JEE ADVANCED (Paper - 1)
 CHEMISTRY

SECTION - 1 (One or More Than One Options Correct Type)

This section contains 10 multiple choice type questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct.
*21. The correct combination of names for isomeric alcohols with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ is/are
(A) tert-butanol and 2-methylpropan-2-ol
(B) tert-butanol and 1,1-dimethylethan-1-ol
(C) n-butanol and butan-1-ol
(D) isobutyl alcohol and 2-methylpropan-1-ol
*22. An ideal gas in a thermally insulated vessel at internal pressure $=P_{1}$, volume $=V_{1}$ and absolute temperature $=\mathrm{T}_{1}$ expands irreversibly against zero external pressure, as shown in the diagram. The final internal pressure, volume and absolute temperature of the gas are P_{2}, V_{2} and T_{2}, respectively. For this expansion,

(A) $\mathrm{q}=0$
(B) $\mathrm{T}_{2}=\mathrm{T}_{1}$
(C) $P_{2} V_{2}=P_{1} V_{1}$
(D) $P_{2} V_{2}{ }^{\gamma}=P_{1} V_{1}{ }^{\gamma}$
*23. Hydrogen bonding plays a central role in the following phenomena:
(A) Ice floats in water.
(B) Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions.
(C) Formic acid is more acidic than acetic acid.
(D) Dimerisation of acetic acid in benzene.
24. In a galvanic cell, the salt bridge
(A) does not participate chemically in the cell reaction.
(B) stops the diffusion of ions from one electrode to another.
(C) is necessary for the occurrence of the cell reaction.
(D) ensures mixing of the two electrolytic solutions.
*25. For the reaction:
$\mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cl}^{-}+\mathrm{HSO}_{4}^{-}+\mathrm{I}_{2}$
The correct statement(s) in the balanced equation is/are:
(A) Stoichiometric coefficient of $\mathrm{HSO}_{4}{ }^{-}$is 6.
(B) Iodide is oxidized.
(C) Sulphur is reduced.
(D) $\mathrm{H}_{2} \mathrm{O}$ is one of the products.
*26. The reactivity of compound Z with different halogens under appropriate conditions is given below:

The observed pattern of electrophilic substitution can be explained by
(A) the steric effect of the halogen
(B) the steric effect of the tert-butyl group
(C) the electronic effect of the phenolic group
(D) the electronic effect of the tert-butyl group
*27. The correct statement(s) for orthoboric acid is/are
(A) It behaves as a weak acid in water due to self ionization.
(B) Acidity of its aqueous solution increases upon addition of ethylene glycol.
(C) It has a three dimensional structure due to hydrogen bonding.
(D) It is a weak electrolyte in water.
28. Upon heating with $\mathrm{Cu}_{2} \mathrm{~S}$, the reagent(s) that give copper metal is/are
(A) CuFeS_{2}
(B) CuO
(C) $\mathrm{Cu}_{2} \mathrm{O}$
(D) CuSO_{4}
*29. The pair(s) of reagents that yield paramagnetic species is/are
(A) Na and excess of NH_{3}
(B) K and excess of O_{2}
(C) Cu and dilute HNO_{3}
(D) O_{2} and 2-ethylanthraquinol
30. In the reaction shown below, the major product(s) formed is/are

(A)

(B)

(C)

(D)

SECTION - 2: (Only Integer Value Correct Type)

This section contains $\mathbf{1 0}$ questions. Each question, when worked out will result in one integer from 0 to 9 (both inclusive).
31. Among $\mathrm{PbS}, \mathrm{CuS}, \mathrm{HgS}, \mathrm{MnS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{NiS}, \mathrm{CoS}, \mathrm{Bi}_{2} \mathrm{~S}_{3}$ and SnS_{2}, the total number of BLACK coloured sulphides is
*32. The total number(s) of stable conformers with non-zero dipole moment for the following compound is(are)

33. Consider the following list of reagents:

Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, alkaline $\mathrm{KMnO}_{4}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{3}, \mathrm{FeCl}_{3}, \mathrm{HNO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
The total number of reagents that can oxidise aqueous iodide to iodine is
34. A list of species having the formula XZ_{4} is given below.
$\mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{SiF}_{4}, \mathrm{BF}_{4}^{-}, \mathrm{BrF}_{4}^{-},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+},\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{PtCl}_{4}\right]^{2-}$.
Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is
35. Consider all possible isomeric ketones, including stereoisomers of $\mathrm{MW}=100$. All these isomers are independently reacted with NaBH_{4} (NOTE: stereoisomers are also reacted separately). The total number of ketones that give a racemic product(s) is/are
*36. In an atom, the total number of electrons having quantum numbers $n=4,\left|m_{l}\right|=1$ and $m_{\mathrm{s}}=-1 / 2$ is
*37. If the value of Avogadro number is $6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and the value of Boltzmann constant is $1.380 \times 10^{-23} \mathrm{JK}^{-1}$, then the number of significant digits in the calculated value of the universal gas constant is
38. MX_{2} dissociates in M^{2+} and X^{-}ions in an aqueous solution, with a degree of dissociation (α) of 0.5 . The ratio of the observed depression of freezing point of the aqueous solution to the value of the depression of freezing point in the absence of ionic dissociation is
39. The total number of distinct naturally occurring amino acids obtained by complete acidic hydrolysis of the peptide shown below is

