JEE ADVANCED (Paper - 1) CHEMISTRY

SECTION 1 (Maximum Marks: 15)

- This section contains **FIVE** questions
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is correct.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in <u>one of the following categories</u>:

Full Marks : +3 if only the bubble corresponding to the correct answer is darkened.

Zero Marks : 0 in all other cases.

Negative Marks : -1 in all other cases.

19.	The increasing order of atomic radii of the following Group 13 elements is						
	(A) Al < Ga < In	< T1	(B) Ga < Al <	$\ln < Tl$			
	(C) $Al < In < Ga$	< T1	(D) Al < Ga <	Tl < In			
Ans.	(B)						
Sol:	As atomic radii are respectively						
	$Al = 1.43 \stackrel{\circ}{A}$						
	$Ga = 1.35 \stackrel{o}{A}$						
	$In = 1.67 \stackrel{o}{A}$						
	$TI = 1.70 \stackrel{o}{A}$						
	So Ga < Al < In < Tl						
20.	Among $[Ni(CO)_4]$, $[NiCl_4]^{2-}$, $[Co(NH_3)_4Cl_2]Cl$, $Na_3[CoF_6]$, Na_2O_2 and CsO_2 , the total number of paramagnetic compounds is						
Ana	$(\mathbf{A}) \mathcal{L}$	(b) 5	(C) 4	(D) 5			
Alls.	(U)						
21	$[111014]$, $[00(1113)4012]01$, $[103][00F_6]$ and CsO_2 are paramagnetic.						
21.	(A) ethylene propulene conclumer (B) vulcanized rubber						
	(C) polypropylen	e	(D) povlbutyl	ene			
Ans.	(A)	0	(D) poytoutyr				
Sol:	Natural rubber is	a polymer of isoprene					
2011	$-(CH_2 - C = CH - CH_2)_2$						
	On hydrogenation it gives						
	$-(CH_2 - CH - CH_2 - CH_2)_n$ I CH_3						
	which is a copolymer of $CH_3CH = CH_2$ and $CH_2 = CH_2$						

22. P is the probability of finding the 1s electron of hydrogen atom in a spherical shell of infinitesimal thickness, dr, at a distance r form the nucleus. The volume of this shell is $4 \pi r^2 dr$. The qualitative sketch of the dependence of P on r is

Sol: Radial probability distribution of 1s orbital has only one peak and has no nodes.

23. One mole of an ideal gas at 300 K in thermal contact with surroundings expands isothermally form 1.0 L to 2.0 L against a constant pressure of 3.0 atm. In this process, the change in entropy of surrounding (ΔS_{surr}) in JK⁻¹ is

(1 L atm = 101.3 J)

	(A) 5.763	(B) 1.013	(C) –1.013	(D) –5.763
s.	(C)			

Ans. (

Sol: Work done by the gas = -3 atm 1

= -303.9 J

As the temperate of the system remains constant so, heat supplied by the surrounding to the system = 303.9 J

$$\therefore \Delta S_{surr} = \frac{-303.9 \text{J}}{300 \text{K}} = -1.013 \text{ J}\text{K}^{-1}$$

SECTION 2 (Maximum Marks: 32)

- This section contains **EIGHT** questions
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in one of the following categories:

Full Marks	: +4 if only the bubble(s) corresponding to all the correct option(s) is(are) darkened.
Partial Marks :	+1 For darkening a bubble corresponding to each correct option , provided NO incorrect option is darkened.
Zero Marks	: 0 in all other cases.

Negative Marks : -2 in all other cases.

