JEE(ADVANCED) 2013
 Paper - 1 [Code - 5]
 CHEMISTRY

SECTION - 1
 (Only One option correct Type)

This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
*21. In the reaction,

$$
\mathrm{P}+\mathrm{Q} \longrightarrow \mathrm{R}+\mathrm{S}
$$

the time taken for 75% reaction of P is twice the time taken for 50% reaction of P . The concentration of Q varies with reaction time as shown in the figure. The overall order of the reaction is

(A) 2
(B) 3
(C) 0
(D) 1

Sol. (D)
Overall order of reaction can be decided by the data given $\mathrm{t}_{75 \%}=2 \mathrm{t}_{50 \%}$
\therefore It is a first order reaction with respect to P .
From graph [Q] is linearly decreasing with time, i.e. order of reaction with respect to Q is zero and the rate expression is $\mathrm{r}=\mathrm{k}[\mathrm{P}]^{1}[\mathrm{Q}]^{0}$.
Hence (D) is correct.
22. Consider the following complex ions, P, Q and R
$\mathrm{P}=\left[\mathrm{FeF}_{6}\right]^{3-}, \mathrm{Q}=\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\mathrm{R}=\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
The correct order of the complex ions, according to their spin-only magnetic moment values (in B.M.) is
(A) $\mathrm{R}<\mathrm{Q}<\mathrm{P}$
(B) $\mathrm{Q}<\mathrm{R}<\mathrm{P}$
(C) $\mathrm{R}<$ P $<$ Q
(D) Q $<$ P $<$ R

Sol. (B)
$\mathrm{P}=\mathrm{Fe}^{+3}$ (no. of unpaired $\mathrm{e}^{-}=5$)
$\mathrm{Q}=\mathrm{V}^{+2}$ (no. of unpaired $\mathrm{e}^{-}=3$)
$\mathrm{R}=\mathrm{Fe}^{+2}$ (no. of unpaired $\mathrm{e}^{-}=4$)
As all ligands are weak field, hence the no. of unpaired electrons remains same in the complex ion.
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$ B.M.
Hence (B) is correct.
23. The arrangement of X^{-}ions around A^{+}ion in solid AX is given in the figure (not drawn to scale). If the radius of X^{-}is 250 pm , the radius of A^{+}is

(A) 104 pm
(B) 125 pm
(C) 183 pm
(D) 57 pm

Sol. (A)
According to the given figure, A^{+}is present in the octahedral void of X^{-}. The limiting radius in octahedral void is related to the radius of sphere as

$$
\begin{aligned}
\mathrm{r}_{\text {void }} & =0.414 \mathrm{r}_{\text {sphere }} \\
\mathrm{r}_{\mathrm{A}^{+}} & =0.414 \mathrm{r}_{\mathrm{x}^{-}} \\
& =0.414 \times 250 \mathrm{pm}=103.5 \\
& \approx 104 \mathrm{pm}
\end{aligned}
$$

Hence (A) is correct.
24. Concentrated nitric acid, upon long standing, turns yellow-brown due to the formation of
(A) NO
(B) NO_{2}
(C) $\mathrm{N}_{2} \mathrm{O}$
(D) $\mathrm{N}_{2} \mathrm{O}_{4}$

Sol. (B)
$4 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
NO_{2} remains dissolved in nitric acid colouring it yellow or even red at higher temperature.
25. The compound that does NOT liberate CO_{2}, on treatment with aqueous sodium bicarbonate solution, is
(A) Benzoic acid
(B) Benzenesulphonic acid
(C) Salicylic acid
(D) Carbolic acid (Phenol)

Sol. (D)
pK_{a} of PhOH (carbolic acid) is 9.98 and that of carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ is 6.63 thus phenol does not give effervescence with HCO_{3}^{-}ion.
26. Sulfide ores are common for the metals
(A) Ag, Cu and Pb
(B) Ag, Cu and Sn
(C) Ag, Mg and Pb
(D) Al, Cu and Pb

Sol. (A)
Sulfide ore of $\mathrm{Ag} \rightarrow$ Argentite $\left(\mathrm{Ag}_{2} \mathrm{~S}\right), \mathrm{Pb} \rightarrow$ Galena $(\mathrm{PbS}), \mathrm{Cu} \rightarrow$ Copper glance $\left(\mathrm{Cu}_{2} \mathrm{~S}\right)$
Hence (A) is correct.
27. Methylene blue, from its aqueous solution, is adsorbed on activated charcoal at $25^{\circ} \mathrm{C}$. For this process, the correct statement is
(A) The adsorption requires activation at $25^{\circ} \mathrm{C}$.
(B) The adsorption is accompanied by a decrease in enthalpy.
(C) The adsorption increases with increase of temperature.
(D) The adsorption is irreversible.

