IIT-JEE-2008-Paper1

PAPER - I
SECTION - I
Straight Objective Type

This section contains 6 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

1. If $0<x<1$ then $\sqrt{ } 1+x^{2}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^{2}-1\right]^{1 / 2}$
(1) $x / \sqrt{ } 1+x^{2}$
(2) x
(3) $x \sqrt{ } 1+x^{2}$
(4) $\sqrt{ } 1+x^{2}$
2. Consider the two curves
$C_{1}: y^{2}=4 x$
$C_{2}: x^{2}+y^{2}-6 x+1=0$
Then,
(1) C_{1} and C_{2} touch each other only at one point
(2) C_{1} and C_{2} touch each other exactly at two points
(3) C_{1} and C_{2} intersect (but do not touch) at exactly two points
(4) C_{1} and C_{2} neither intersect nor touch each other
3. The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors a, b, c such that $a . b=b . c=c . a=1 / 2$
Then, the volume of the parallelopiped is
(1) $1 / \sqrt{ } 2$
(2) $1 / 2 \sqrt{ } 2$
(3) $\sqrt{ } 3 / 2$
(4) $1 / \sqrt{ } 3$
4. Let a and b be non-zero real numbers. Then, the equation $\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+\right.$ $6 y^{2}$) $=0$ represents
(1) four straight lines, when $c=0$ and a, b are of the same sign
(2) two straight lines and a circle, when $a=b$, and c is of sign opposite to that of a
(3) two straight lines and a hyperbola, when a and b are of the same sign and c is of sign opposite to that of a
(4) a circle and an ellipse, when a and b are of the same sign and c is of sign opposite to that of a.
5. The total number of local maxima and minima of the function

$$
f(x)=\left\{\begin{array}{cc}
(2+x)^{3}, & -3<x \leq-1 \\
x^{2 / 3}, & -1<x<2
\end{array}\right.
$$

(1) 0
(2) 1
(3) 2
(4) 3
6.

$$
\text { Let } g(x)=\frac{(x-1)^{x}}{\log \cos ^{\mathrm{E}}(\mathrm{x}-1)} ; 0<\mathrm{x}<2,
$$

m and n are integers $m \neq 0, n>0$ and let p be the left hand derivative of

$$
|x-1| \text { at } x=1 \text {. If } \lim _{x \rightarrow++} g(x)=p \text {, then }
$$

(1) $n=1, m=1$
(2) $n=1, m=-1$
(3) $n=2, m=2$
(4) $n>2, m=n$

SECTION II

Multiple Correct Answers Type

This section contains 4 multiple correct answer(s) type questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONE OR MORE is/are correct.
7. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right), y_{1}<0, y_{2}<0$, be the end points of the latus rectum of the ellipse $x^{2}+4 y^{2}=4$. The equations of parabolas with latus rectum $P Q$ are
(1) $x^{2}+2 \sqrt{ } 3 y=3+\sqrt{ } 3$
(2) $x^{2}-2 \sqrt{ } 3 y=3+\sqrt{ } 3$
(3) $x^{2}+2 \sqrt{ } 3 y=3-\sqrt{ } 3$
(4) $x^{2}-2 \sqrt{ } 3 \quad y=3-\sqrt{ } 3$
8. A straight line through the vertex P of a triangle $P Q R$ intersects the side $Q R$ at the point S and the circumcircle of the triangle $P Q R$ at the point T. If S is not the centre of the circumcircle, then
(1) $1 / \mathrm{PS}+1 / \mathrm{ST}<2 / \sqrt{ }(\mathrm{QS} * \mathrm{SR})$
(2) $1 / P S+1 / S T>2 / \sqrt{ }(Q S * S R)$
(3) $1 / \mathrm{PS}+1 / \mathrm{ST}<4 / \mathrm{QR}$
(4) $1 / \mathrm{PS}+1 / \mathrm{ST}>4 / \mathrm{QR}$
9. Let $f(x)$ be a non-constant twice differentiable function defined

$$
(-\infty, \infty) \text { such that } f(x)=f(1-x) \text { and } f\left(\frac{1}{4}\right)=0
$$

Then,
(1) $f^{\prime \prime}(x)$ vanishes at least twice on [0, 1]
(2) $f\left(\frac{1}{2}\right)=0$
(3) $\int_{-1 / 2}^{1 / 2} f\left(x+\frac{1}{2}\right) \sin x d x=0$
(4) $\int_{0}^{1 / 2} f(t) e^{\sin t t} d t=\int_{1 / 2}^{1} f(1-t) e^{\operatorname{sitrt}} d t$
10.

