JEE Advanced Paper - 2 Solutions (Code-7)

PART III: MATHEMATICS

SECTION - 1: (Only One Option Correct Type)
Q41. For $x \in(0, \pi)$, the equation $\sin x+2 \sin 2 x-\sin 3 x=3$ has
(a) Infinitely many solutions
(b) Three solutions
(c) One solution
(d)No solution

Sol) $\sin \mathrm{x}+2 \sin 2 \mathrm{x}-\sin 3 \mathrm{x}=3$
$\Rightarrow \sin \mathrm{x}\left(1+2 \cos \mathrm{x}-3+4 \sin ^{2}\right)=3$
$\Rightarrow 4 \sin ^{2} \mathrm{x}+2 \cos \mathrm{x}-2=3 / \sin \mathrm{x}$
$\Rightarrow 2-4 \cos ^{2} \mathrm{x}+2 \cos \mathrm{x}-2=3 / \sin \mathrm{x}$
$\Rightarrow 9 / 4-(2 \cos \mathrm{x}-1 / 2)^{2}=3 / \sin \mathrm{x}$
L.H.S $\leq 9 / 4$ R.H.S ≥ 3
(D) No solution

Q42. The following integral
$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(2 \operatorname{cosec} x)^{17}$
is equal to
(a) $\int_{0}^{\log (1+\sqrt{2})} 2\left(e^{u}+e^{-u}\right)^{16} d u$

$$
\int_{0}^{\log (1+\sqrt{2})}\left(e^{u}+e^{-u}\right)^{1}
$$

(c) $\int_{0}^{\log (1+\sqrt{2})}\left(e^{u}-e^{-u}\right)^{17} d u$
(d) $\int_{0}^{\operatorname{iog}(1+\sqrt{2})} 2\left(e^{u}-e^{-u}\right)$ Type equation here.

Sol) $42 \int_{45^{\circ}}^{90^{\circ}}(2 \operatorname{cosec} x)^{17} d x$
Put $2 \operatorname{cosec} x=e^{4}+e^{-4}$
$2 \operatorname{cosec} x \omega t x d x=\left(e^{4}-e^{-4}\right) d x$
Wehaur $\cot ^{2} 1=\operatorname{cosec}^{2} \mathrm{xx}-1$
$4 \cot ^{2} x=4 \operatorname{cosec}^{2} x-4$
$\Rightarrow(2 \cot x)^{2}=\left(e^{4}+e^{-4}\right)^{2}-4$
$\Rightarrow(2 \cot \mathrm{x})^{2}=\left(\mathrm{e}^{4}-\mathrm{e}^{-4}\right)^{2}$
$\Rightarrow 2 \cot \mathrm{x}=\mathrm{e}^{4}-\mathrm{e}^{-4}$
From eqn (1), $2 \operatorname{cosec} \mathrm{x} \cot \mathrm{xdx}=2 \cot \mathrm{xdx}$
$D x=2 d u / e^{4}+e^{-4}$
$\therefore \int_{40^{\circ}}^{90^{\circ}}(2 \operatorname{cosec} x)^{17} d x=\left(\mathrm{e}^{4}+\mathrm{e}^{-4}\right)^{17} 2 \mathrm{dx} /\left(\mathrm{e}^{4}+\mathrm{e}^{-4}\right)^{4}$
$2\left(e^{4}+e^{-4}\right)^{16} d x$
$\mathrm{E}^{4}+\mathrm{e}^{-4}=2 \operatorname{cosec} \mathrm{x}$
$\mathrm{E}^{4}-\mathrm{e}^{-4}=2 \cot \mathrm{x}$
$2 \mathrm{e}^{4}=2 \operatorname{cosec} \mathrm{x}+2 \cot \mathrm{x}$
$\mathrm{e}^{4} \operatorname{cosec}+\cot \mathrm{x}$
at $\mathrm{x}=45^{\circ} \quad 4=\ln (\mathrm{j} 2+1)$
at $x=90^{\circ} \quad 4=\ln (0+1)=0$
Q43. The quadratic equation $\mathrm{p}(\mathrm{x})=0$ with real coefficients has purely imaginary then the equation $p(p(x))=0$ has
(A) Only purely imaginary roots
(B) Al real roots
(C) Two real and two purely imaginary roots
(D) Neither real nor purely imaginary roots

