rightarrow \frac{98}{100}<\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots . .+\frac{1}{100}<\mathrm{I}$
$\therefore \quad \mathrm{I}>\frac{49}{50}$
Hence option (C) is correct.
45. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function such that $f^{\prime}(\mathrm{x})>2 f(\mathrm{x})$ for all $\mathrm{x} \in \mathbb{R}$, and $f(0)=1$, then
(A) $f(\mathrm{x})>\mathrm{e}^{2 \mathrm{x}}$ in $(0, \infty)$
(B) $f(\mathrm{x})$ is decreasing in $(0, \infty)$
(C) $f(\mathrm{x})$ is increasing in $(0, \infty)$
(D) $f^{\prime}(\mathrm{x})<\mathrm{e}^{2 \mathrm{x}}$ in $(0, \infty)$

Ans. (A,C)

Sol. Given that,

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})>2 \mathrm{f}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{R} \\
\Rightarrow & \mathrm{f}^{\prime}(\mathrm{x})-2 \mathrm{f}(\mathrm{x})>0 \quad \forall \mathrm{x} \in \mathrm{R} \\
\therefore & \mathrm{e}^{-2 \mathrm{x}}\left(\mathrm{f}^{\prime}(\mathrm{x})-2 \mathrm{f}(\mathrm{x})\right)>0 \forall \mathrm{x} \in \mathrm{R} \\
\Rightarrow & \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{e}^{-2 \mathrm{x}} \mathrm{f}(\mathrm{x})\right)>0 \forall \mathrm{x} \in \mathrm{R}
\end{aligned}
$$

Let $g(x)=e^{-2 x} f(x)$
Now, $\mathrm{g}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in \mathrm{R}$
$\Rightarrow \mathrm{g}(\mathrm{x})$ is strictly increasing $\forall \mathrm{x} \in \mathrm{R}$
Also, $g(0)=1$
$\therefore \quad \forall \mathrm{x}>0$
$\Rightarrow \mathrm{g}(\mathrm{x})>\mathrm{g}(0)=1$
$\therefore \quad \mathrm{e}^{-2 \mathrm{x}} . \mathrm{f}(\mathrm{x})>1 \forall \mathrm{x} \in(0, \infty) \Rightarrow f(\mathrm{x})>\mathrm{e}^{2 \mathrm{x}} \forall \mathrm{x} \in(0, \infty)$
\therefore option (A) is correct
As, $\mathrm{f}^{\prime}(\mathrm{x})>2 \mathrm{f}(\mathrm{x})>2 \mathrm{e}^{2 \mathrm{x}}>2 \forall \mathrm{x} \in(0, \infty)$
$\Rightarrow \mathrm{f}(\mathrm{x})$ is strictly increasing on $\mathrm{x} \in(0, \infty)$
\Rightarrow option (C) is correct
As, we have proved above that

$$
\mathrm{f}^{\prime}(\mathrm{x})>2 . \mathrm{e}^{2 \mathrm{x}} \forall \mathrm{x} \in(0, \infty)
$$

\Rightarrow option (D) is incorrect
$\therefore \quad$ options (A) and (C) are correct
46. If $f(x)=\left|\begin{array}{ccc}\cos (2 x) & \cos (2 x) & \sin (2 x) \\ -\cos x & \cos x & -\sin x \\ \sin x & \sin x & \cos x\end{array}\right|$, then
(A) $f^{\prime}(x)=0$ at exactly three points in $(-\pi, \pi)$
(B) $f(x)$ attains its maximum at $x=0$
(C) $f(x)$ attains its minimum at $x=0$
(D) $\mathrm{f}^{\prime}(\mathrm{x})=0$ at more than three points in $(-\pi, \pi)$

Ans. (B,D)

Sol. Expansion of determinant
$f(x)=\cos 2 x+\cos 4 x$
$f^{\prime}(\mathrm{x})=-2 \sin 2 \mathrm{x}-4 \sin 4 \mathrm{x}=-2 \sin \mathrm{x}(1+4 \cos 2 \mathrm{x})$
$\frac{+\quad-}{0} \quad \therefore \quad$ maxima at $\mathrm{x}=0$
$f^{\prime}(x)=0 \Rightarrow x=\frac{n \pi}{2}, \cos 2 x=-\frac{1}{4}$
\Rightarrow more than two solutions
47. Let α and β be nonzero real numbers such that $2(\cos \beta-\cos \alpha)+\cos \alpha \cos \beta=1$. Then which of the following is/are true?
(A) $\tan \left(\frac{\alpha}{2}\right)-\sqrt{3} \tan \left(\frac{\beta}{2}\right)=0$
(B) $\sqrt{3} \tan \left(\frac{\alpha}{2}\right)-\tan \left(\frac{\beta}{2}\right)=0$
(C) $\tan \left(\frac{\alpha}{2}\right)+\sqrt{3} \tan \left(\frac{\beta}{2}\right)=0$
(D) $\sqrt{3} \tan \left(\frac{\alpha}{2}\right)+\tan \left(\frac{\beta}{2}\right)=0$