Sol. (B)

Adsorption of methylene blue on activated charcoal is physical adsorption hence it is characterised by decrease in enthalpy. Hence (B) is correct.
28. KI in acetone, undergoes $\mathrm{S}_{\mathrm{N}} 2$ reaction with each of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S . The rates of the reaction vary as
$\mathrm{H}_{3} \mathrm{C}-\mathrm{Cl}$
P

Q

R

S
(A) P $>$ Q $>$ R $>$ S
(B) S $>$ P $>$ R $>$ Q
(C) P $>$ R $>$ Q $>$ S
(D) R $>$ P $>$ S $>$ Q

Sol. (B)
Relative reactivity for $\mathrm{S}_{\mathrm{N}} 2$ reaction in the given structures is

| Substrate | (S) | (P) | |
| :--- | :---: | :---: | :---: | :---: |

*29. The standard enthalpies of formation of $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and glucose (s) at $25^{\circ} \mathrm{C}$ are $-400 \mathrm{~kJ} / \mathrm{mol}$, $-300 \mathrm{~kJ} / \mathrm{mol}$ and $-1300 \mathrm{~kJ} / \mathrm{mol}$, respectively. The standard enthalpy of combustion per gram of glucose at $25^{\circ} \mathrm{C}$ is
(A) +2900 kJ
(B) -2900 kJ
(C) -16.11 kJ
(D) +16.11 kJ

Sol. (C)
Combustion of glucose
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
$\Delta \mathrm{H}_{\text {combustion }}=\left(6 \times \Delta \mathrm{H}_{\mathrm{f}} \mathrm{CO}_{2}+6 \times \Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}\right)-\Delta \mathrm{H}_{\mathrm{f}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$=(6 \times-400+6 \times-300)-(-1300)$
$=-2900 \mathrm{~kJ} / \mathrm{mol}$
$=-2900 / 180 \mathrm{~kJ} / \mathrm{g}$
$=-16.11 \mathrm{~kJ} / \mathrm{g}$
Hence (C) is correct.
30. Upon treatment with ammoniacal $\mathrm{H}_{2} \mathrm{~S}$, the metal ion that precipitates as a sulfide is
(A) Fe (III)
(B) $\mathrm{Al}($ III $)$
(C) Mg (II)
(D) $\mathrm{Zn}(\mathrm{II})$

Sol. (D)
Among $\mathrm{Fe}^{3+}, \mathrm{Al}^{3+}, \mathrm{Mg}^{2+}, \mathrm{Zn}^{2+}$ only Zn^{2+} is precipitated with ammonical $\mathrm{H}_{2} \mathrm{~S}$ as ZnS .

SECTION - 2

(One or More Options Correct Type)

This section contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.
*31. The initial rate of hydrolysis of methyl acetate $(1 \mathrm{M})$ by a weak acid $(\mathrm{HA}, 1 \mathrm{M})$ is $1 / 100^{\text {th }}$ of that of a strong acid (HX, 1 M), at $25^{\circ} \mathrm{C}$. The K_{a} of HA is
(A) 1×10^{-4}
(B) 1×10^{-5}
(C) 1×10^{-6}
(D) 1×10^{-3}

Sol. (A)
Rate in weak acid $=\frac{1}{100}($ rate in strong acid $)$
$\therefore \quad\left[\mathrm{H}^{+}\right]_{\text {weak acid }}=\frac{1}{100}\left[\mathrm{H}^{+}\right]_{\text {strongacid }}$
$\therefore \quad\left[\mathrm{H}^{+}\right]_{\text {weak acid }}=\frac{1}{100} \mathrm{M}=10^{-2} \mathrm{M}$
$\therefore \quad \mathrm{C} \alpha=10^{-2}$
$\therefore \quad \mathrm{K}_{\mathrm{a}}=10^{-4}$
Option (A) is correct.
*32. The hyperconjugative stabilities of tert-butyl cation and 2-butene, respectively, are due to
(A) $\sigma \rightarrow \mathrm{p}$ (empty) and $\sigma \rightarrow \pi^{*}$ electron delocalisations.(B) $\sigma \rightarrow \sigma^{*}$ and $\sigma \rightarrow \pi$ electron delocalisations.
(C) $\sigma \rightarrow p$ (filled) and $\sigma \rightarrow \pi$ electron delocalisations. (D) p (filled) $\rightarrow \sigma^{*}$ and $\sigma \rightarrow \pi^{*}$ electron delocalisations.

