

SECTION - 1 (Only One option correct Type)

This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

*21. In the reaction,

 $P + O \longrightarrow R + S$

the time taken for 75% reaction of P is twice the time taken for 50% reaction of P. The concentration of O varies with reaction time as shown in the figure. The overall order of the reaction is

Sol. **(D)**

> Overall order of reaction can be decided by the data given $t_{75\%} = 2t_{50\%}$ \therefore It is a first order reaction with respect to P. From graph [Q] is linearly decreasing with time, i.e. order of reaction with respect to Q is zero and the rate expression is $r = k [P]^{1}[Q]^{0}$. Hence (D) is correct.

22. Consider the following complex ions, P, Q and R

> $P = [FeF_6]^{3-}, Q = [V(H_2O)_6]^{2+}$ and $R = [Fe(H_2O)_6]^{2+}$ The correct order of the complex ions, according to their spin-only magnetic moment values (in B.M.) is

(A)
$$R < Q < P$$

(B) $Q < R < P$
(C) $R < P < Q$
(D) $Q < P < R$

Sol.

(B)

 $P = Fe^{+3}$ (no. of unpaired $e^{-} = 5$) $Q = V^{+2}$ (no. of unpaired $e^{-} = 3$)

 $R = Fe^{+2}$ (no. of unpaired $e^{-} = 4$)

As all ligands are weak field, hence the no. of unpaired electrons remains same in the complex ion.

 $\mu = \sqrt{n(n+2)}$ B.M.

Hence (B) is correct.

23. The arrangement of X^- ions around A^+ ion in solid AX is given in the figure (not drawn to scale). If the radius of X^- is 250 pm, the radius of A^+ is

28. KI in acetone, undergoes S_N2 reaction with each of P, Q, R and S. The rates of the reaction vary as

The standard enthalpies of formation of CO₂(g), H₂O(l) and glucose(s) at 25⁰C are -400 kJ/mol, *29. -300 kJ/mol and -1300 kJ/mol, respectively. The standard enthalpy of combustion per gram of glucose at 25° C is

(A) +2900 kJ	(B) -2900 kJ
(C) –16.11 kJ	(D) +16.11 kJ
(C)	

Sol.

Sol.

Combustion of glucose

 $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$ $\Delta \boldsymbol{H}_{combustion} = \left(\boldsymbol{6} \times \Delta \boldsymbol{H}_{\mathrm{f}} \boldsymbol{C} \boldsymbol{O}_{2} + \boldsymbol{6} \times \Delta \boldsymbol{H}_{\mathrm{f}} \boldsymbol{H}_{2} \boldsymbol{O}\right) - \Delta \boldsymbol{H}_{\mathrm{f}} \boldsymbol{C}_{6} \boldsymbol{H}_{12} \boldsymbol{O}_{6}$ $= (6 \times -400 + 6 \times -300) - (-1300)$ = - 2900 kJ/mol = - 2900/180 kJ/g = -16.11 kJ/gHence (C) is correct.

30. Upon treatment with ammoniacal H₂S, the metal ion that precipitates as a sulfide is (A) Fe(III) (B) Al(III) (C) Mg(II) (D) Zn(II)

```
Sol.
         (D)
```

Among Fe^{3+} , Al^{3+} , Mg^{2+} , Zn^{2+} only Zn^{2+} is precipitated with ammonical H₂S as ZnS.

SECTION – 2 (One or More Options Correct Type)

This section contains **5 multiple choice questions.** Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** are correct.

*31. The initial rate of hydrolysis of methyl acetate (1 M) by a weak acid (HA, 1M) is $1/100^{\text{th}}$ of that of a strong acid (HX, 1M), at 25°C. The K_a of HA is (A) 1×10^{-4} (B) 1×10^{-5}

(C)
$$1 \times 10^{-6}$$
 (D) 1×10^{-3}

Sol. (A)

Rate in weak acid = $\frac{1}{100}$ (rate in strong acid)

$$\therefore \qquad \left\lfloor H^{+} \right\rfloor_{\text{weak acid}} = \frac{1}{100} \left\lfloor H^{+} \right\rfloor_{\text{strong acid}}$$
$$\therefore \qquad \left[H^{+} \right]_{\text{weak acid}} = \frac{1}{100} M = 10^{-2} M$$
$$\therefore \qquad C\alpha = 10^{-2}$$
$$\therefore \qquad K_{a} = 10^{-4}$$
Option (A) is correct.