- For example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (A) and (D) will result in +2 marks, and darkening (A) and (B) will result in -2 marks, as a wrong option is also darkened.
- 24. The correct statement(s) about the following reaction sequence is(are)

 $Cumene(C_9H_{12}) \xrightarrow{(i) O_2} P \xrightarrow{CHCl_3/NaOH} Q(major) + R(minor)$ S

$$Q \xrightarrow{\text{NaOH}}_{\text{PhCH, Br}}$$

(A) R is steam volatile

(B) Q gives dark violet coloration with 1% aqueous FeCl₃ solution

(C) S gives yellow precipitate with 2, 4-dinitrophenylhydrazine

(D) S gives dark violet coloration with 1% aqueous FeCl₃ solution

Phenolic group gives violet coloration with 1% aqueous FeCl₃ solution

- $\begin{array}{ccc} \text{25.} & \text{The compound(s) with TWO lone pairs of electrons on the central atom is(are)} \\ & (A) \ BrF_5 & (B) \ ClF_3 & (C) \ XeF_4 & (D) \ SF_4 \end{array}$
- Sol. (B, C)

$$BrF_{5} \rightarrow 7 + 35 = \frac{42}{8} = 5 + \left(\frac{2}{2}\right) = 5 + 1 = 6; \text{ sp}^{3}d^{2} + 1 \text{ lone pair}$$

$$Cl F_{3} \rightarrow 7 + 21 = \frac{28}{8} = 3 + \left(\frac{4}{2}\right) = 3 + 2 = 5; \text{ sp}^{3}d + 2 \text{ lone pair}$$

$$Xl F_{4} \rightarrow 8 + 28 = \frac{36}{8} = 4 + \left(\frac{4}{2}\right) = 6; \text{ sp}^{3}d^{2} + 2 \text{ lone pair}$$

$$SF_{4} \rightarrow 6 + 28 = \frac{34}{8} = 4 + \left(\frac{2}{2}\right) = 5; \text{ sp}^{3}d + 1 \text{ lone pair}$$

26. The product(s) of the following reaction sequence is(are)

Sol. (B)

Br

- 27. According to the Arrhenius equation
 - (A) a high activation energy usually implies a fast reaction
 - (B) rate constant increases with increase in temperature. This ia due to a greater number of collisions whose energy exceeds the activation energy
 - (C) higher the magnitude of activation energy, stronger is the temperature dependence of the rate constant
 - (D) the pre-exponential factor is a measure of the rate at which collisions occur, irrespective of their energy

According to Arrhenius equation

$$K = Ae^{-Ea/RT} \qquad \dots (i)$$
$$\ln k = \frac{-Ea}{RT} + \ln A$$

By increasing the temperature rate constant of reaction will increases.

By differentiation of equation (i)

$$\frac{\mathrm{dK}}{\mathrm{dT}} = +\mathrm{A}\left(\frac{\mathrm{Ea}}{\mathrm{RT}^2}\right)\mathrm{e}^{-\mathrm{Ea}/\mathrm{RT}}$$

So slope $\left(\frac{dK}{dT}\right)$ \rightarrow rate of change of rate constant depends strongly on higher magnitude of

activation energy (graph - I).

- 28. The crystalline form of borax has
 - (A) tetranuclear $[B_4O_5(OH)_4]^{2-}$
 - (B) all boron atoms in the same plane
 - (C) equal number of sp^2 and sp^3 hybridized boron atoms
 - (D) one terminal hydroxide per boron atom
- Key. (A, C, D)

Negatively charged 'B' are sp^3 hybridised whereas other two 'B' are sp^2 hybridised.

(A) CuCl₂ (B) BaCl₂ (C) Pb(OOCCH₃)₂ (D) Na₂[Fe(CN)₅NO] Key. (A) Sol. CuCl₂ + S²⁻ \rightarrow CuS \downarrow +2Cl⁻ But CuCl₂ + SO₄²⁻ \rightarrow CuSO₄ + 2Cl⁻ BaCl₂ + SO₄²⁻ \rightarrow BaSO₄ \downarrow +2Cl⁻ BaS is soluble in water Pb(OOCCH₃)₂ + S²⁻ \rightarrow PbS \downarrow +2CH₃COO⁻ Pb(OOCCH₃)₂ + SO₄²⁻ \rightarrow PbSO₄ \downarrow +2CH₃COO⁻ Na₂[Fe(CN)₅NO] + S²⁻ \rightarrow Na₄[Fe(CN)₅NOS], and Na₂[Fe(CN)₅NO] \rightarrow Na₂[Fe(CN)₅NO]^{*} Na₂[Fe(CN)₅NO]^{*} + H₂O \rightarrow Na₃[Fe(CN)₅(H₂O)] + NO⁺