Let $S_{n}=\sum_{k=1}^{n} \frac{n}{n^{2}+k n+k^{2}}$ and $T_{n}=\sum_{k=0}^{n-1} \frac{n}{n^{2}+k n+k^{2}}$ for $n=1,2,3, \ldots$ then,
(1) $\mathrm{S}_{\mathrm{n}}<\Pi / 3 \sqrt{ } 3$
(2) $S_{n}>\Pi / 3 \sqrt{ } 3$
(3) $T_{n}<\Pi / 3 \sqrt{ } 3$
(4) $T_{n}>\Pi / 3 \sqrt{ } 3$

SECTION - III

Assertion - Reason Type

This section contains 4 reasoning type questions. Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.
11. Consider the system of equations
$x-2 y+3 z=-1$
$-x+y-2 z=k$
$x-3 y+4 z=1$
STATEMENT-1: The system of equations has no solutions for $\mathrm{k} \neq 3$ and

STATEMENT-2:
The determinant $\left|\begin{array}{ccc}1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1\end{array}\right| \neq 0$, for $k \neq 3$
(1) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(2) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(3) STATEMENT-1 is True, STATEMENT-2 is False
(4) STATEMENT-1 is False, STATEMENT-2 is True
12. Consider the system of equations $a x+b y=0, c x+d y=0$, where $a, b, c, d i ̂\{0,1\}$

STATEMENT-1: The probability that the system of equations has a unique solution is $3 / 8$ and

STATEMENT-2: The probability that the system of equations has a solution is 1.
(1) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(2) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(3) STATEMENT-1 is True, STATEMENT-2 is False
(4) STATEMENT-1 is False, STATEMENT-2 is True
13. Let f and g be real valued functions defined on interval $(-1,1)$ such that $g^{\prime \prime}(x)$ is
continuous $g(0) \neq 0, g^{\prime \prime}(0)=0$
STATEMENT-1: $\mathrm{g}^{\prime \prime}(0) \neq 0$, and $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \sin \mathrm{x}$
$\lim _{x \rightarrow 0}[g(x) \cot x-g(x) \operatorname{cosec} x]=f^{\prime \prime}(0)$.
and

STATEMENT-2: $\mathrm{f}^{\prime \prime}(0)=\mathrm{g}(0)$
(1) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(2) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(3) STATEMENT-1 is True, STATEMENT-2 is False
(4) STATEMENT-1 is False, STATEMENT-2 is True
14. Consider three planes $P_{1}: x-y+z=1$
$P_{2}: x+y-z=-1$
$P_{3}: x-3 y+3 z=2$
Let L_{1}, L_{2}, L_{3} be the lines of intersection of the planes P_{2} and P_{3}, P_{3} and P_{1}, and P_{1} and P_{2}, respectively

STATEMENT-1: At least two of the lines L_{1}, L_{2} and L_{3} are non-parallel and

STATEMENT-2: The three planes do not have a common point
(1) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(2) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(3) STATEMENT-1 is True, STATEMENT-2 is False
(4) STATEMENT-1 is False, STATEMENT-2 is True

SECTION - IV

Linked Comprehension Type

This section contains 3 paragraphs. Based upon each paragraph, 3 multiple choice questions have to be answered. Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