Sol) $\mathrm{p}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$

Since roots are purely imaginary
$\mathrm{b}=0\left(\mathrm{as} \mathrm{x}=-\mathrm{b}+\sqrt{\mathrm{b}^{2}}-4 \mathrm{ac} / 2 \mathrm{a}\right)$
$\mathrm{p}(\mathrm{x})=\mathrm{ax} \mathrm{x}^{2}+\mathrm{c}$
and $-4 \mathrm{ac}<0$ (roots are imaginary $\mathrm{d}<0$)
$4 \mathrm{ac}>0$
$\mathrm{Ac}>0$
$P(p(x))=2\left[2 x^{2}+t c\right]^{2}+c$
$=\mathrm{a}\left[\mathrm{a}^{2} \mathrm{x}^{4}+\mathrm{c}^{2}+2 \mathrm{acx}{ }^{2}\right]+\mathrm{c}$
$=\mathrm{a}^{3} \mathrm{x}^{4}+2 \mathrm{a}^{2} \mathrm{cx}^{2}+\left(\mathrm{ac}^{2}+\mathrm{c}\right)$
$D=4 a^{4} c^{2}-4 a^{3}\left(a c^{2}+c\right)$
$=-4 \mathrm{a}^{2}(\mathrm{ac})<0$
$X^{2}=-2 a^{2} C+\sqrt{ }-4 a^{2} a c / 3(a c>0)$
So all roots are imaginary
Q44. The function $y=f(x)$ is the solution of the differential equation
$\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}$
$\ln (-1,1)$ satisfying $f(0)=0$. Then

Is
(A) $\pi / 3 \quad 3 / 2$
(B) $\pi / 3-\sqrt{3} / 4$
(C) $\pi / 6-\sqrt{3} / 4$
(D) $\pi / 6-\sqrt{3} / 2$

Sol) $d x / d x+x 4 / \sqrt{ } x^{2}-1=x^{4}+2 x / \sqrt{1}-x^{2}$
(co) $=0$
$\sqrt{\mathrm{x}} / \sqrt{\mathrm{x}^{2}} 1 \mathrm{dx}$
I. F. $E=\sqrt{x^{2}-1}$

So solution
4. $\sqrt{ } x^{2}-1 \mid x^{4}+2 x / \sqrt{1}-x^{2} \cdot \sqrt{ } x^{2}-1 d x$
$\mid i\left(x^{4}+2 x\right) d x+c$
$4 \sqrt{x^{2}-1}=i\left(x 5 / 5+x^{2}\right)+c$
Now $\mathrm{f}(0)=0$
$4 \sqrt{ } 0^{2}-1=i(0+0)+c$
$\Rightarrow[\mathrm{c}=0]$
$\therefore 4=\mathrm{i}\left(\mathrm{x} 5 / 5+\mathrm{x}^{2}\right) / \sqrt{\mathrm{x}^{2}}-1$
So, $\mathrm{I}=\int_{53 / 2}^{j 3 / 2} \frac{\lambda\left(\frac{x^{5}}{5}+x^{2}\right) d x}{\lambda \sqrt{1-x^{2}}}=\int \underbrace{\mathrm{x}^{5} \mathrm{dx} / 5 \sqrt{ } 1-\mathrm{x}^{2}}_{\text {odd }}=\int_{\text {Even }}^{\frac{x^{2} d x}{\sqrt{1-x^{2}}}}$
$\Rightarrow \mathrm{I}=2 \int_{0}^{\sqrt{3} / 2} \frac{x^{2} d x}{\sqrt{1}-x^{2}}$
Now $\mathrm{x}=\sin \theta$
$\mathrm{I}=2 \int_{0}^{f o} \frac{\sin ^{2} \theta}{\cos \theta} \cos \mathrm{~d} \theta$
$=2 \int \sin ^{2} \theta d \theta=\int f 2(1-\cos \theta / \mathrm{x}) \mathrm{d} \theta$
$=[(\theta-\sin 2 \theta / 2)]{ }^{60}$
$=(\pi / 3-\sin 2 \pi / 3)-(0)$
$=\pi / 3-\sqrt{3} / 4$
Ans (B)
Q45. Coefficient of x^{11} in the expansion of $\left(1+x^{2}\right)^{4}\left(1+x^{3}\right)^{7}\left(1+x^{4}\right)^{12}$ is
(A) 1051
(B) 1106
(C) 1113
(D) 1120