*32. The hyperconjugative stabilities of tert-butyl cation and 2-butene, respectively, are due to
(A)
$$\sigma \rightarrow p$$
 (empty) and $\sigma \rightarrow \pi^*$ electron delocalisations.(B) $\sigma \rightarrow \sigma^*$ and $\sigma \rightarrow \pi$ electron delocalisations.
(C) $\sigma \rightarrow p$ (filled) and $\sigma \rightarrow \pi$ electron delocalisations. (D) p(filled) $\rightarrow \sigma^*$ and $\sigma \rightarrow \pi^*$ electron delocalisations
Sol. (A)

$$\begin{array}{ccc} CH_3 \\ \downarrow ({ \bullet }) \\ H_3C & CH_3 \\ CH_3 \\ \sigma - p(empty) \end{array} \qquad H_3C & CH & CH & CH_3 \\ \end{array}$$

- 33. The pair(s) of coordination complexes/ions exhibiting the same kind of isomerism is(are) (A) $[Cr(NH_3)_5Cl]Cl_2$ and $[Cr(NH_3)_4Cl_2]Cl$ (B) $[Co(NH_3)_4Cl_2]^+$ and $[Pt(NH_3)_2(H_2O)Cl]^+$ (C) $[CoBr_2Cl_2]^{2^-}$ and $[PtBr_2Cl_2]^{2^-}$ (D) $[Pt(NH_3)_3(NO_3)]Cl$ and $[Pt(NH_3)_3Cl]Br$
- *Sol.* (**B**, **D**)

 $\left[Co(NH_3)_4 Cl_2\right]^+$ (an octahedral complex) and $\left[Pt(NH_3)_2(H_2O)Cl\right]^+$ (a square planar complex) will show geometrical isomerism.

 $[Pt(NH_3)_3(NO_3)]Cl$ and $[Pt(NH_3)_3Cl]Br$ will show ionization isomerism.

*34. Among **P**, **Q**, **R** and **S**, the aromatic compound(s) is/are

(S)aromatic

35. Benzene and naphthalene form an ideal solution at room temperature. For this process, the true statement(s) is(are)

(A) ΔG is positive

(C) $\Delta S_{surroundings} = 0$

 $(\mathbf{B}, \mathbf{C}, \mathbf{D})$

For ideal solution, $\Delta S_{\text{system}} > 0$ $\Delta S_{surrounding} = 0$ $\Delta H_{\text{mixing}} = 0$

- (B) ΔS_{system} is positive
- (D) $\Delta H = 0$

SECTION-3 (Integer value correct Type)

This section contains 5 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. (both inclusive).

The atomic masses of He and Ne are 4 and 20 a.m.u., respectively. The value of the de Broglie wavelength *36. of He gas at -73° C is "M" times that of the de Broglie wavelength of Ne at 727° C. M is (5)

Sol.

Sol.

Since,
$$\lambda = \frac{h}{mV} = \frac{h}{\sqrt{2M \text{ K.E}}}$$
 (since K.E. \propto T)
 $\Rightarrow \qquad \lambda \propto \frac{1}{\sqrt{MT}}$
For two gases,
 $\frac{\lambda_{\text{He}}}{\lambda_{\text{Ne}}} = \sqrt{\frac{M_{\text{Ne}}T_{\text{Ne}}}{M_{\text{He}}T_{\text{He}}}} = \sqrt{\frac{20}{4} \times \frac{1000}{200}}$

 $EDTA^{4-}$ is ethylenediaminetetraacetate ion. The total number of N – Co – O bond angles in $[Co(EDTA)]^{1-}$ 37. complex ion is

Sol.

Total no. of N – Co – O bond angles is 8.

38. The total number of carboxylic acid groups in the product **P** is

Sol.

39. A tetrapeptide has - COOH group on alanine. This produces glycine (Gly), valine (Val), phenyl alanine (Phe) and alanine (Ala), on complete hydrolysis. For this tetrapeptide, the number of possible sequences (primary structures) with - NH₂ group attached to a chiral center is (4)

Sol.

Because –COOH group of tetrapeptide is intact on alanine, its NH₂ must be participating in condensation. \therefore Alanine is at one terminus, --A.

To fill the 3 blanks, possible options are:

(i) When NH₂ group attached to non chiral carbon

Р

G

Ρ V

Р

G

G V

G V (ii) When NH₂ group attached to chiral carbon Р V

where, Glycine (G) Valine (V) Phenyl alanine (P) Alanine (A) So the number of possible sequence are 4.

40. The total number of lone-pairs of electrons in melamine is Sol. (6) lone pairs

Melamine