Ans. (A,C)
Sol. $2(\cos \beta-\cos \alpha)+\cos \alpha \cos \beta-1=0 \quad \longrightarrow \quad(1)$
use $\cos \beta=\frac{1-\tan ^{2} \frac{\beta}{2}}{1+\tan ^{2} \frac{\beta}{2}}$ and $\cos \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \quad$ in (1)
We get $\tan ^{2}\left(\frac{\alpha}{2}\right)=3 \tan ^{2}\left(\frac{\beta}{2}\right) \Rightarrow \tan \left(\frac{\alpha}{2}\right)+\sqrt{3} \tan \frac{\beta}{2}=0$ or $\tan \left(\frac{\alpha}{2}\right)-\sqrt{3} \tan \left(\frac{\beta}{2}\right)=0$
Hence (A, C)
48. If $g(x)=\int_{\sin x}^{\sin (2 x)} \sin ^{-1}(t) d t$, then
(A) $g^{\prime}\left(\frac{\pi}{2}\right)=-2 \pi$
(B) $\mathrm{g}^{\prime}\left(-\frac{\pi}{2}\right)=2 \pi$
(C) $\mathrm{g}^{\prime}\left(\frac{\pi}{2}\right)=2 \pi$
(D) $\mathrm{g}^{\prime}\left(-\frac{\pi}{2}\right)=-2 \pi$

Ans. (BONUS)
Sol. $g(x)=\int_{\sin x}^{\sin 2 x} \sin ^{-1} t d t \Rightarrow g^{\prime}(x)=2 \sin ^{-1}(\sin 2 x) \times \cos 2 x-\sin ^{-1}(\sin x) \cos x$
$\Rightarrow \mathrm{g}^{\prime}\left(\frac{\pi}{2}\right)=0 \& \mathrm{~g}^{\prime}\left(-\frac{\pi}{2}\right)=0$
No option matches the result
\Rightarrow BONUS
49. If the line $x=\alpha$ divides the area of region $R=\left\{(x, y) \in \mathbb{R}^{2}: x^{3} \leq y \leq x, 0 \leq x \leq 1\right\}$ into two equal parts, then
(A) $\frac{1}{2}<\alpha<1$
(B) $\alpha^{4}+4 \alpha^{2}-1=0$
(C) $0<\alpha \leq \frac{1}{2}$
(D) $2 \alpha^{4}-4 \alpha^{2}+1=0$

Ans. (A,D)

Sol. Area between $y=x^{3}$ and $y=x$
in $x \in(0,1)$ is

$$
A=\int_{0}^{1}\left(x-x^{3}\right) d x=\frac{1}{4}
$$

Area of curve linear triangle $\mathrm{OPQ}=\frac{\mathrm{A}}{2}=\frac{1}{8}$

$\Rightarrow \int_{0}^{\alpha}\left(x-x^{3}\right) d x=\frac{1}{8} \Rightarrow 2 \alpha^{4}-4 \alpha^{2}+1=0$
$\Rightarrow\left(\alpha^{2}-1\right)^{2}=\frac{1}{2} \Rightarrow \alpha^{2}=\frac{\sqrt{2}-1}{\sqrt{2}}$
50. Let $\mathrm{f}(\mathrm{x})=\frac{1-\mathrm{x}(1+|1-\mathrm{x}|)}{|1-\mathrm{x}|} \cos \left(\frac{1}{1-\mathrm{x}}\right)$ for $\mathrm{x} \neq 1$. Then
(A) $\lim _{x \rightarrow 1^{+}} f(x)$ does not exist
(B) $\lim _{x \rightarrow 1^{-}} f(x)$ does not exist
(C) $\lim _{x \rightarrow 1^{-}} f(x)=0$
(D) $\lim _{x \rightarrow 1^{+}} f(x)=0$

Ans. (A,C)
Sol. $f(x)= \begin{cases}(1-x) \cos \frac{1}{1-x}, & x<1 \\ -(1+x) \cos \frac{1}{1-x}, & x>1\end{cases}$
$\lim _{x \rightarrow 1^{+}} f(x)=$ d.n.e, $\lim _{x \rightarrow 1^{-}} f(x)=0$

SECTION-3 : (Maximum Marks: 12)

- This section contains TWO paragraphs.
- Based on each paragraph, there are TWO questions.
- Each question has FOUR options (A), (B), (C) and (D) ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories :

Full Marks $\quad:+3$ If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 In all other cases.