Sol) $\left(1+x^{2}\right)^{4}\left(1+x^{3}\right)^{7}\left(1+x^{4}\right)^{12}$
Coefficient of x^{11} will come from
Coefficient of $\left[\left(x^{2}\right)^{4}\left(x^{3}\right)^{1}+\left(x^{2}\right)^{1}\left(x^{3}\right)^{3}+\left(x^{2}\right)\left(x^{3}\right)^{1}\left(x^{4}\right)^{1}+\left(x^{3}\left(x^{4}\right)^{2}\right]\right.$
$={ }^{4} \mathrm{C}_{4}{ }^{7} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{1}{ }^{7} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{2}+{ }^{7} \mathrm{C}_{1}{ }^{12} \mathrm{C}_{1}+{ }^{7} \mathrm{C}_{1}{ }^{12} \mathrm{C}_{2}$
$=1 \times 7+4 \times 7 \times 6 \times 5 / 3 \times 2 / 4 \times 3 / 2 \times 7 \times 12+$
$7 \times 12 \times 11 / 2$

On solving we get coefficient 1113

Q46. Let $f:[0,2] \rightarrow \mathbb{R}$ be a function which I is continuous on $[0,2]$ and is differentiable-on (0,2) with $f(0)$ $=1$. Let

For $x \in[0,2]$. If $F^{1}(x)=f^{1}(x)$ for all $x \in(0,2)$ then $F(2)$ equals
(A) $e^{2}-1$
(B) $e^{4}-1$
(C)e- 1
(D) e^{4}

Sol)

$\mathrm{F}(\mathrm{x}) \int_{0}^{x^{2}} f(\sqrt{\mathrm{t}}) \mathrm{dt}$
Using iebinity formula differing both sides wrt x
$F(x)=2\left(x^{2}\right) / 2 x f\left(\sqrt{x^{2}}\right)+2(0) / 2 f(50)$
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{xxf}(\mathrm{x})$
$f^{\prime}(x)=2 x f(x)$
$f(x)=2 x$
f(x)
$f(x) /(x) d x=2 x d n$
integration both sides
in $f(x)=x^{2}$
$\mathrm{f}(\mathrm{x})=e^{x^{2}}$
$\mathrm{f}(\mathrm{x})=\int_{0}^{x^{2}} e^{t}$ at $=e^{x^{2}}-1$
[$\left.\mathrm{f}(2)=\mathrm{e}^{4}-1\right]$
Q47.The common tangents to the circle $x^{2}+y^{2}=2$ and the parabola $y^{2}=8 x$ touch the circle at the points P, Q and the parabola at the points R, S. Then the area of the quadrilateral PQRS is
(A) 3
(B) 6
(C) 9
(D) 15

Sol) 47
$\Rightarrow[1 / \mathrm{r}=\cot \theta]-(1)$
Area of trapezium $=(\mathrm{rs}+\mathrm{pq}) / 2(\mathrm{AB})$
$=\left(2 x^{2}-\omega \mathrm{sq}\right)(4 \mathrm{r}+\sin \theta)$
$=\left(2 r^{2}-\sqrt{2} 1 / \sqrt{ } r^{2}+1\right)\left(\sqrt{2} r / \sqrt{2} r^{2}-+1\right)$
Check for $\mathrm{r}=1$
$=3 \times 5$
$=[15]$
Ans (D)

Q48. Six cards and six envelopes are numbered $1,2,3,4,5,6$, and cards are to be placed in envelopes so that each envelope contains exactly one card and no card is placed in the envelop bearing the same umber and moreover the card numbered 1 is always placed in envelope numbered 2 . Then the number of ways it ways it can be done is
(A) 264
(B) 265
(C) 53
(D) 67

Sol) cards Envelops
1 1

2 2

3 3

4
5
6 6
\rightarrow If ' 2 ' goes in ' 1 ' then it is derangement of 4 things which càn be done in $41(1 / 21-1 / 31+1 / 41)$
$=9$ ways
\rightarrow if ' 2 ' doesn't go in 1 it is derangement of 5 thingswhich can be done in 44 ways
\rightarrow hence total 53 ways
Option (c) is correct
SECTION- 2: Comprehension Type (Only One Option Correct)
Q51. The value of r is
(A) $-1 / \mathrm{t}$
(B) $\mathrm{t}^{2}+1 / \mathrm{t}$
(C) $1 / \mathrm{t}$
(D) $\mathrm{t}^{2}-1 / \mathrm{t}$