Paragraph for Questions Nos. 15 to 17

Let A, B, C be three sets of complex numbers as defined below
$A=\{z: I m z>1\}$
$B=\{z:|z-2-i|=3\}$
$C=\{z: \operatorname{Re}((1-i) z)=\sqrt{ } 2\}$
15. The number of element in the set $A \cap B \cap C$ is
(1) 0
(2) 1
(3) 2
(4) ∞
16. Let z be any point in $A \cap B \cap C$. Then, $|z+1-i|^{2}+|z-5-i|^{2}$ lies between
(1) 25 and 29
(2) 30 and 34
(3) 35 and 39
(4) 40 and 44
17. Let z be any point in $A \cap B \cap C$ and let w be any point satisfying $|w-2-i|<3$. Then, $|z|-|w|+3$ lies between
(1) -6 and 3
(2) -3 and 6
(3) -6 and 6
(4) -3 and 9

Paragraph for Questions Nos. 18 to 20

A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides $P Q, Q R, R P$ are D, E, F, respectively. The line $P Q$ is given by the equation $\sqrt{ } 3 x$ $+y-6=0$ and the point D is $(3 \sqrt{ } 3 / 2,3 / 2)$ Further, it is given that the origin and the centre of C are on the same side of the line $P Q$.
18. The equation of circle C is
(1) $(x-2 \sqrt{ } 3)^{2}+(y-1)^{2}=1$
(2) $(x-2 \sqrt{ } 3)^{2}+(y-1 / 2)^{2}=1$
(3) $(x-\sqrt{ } 3)^{2}+(y+1)^{2}=1$
(4) $(x-\sqrt{ } 3)^{2}+(y-1)^{2}=1$
19. Points E and F are given by
(1) $(\sqrt{ } 3 / 2,3 / 2)(\sqrt{ } 3,0)$
(2) $(\sqrt{ } 3 / 2,1 / 2)(\sqrt{ } 3,0)$
(3) $(\sqrt{ } 3 / 2,3 / 2)(\sqrt{ } 3 / 2,1 / 2)$
(4) $(3 / 2, \sqrt{ } 3 / 2)(\sqrt{ } 3 / 2,1 / 2)$
20. Equations of the sides $Q R, R P$ are
(1) $y=(2 / \sqrt{ } 3) x+1, y=-(2 / \sqrt{ } 3) x-1$
(2) $y=(1 / \sqrt{ } 3) x \quad y=0$
(3) $y=(\sqrt{ } 3 / 2) x+1, y=-(\sqrt{ } 3 / 2) x-1$
(4) $y=(\sqrt{ } 3) x, y=0$

Paragraph for Questions Nos. 21 to 23

Consider the functions defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line. If $x \hat{I}(-\infty, 2) \cup(2, \infty)$ the equation implicitly defines a unique real valued differentiable function $y=f(x)$.
If $x \hat{I}(-2,2)$, the equation implicitly defines a unique real valued differentiable function $y=$ $g(x)$ satisfying $g(0)=0$.
21. If $f(-10 \sqrt{ } 2)=2 \sqrt{ } 2$, then $f^{\prime \prime}(-10 \sqrt{ } 2)=$
(1) $4 \sqrt{ } 2 / 7^{3} 3^{2}$
(2) $-4 \sqrt{ } 2 / 7^{3} 3^{2}$
(3) $4 \sqrt{ } 2 / 7^{3} 3$
(4) $-4 \sqrt{ } 2 / 7^{3} 3$
22. The area of the region bounded by the curve $y=f(x)$, the x-axis, and the lines $x=a$ and $\mathrm{x}=\mathrm{b}$, where $-\infty<\mathrm{a}<\mathrm{b}<-2$, is
(1)
$\int_{a}^{b} \frac{x}{3\left[\left((f(x))^{2}-1\right]\right.} d x+b f(b)-a f(a)$
(2) $-\int_{a}^{b} \frac{x}{3\left((f(x))^{2}-1\right)} d x+b f(b)-a f(a)$
(3) $\int_{a}^{b} \frac{x}{3\left((f(x))^{2}-1\right)} d x-b f(b)+a f(a)$
(4) $-\int_{a} \frac{x}{3\left((f(x))^{2}-1\right)} d x-b f(b)+a f(a)$
23. $\int_{1}^{-1} g^{\prime}(x) d x=$
(1) $2 \mathrm{~g}(-1)$
(2) 0
(3) $-2 g(1)$
(4) $2 g(1)$