*40. A compound $\mathrm{H}_{2} \mathrm{X}$ with molar weight of 80 g is dissolved in a solvent having density of $0.4 \mathrm{gml}^{-1}$. Assuming no change in volume upon dissolution, the molality of a 3.2 molar solution is

JEE(ADVANCED)-2014 PAPER 1 CODE 5 ANSWERS

CHEMISTRY

21.	$\mathbf{A}, \mathbf{C}, \mathbf{D}$	22.	$\mathbf{A}, \mathbf{B}, \mathbf{C}$	23.	$\mathbf{A}, \mathbf{B}, \mathbf{D}$	24.	\mathbf{A}
25.	$\mathbf{A}, \mathbf{B}, \mathbf{D}$	26.	$\mathbf{A}, \mathbf{B}, \mathbf{C}$	27.	\mathbf{B}, \mathbf{D}	28.	$\mathbf{B}, \mathbf{C}, \mathbf{D}$
29.	$\mathbf{A}, \mathbf{B}, \mathbf{C}$	30.	\mathbf{A}	31.	$\mathbf{6}$	32.	$\mathbf{3}$
33.	$\mathbf{7}$	34.	$\mathbf{4}$	35.	$\mathbf{5}$	36.	$\mathbf{6}$
37.	$\mathbf{4}$	38.	$\mathbf{2}$	39.	$\mathbf{1}$	40.	$\mathbf{8}$

HINTS AND SOLUTICNS

CHEMISTRY

SECTION - 1:

21. Isomeric alcohols of $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ are

22. Since container is thermally insulated. $\mathrm{So}, \mathrm{q}=0$, and it is a case of free expansion therefore $\mathrm{W}=0$ and $\Delta \mathrm{E}=0$
So, $\mathrm{T}_{1}=\mathrm{T}_{2}$
Also, $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
23. (A) Ice has cage-like structure in which each water molecule is surrounded by four other water molecules tetrahedrally through hydrogen boding, due to this density of ice is less than water and it floats in water.
(B)
$\mathrm{R}-\mathrm{NH}_{2}+\mathrm{H}-\mathrm{OH} \rightleftharpoons \mathrm{R}-\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3}+\mathrm{OH}^{-}$
(I)
$(\mathrm{R})_{3} \mathrm{~N}+\mathrm{H}-\mathrm{OH} \rightleftharpoons(\mathrm{R})_{3}-\underset{(\mathrm{II})}{\stackrel{\oplus}{\mathrm{N}}} \mathrm{H}+\mathrm{OH}^{-}$
The cation (I) more stabilized through hydrogen boding than cation (II). So, $\mathrm{R}-\mathrm{NH}_{2}$ is better base than $(\mathrm{R})_{3} \mathrm{~N}$ in aqueous solution.
(C) HCOOH is stronger acid than $\mathrm{CH}_{3} \mathrm{COOH}$ due to inductive effect and not due to hydrogen bonding.
(D) Acetic acid dimerizes in benzene through intermolecular hydrogen bonding.

24. The balanced equation is,

$$
\mathrm{ClO}_{3}^{-}+6 \mathrm{I}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 3 \mathrm{I}_{2}+\mathrm{Cl}^{-}+6 \mathrm{HSO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}
$$

26.

27. (A) $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a weak monobasic Lewis acid.

$$
\begin{equation*}
\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}-\mathrm{OH} \rightleftharpoons \mathrm{~B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+} \tag{i}
\end{equation*}
$$

(B) Equilibrium (i) is shifted in forward direction by the addition of syn-diols like ethylene glycol which forms a stable complex with $\mathrm{B}(\mathrm{OH})_{4}^{-}$.

(C) It has a planar sheet like structure due to hydrogen bonding.
(D) $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a weak electrolyte in water.
28. (A) $2 \mathrm{CuFeS}_{2}+\mathrm{O}_{2} \xrightarrow{\Delta} \mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{FeS}+\mathrm{SO}_{2}$
(B) $4 \mathrm{CuO} \xrightarrow{1100^{\circ} \mathrm{C}} 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{O}_{2}$
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \xrightarrow{\Delta} 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(C) $\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \xrightarrow{\Delta} 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(D) $\mathrm{CuSO}_{4} \xrightarrow{720^{\circ} \mathrm{C}} \mathrm{CuO}+\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
$4 \mathrm{CuO} \xrightarrow{1100^{\circ} \mathrm{C}} 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{O}_{2}$
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \xrightarrow{\Delta} 6 \mathrm{Cu}+\mathrm{SO}_{2}$
29. (A) sodium (Na) when dissolved in excess liquid ammonia, forms a blue coloured paramagnetic solution.
(B) $\mathrm{K}+\mathrm{O}_{2} \longrightarrow \underset{\text { (potassium superoxide) }}{\mathrm{KO}_{2}}$ and KO_{2} is paramagnetic.
(C) $3 \mathrm{Cu}+\underset{\text { (dilute) }}{8 \mathrm{HNO}_{3}} \longrightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$

Where "NO" is paramagnetic.
(D)

Where " $\mathrm{H}_{2} \mathrm{O}_{2}$ " is diamagnetic.
30. Only amines undergo acetylation and not acid amides.