The reagent(s) that can selectively precipitate S^{2-} from a mixture of S^{2-} and SO_4^{2-} in aqueous

- $Na_{3}\left[Fe(CN)_{5}(H_{2}O)\right] + SO_{4}^{2-} \longrightarrow Na_{5}\left[Fe(CN)_{5}(SO_{4})\right] + H_{2}O$ $Na_{5}\left[Fe(CN)_{5}(SO_{4})\right] + SO_{4}^{2-} \longrightarrow Na_{6}\left[Fe(CN)_{4}(SO_{4})_{2}\right] \downarrow + CN^{-}$
- 30. Positive Tollen's test is observed for

Key. (A, B, C)

29.

solution is (are)

- Sol. Aliphatic aldehyde (A), Aromatic aldehyde (B) and α hydroxyl ketone gives tollen's test.
- 31. A plot of the number of neutrons(N) against the number of protons (P) of stable nuclei exhibit unpward deviation from linearity for atomic number, Z>20. For an unstable nucleus having N/P ratio less than 1, the possible mode(s) of decay is(are)
 - (A) β^{-} -decay (β emission)

(B) orbital or K-electron capture

(C) neutron emission

(D) β^+ -decay (positron emission)

- Key. (B, D)
- Sol. If $\frac{N}{P}$ ratio is less than one in Z > 20

Then possible modes of decay are K electron capture and positron decay.

$$_{Z}A^{M} +_{-1} e^{0} \rightarrow_{(z-1)} B^{M}$$
 (K capture)
 $_{Z}A^{M} \longrightarrow_{(z-1)} B^{M} +_{+1} \beta^{0}$ (Positron emission)

SECTION 3 (Maximum Marks: 15)

- This section contains FIVE questions
- The answer to each question is SINGLE DIGIT INTEGER ranging from 0 to 9, both inclusive.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in one of the following categories:

Full Marks : +3 if only the bubble corresponding to the correct answer is darkened.

Zero Marks : 0 in all other cases

32. The diffusion coefficient of an ideal gas is proportional to its mean free path and mean speed. The absolute temperature of an ideal gas is increased 4 times and pressure is increased 2 times. As a result, the diffusion coefficient of this gas increases x times. The value of x is

Ans. (4)

Sol.
$$K \propto \frac{T^{3/2}}{P} \Rightarrow \frac{K_2}{K_1} = \frac{(4)^{3/2}}{2}$$
$$= \frac{8}{2} = 4$$

- 33. The number of geometric isomers possible for the complex $[CoL_2Cl_2]^ (L=H_2NCH_2CH_2O^-)$ is
- Ans. (5)
- Sol. Compound $[ML_2B_2]$ has total geometrical isomers = 3, (L = Bidentate ligand) cis = 2 and trans = 1

34. The mole fraction of a solute in a solution is 0.1. At 298 K, molarity of this solution is the same as its molality. Density of this solution at 298 K is 2.0 g cm⁻³. The ratio of the molecule model of the color of (MW_{solute}) is

the molecular weights of the solute and solvent, $\left(\frac{MW_{solute}}{MW_{solvent}}\right)$, is

Ans. (9)

Sol.
$$\chi_{\text{solute}=} \frac{1}{10}$$

If $n_{solute} = 1$ then $n_{solvent} = 9$ Let MW of solute = x and solvent = y Mass of solution = x + 9y Let total volume of solution = v Molality = molarity

$$\frac{1}{9y} = \frac{1}{V} \implies \frac{V}{y} = 9 \dots (i)$$

as density = 2
$$\implies \frac{x + 9y}{V} = 2 \dots (ii)$$

from equation (i) and (ii)
$$\frac{x}{V} = 9$$

35. In the following monobromination reaction, the number of possible chiral products is

Ans. (5)

у

Sol.

36. In neutral or faintly alkaline solution, 8 moles of permanganate anion, quantitatively oxidize thiosulphate anions to produce X moles of a sulphur containing product. The magnitude of X is

Ans. (6)

Sol.

$$3S_2O_3^{2-} + 8MnO_4^- + H_2O \rightarrow 6SO_4^{2-} + 8MnO_2 + 2OH^-$$