Sol. (A)

$\sigma-\mathrm{p}($ empty $)$
33. The pair(s) of coordination complexes/ions exhibiting the same kind of isomerism is(are)
(A) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{+}$
(C) $\left[\mathrm{CoBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ and $\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$
(D) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{Cl}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Br}$

Sol. (B, D)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$(an octahedral complex) and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{+}$(a square planar complex) will show geometrical isomerism.
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{Cl}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Br}$ will show ionization isomerism.
*34. Among $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}, the aromatic compound(s) is/are

(A) P
(B) Q
(C) R
(D) S

Sol. (A, B, C, D)

Mechanism
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} 2 \mathrm{NH}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

(S)aromatic
35. Benzene and naphthalene form an ideal solution at room temperature. For this process, the true statement(s) is(are)
(A) $\Delta \mathrm{G}$ is positive
(B) $\Delta \mathrm{S}_{\text {system }}$ is positive
(C) $\Delta \mathrm{S}_{\text {surroundings }}=0$
(D) $\Delta \mathrm{H}=0$

Sol. (B, C, D)
For ideal solution, $\Delta \mathrm{S}_{\text {system }}>0$

$$
\begin{aligned}
& \Delta \mathrm{S}_{\text {surrounding }}=0 \\
& \Delta \mathrm{H}_{\text {mixing }}=0
\end{aligned}
$$

SECTION-3 (Integer value correct Type)

This section contains 5 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9 . (both inclusive).
*36. The atomic masses of He and Ne are 4 and 20 a.m.u., respectively. The value of the de Broglie wavelength of He gas at $-73^{\circ} \mathrm{C}$ is " M " times that of the de Broglie wavelength of Ne at $727^{\circ} \mathrm{C}$. M is
Sol. (5)
Since, $\lambda=\frac{\mathrm{h}}{\mathrm{mV}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{MK.E}}}$
(since K.E. $\propto \mathrm{T}$)

$$
\Rightarrow \quad \lambda \propto \frac{1}{\sqrt{\mathrm{MT}}}
$$

For two gases,

$$
\frac{\lambda_{\mathrm{He}}}{\lambda_{\mathrm{Ne}}}=\sqrt{\frac{\mathrm{M}_{\mathrm{Ne}} \mathrm{~T}_{\mathrm{Ne}}}{\mathrm{M}_{\mathrm{He}} \mathrm{~T}_{\mathrm{He}}}}=\sqrt{\frac{20}{4} \times \frac{1000}{200}}
$$

37. E^{4-} is ethylenediaminetetraacetate ion. The total number of $\mathrm{N}-\mathrm{Co}-\mathrm{O}$ bond angles in $[\mathrm{Co}(\mathrm{EDTA})]^{1-}$ complex ion is
Sol. (8)

Total no. of $\mathrm{N}-\mathrm{Co}-\mathrm{O}$ bond angles is 8 .
38. The total number of carboxylic acid groups in the product \mathbf{P} is

Sol. (2)

39. A tetrapeptide has - COOH group on alanine. This produces glycine (Gly), valine (Val), phenyl alanine (Phe) and alanine (Ala), on complete hydrolysis. For this tetrapeptide, the number of possible sequences (primary structures) with $-\mathrm{NH}_{2}$ group attached to a chiral center is
Sol. (4)
Because -COOH group of tetrapeptide is intact on alanine, its NH_{2} must be participating in condensation.
\therefore Alanine is at one terminus, ---A .
To fill the 3 blanks, possible options are:

(i) When NH_{2} group attached to non chiral carbon | G | V | P |
| :--- | :--- | :--- |
| G | P | V |

(ii) When NH_{2} group attached to chiral carbon $\left\lvert\, \begin{array}{llllll}\mathrm{V} & \mathrm{G} & \mathrm{P} & \mathrm{P} & \mathrm{V} & \mathrm{G} \\ \mathrm{V} & \mathrm{P} & \mathrm{G} & \mathrm{P} & \mathrm{G} & \mathrm{V}\end{array}\right.$
where, Glycine (G)
Valine (V)
Phenyl alanine (P)
Alanine (A)
So the number of possible sequence are 4.
40. The total number of lone-pairs of electrons in melamine is

Sol. (6) lone pairs

Melamine