SECTION - 2:

31. Black coloured sulphides $\left\{\mathrm{PbS}, \mathrm{CuS}, \mathrm{HgS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{NiS}, \mathrm{CoS}\right\}$

* $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ in its crystalline form is dark brown but $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ precipitate obtained is black in colour.

32.

33. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{3}, \mathrm{FeCl}_{3}, \mathrm{HNO}_{3}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+7 \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{KI} \longrightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \longrightarrow \mathrm{I}_{2}+2 \mathrm{KOH}$
$\mathrm{Cl}_{2}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
$\mathrm{O}_{3}+2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}+\mathrm{O}_{2}$
$2 \mathrm{FeCl}_{3}+2 \mathrm{KI} \longrightarrow 2 \mathrm{FeCl}_{2}+\mathrm{I}_{2}+2 \mathrm{KCl}$
$8 \mathrm{HNO}_{3}+6 \mathrm{KI} \longrightarrow 6 \mathrm{KNO}_{3}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}$
$2 \mathrm{KMnO}_{4}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{KIO}_{3}+2 \mathrm{MnO}_{2}+2 \mathrm{KOH}$
34. $\mathrm{XeF}_{4} \rightarrow$ Square planar
$\mathrm{BrF}_{4}^{-} \rightarrow$ Square planar
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \rightarrow$ Square planar
$\left[\mathrm{PtCl}_{4}\right]^{2-} \rightarrow$ Square planar
$\mathrm{SF}_{4} \rightarrow$ See-saw
$\mathrm{SiF}_{4} \rightarrow$ Tetrahedral
$\mathrm{BF}_{4}^{-} \rightarrow$ Tetrahedral
$\left[\mathrm{FeCl}_{4}\right]^{2-} \rightarrow$ Tetrahedral
$\left[\mathrm{CoCl}_{4}\right]^{2-} \rightarrow$ Tetrahedral
35. (1)

(2)

(3)

Will give a racemic mixture on reduction with NaBH_{4}

Will give a racemic mixture on reduction with NaBH_{4}
(4)

(5)

(6)

Will not give a racemic mixture on reduction with NaBH_{4}

Will give a racemic mixture on reduction with NaBH_{4}

Will give a racemic mixture on reduction with NaBH_{4}

Will give a racemic mixture on reduction with NaBH_{4}
36. $\mathrm{n}=4$
$\ell=0,1,2,3$
$\left|\mathrm{m}_{\ell}\right|=1 \Rightarrow \pm 1$
$\mathrm{m}_{\mathrm{s}}=-\frac{1}{2}$
For $\ell=0, \mathrm{~m}_{\ell}=0$
$\ell=1, \mathrm{~m}_{\ell}=-1,0,+1$
$\ell=2, \mathrm{~m}_{\ell}=-2,-1,0,+1,+2$
$\ell=3, \mathrm{~m}_{\ell}=-3,-2,-1,0,+1,+2,+3$
So, six electrons can have $\left|m_{\ell}\right|=1 \& m_{s}=-\frac{1}{2}$ 37. $\mathrm{k}=\frac{\mathrm{R}}{\mathrm{N}_{\mathrm{A}}}$
$\mathrm{R}=\mathrm{kN}_{\mathrm{A}}$
$=1.380 \times 10^{-23} \times 6.023 \times 10^{23}$

$$
=8.31174
$$

$$
\approx 8.312
$$

38. $\quad \mathrm{MX}_{2} \rightleftharpoons \mathrm{M}^{2+}+2 \mathrm{X}^{-}$
$1-\alpha \quad \alpha \quad 2 \alpha$
$\mathrm{i}=1+2 \alpha \quad\{\alpha=0.5\}$
$\mathbf{i}=\mathbf{2}$
39. This peptide on complete hydrolysis produced 4 distinct amino acids which are given below:
(1)

Glycine
(natural)
(2)

(4)

Only glycine is naturally occurring amino acid.
40. Here, $\mathrm{V}_{\text {solution }} \approx \mathrm{V}_{\text {solvent }}$

Since, in 1ℓ solution, 3.2 moles of solute are present,
So, 1ℓ solution $\approx 1 \ell$ solvent $(d=0.4 \mathrm{~g} / \mathrm{ml}) \approx 0.4 \mathrm{~kg}$
So, molality $(\mathrm{m})=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})}=\frac{3.2}{0.4}=8$