PARAGRAPH 1

Let O be the origin, and $\overrightarrow{\mathrm{OX}}, \overrightarrow{\mathrm{OY}}, \overrightarrow{\mathrm{OZ}}$ be three unit vectors in the directions of the sides $\overrightarrow{\mathrm{QR}}, \overrightarrow{\mathrm{RP}}, \overrightarrow{\mathrm{PQ}}$, respectively, of a triangle $P Q R$.
51. $|\overrightarrow{\mathrm{OX}} \times \overrightarrow{\mathrm{OY}}|=$
(A) $\sin (\mathrm{Q}+\mathrm{R})$
(B) $\sin (P+R)$
(C) $\sin 2 R$
(D) $\sin (\mathrm{P}+\mathrm{Q})$

Ans. (D)

Sol. $\quad \overrightarrow{\mathrm{OX}}=\frac{\overrightarrow{\mathrm{QR}}}{\mathrm{QR}}$

$$
\overrightarrow{\mathrm{OY}}=\frac{\overrightarrow{\mathrm{RP}}}{\mathrm{RP}}
$$

$$
|\overrightarrow{\mathrm{OX}} \times \overrightarrow{\mathrm{OY}}|=\sin \mathrm{R}=\sin (\mathrm{P}+\mathrm{Q})
$$

52. If the triangle $P Q R$ varies, then the minimum value of $\cos (P+Q)+\cos (Q+R)+\cos (R+P)$ is
(A) $\frac{3}{2}$
(B) $-\frac{3}{2}$
(C) $\frac{5}{3}$
(D) $-\frac{5}{3}$

Ans. (B)
Sol. $-(\cos \mathrm{P}+\cos \mathrm{Q}+\cos \mathrm{R}) \geq-\frac{3}{2}$ as we know $\cos \mathrm{P}+\cos \mathrm{Q}+\cos \mathrm{R}$ will take its maximum value when $\mathrm{P}=\mathrm{Q}=\mathrm{R}=\frac{\pi}{3}$

PARAGRAPH 2

Let p, q be integers and let α, β be the roots of the equation, $x^{2}-x-1=0$, where $\alpha \neq \beta$. For $\mathrm{n}=0,1,2, \ldots$, let $\mathrm{a}_{\mathrm{n}}=\mathrm{p} \alpha^{\mathrm{n}}+\mathrm{q} \beta^{\mathrm{n}}$.

FACT : If a and b are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.
53. If $a_{4}=28$, then $p+2 q=$
(A) 14
(B) 7
(C) 12
(D) 21

Ans. (C)
Sol. $\alpha^{2}=\alpha+1 \Rightarrow \alpha^{4}=3 \alpha+2$

$$
\begin{aligned}
\therefore & \mathrm{a}_{4}=28 \Rightarrow \mathrm{p} \alpha^{4}+\mathrm{q} \beta^{4}=\mathrm{p}(3 \alpha+2)+\mathrm{q}(3 \beta+2)=28 \\
& \Rightarrow \mathrm{p}(3 \alpha+2)+\mathrm{q}(3-3 \alpha+2)=28 \\
& \Rightarrow \alpha(3 \mathrm{p}-3 \mathrm{q})+2 \mathrm{p}+5 \mathrm{q}=28 \quad \quad\left(\text { as } \alpha \in \mathrm{Q}^{c}\right) \\
& \Rightarrow \mathrm{p}=\mathrm{q}, 2 \mathrm{p}+5 \mathrm{q}=28 \Rightarrow \mathrm{p}=\mathrm{q}=4 \\
& \therefore \mathrm{p}+2 \mathrm{q}=12 \text { Ans }: \mathbf{C}
\end{aligned}
$$

54. $\mathrm{a}_{12}=$
(A) $2 \mathrm{a}_{11}+\mathrm{a}_{10}$
(B) $a_{11}-a_{10}$
(C) $a_{11}+a_{10}$
(D) $\mathrm{a}_{11}+2 \mathrm{a}_{10}$

Ans. (C)
Sol. $\alpha^{2}=\alpha+1 \Rightarrow \alpha^{n}=\alpha^{\mathrm{n}-1}+\alpha^{\mathrm{n}-2}$
$\Rightarrow \mathrm{p} \alpha^{\mathrm{n}}+\mathrm{q} \beta^{\mathrm{n}}=\mathrm{p}\left(\alpha^{\mathrm{n}-1}+\alpha^{\mathrm{n}-2}\right)+\mathrm{q}\left(\beta^{\mathrm{n}-1}+\beta^{\mathrm{n}-2}\right)$

$$
a_{n}=a_{n-1}+a_{n-2}
$$

$\Rightarrow a_{12}=a_{11}+a_{10}$