Sol) $\mathrm{Pl} \mathrm{at}^{2}, 2 \mathrm{at}$
$\mathrm{Q}\left(\mathrm{aq}^{2}, 2 \mathrm{a} \mathrm{q}\right)$
$P(a, 2 a) \quad K(2 a, 0)$
Q (a, 2a) $\quad R\left(a^{2}, 2 a r\right)$
Slope of $\mathrm{pk}=$ slope of QR
$0-2 \mathrm{a} / 2 \mathrm{a}-\mathrm{a}=2 \mathrm{ar}+2 \mathrm{a} / \mathrm{ar}^{2}-\mathrm{a}$
$-2 \mathrm{a} / \mathrm{a}=2 \mathrm{a}(\mathrm{r}+1) / \mathrm{a}\left(\mathrm{r}_{2}-1\right)$
$R^{2}-1=-r-\lambda$
$r^{2}+r=0$
$r=0,-1$ but $2 \mathrm{c} \neq 0$
$\therefore \mathrm{r}=-1$
Now $t=1$ so $r=-1 / t$ is correct
Q52. If $s t=1$, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is
(A) $\left(t^{2}+1\right)^{2} / 2 t^{3}$
(B) $a\left(t^{2}+1\right)^{2} / 2 t^{3}$
(C) $a\left(t^{2}+1\right)^{2} / t^{3}$
(D) $a\left(t^{2}+2\right)^{2} / t^{3}$

Sol) eqn of normal : $y=-5 x+2 a s+a s^{3}$
Eqn of tangent $: x=t y-\mathrm{at}^{2}$
$Y=-5\left(t y-a t^{2}\right)+2 a s+a s^{3}$
$Y=-s t y+a s t^{2}+2 a s+a s^{3}$
Now $\mathrm{st}=1 \Rightarrow \mathrm{y}=-\mathrm{y}+\mathrm{a}++2 \mathrm{a} \mathrm{s}+\mathrm{as}^{3}$
$\Rightarrow 2 \mathrm{y}=\mathrm{a} \mid \mathrm{t}+1 / \mathrm{t}+1 / \mathrm{t}^{3}$
$\Rightarrow \mathrm{y}=\mathrm{a}\left(1+\mathrm{t}^{2}\right)^{2} / 2+3$
So, (B) is correct

Paragraph For Questions 53 and 54

Given that for each $\mathrm{a} \in(0,1)$

Exists. Let this limit be $\mathrm{g}(\mathrm{a})$. In addition, it is given that the function differentiable on (0,1).

Q53. The value of $g(1 / 2)$ is
(A) π
(B) 2π
(C) $\pi / 2$
(D) $\pi / 4$

Sol). $\lim _{h \rightarrow 0} \int_{h}^{r h} t^{-a}(1-\mathrm{t})^{\mathrm{a}-1}$ at
$\mathrm{Tth} \rightarrow 1$
$\mathrm{h} \rightarrow 0$
$\mathrm{g}(1 / 2) \int_{0}^{1} t^{-1 / 2}(1-\mathrm{t})^{-1 / 2} \mathrm{att}$
$\int_{0}^{1} 1 / \sqrt{t} \sqrt{ } 1-\mathrm{t} d \mathrm{t}$
$T=\sin ^{2} \mathrm{xt} \rightarrow 0 \sin \mathrm{x} \rightarrow 0$
$\mathrm{dt}=2 \sin \mathrm{x} \cos \mathrm{x}$ ds $\mathrm{t} \rightarrow 0 \mathrm{x} \rightarrow \pi / 2$
$\int_{0}^{\pi / 2} \frac{2 \sin x \cos x d x}{\sin x \cos x}$
$=2$
$\int_{0}^{\pi / 2} d x=2 \times \pi / 2=\pi$
Q54. The value of $g^{1}(1 / 2)$ is
(A) $\pi / 2$
(B) π
(C) $\pi / 2$
(D) $\pi / 4$

Sol) $\mathrm{g}(\mathrm{a})=\lim _{h \rightarrow 0^{+}} \int_{0}^{1-h} t^{-a}(1-\mathrm{t})^{\mathrm{a}-1} \mathrm{dt}$
$2 \mathrm{~g}(\mathrm{a}) / 2 \mathrm{a}=2 / 2 \mathrm{a}(1-\mathrm{h}) \mathrm{t}^{-(1-\mathrm{h})}(1-\mathrm{t})^{(1-\mathrm{h})-1}$
$+2(0) / 2 \mathrm{at}^{-0}(1-\mathrm{t})^{0-1}$
$g^{(1 / 2)}=0$ using Leibnitz therein

Paragraph For Questions 55 and 56

Box 1 contains three cards bearing numbers 1,2,3; box 2 contains five cardsbearing numbers 1, 2, 3, 4, 5; and box 3 contains seven cards bearing numbers $1,2,3,4,5,6,7, A$ card is drawn from each of the boxes. Let x_{i} be the number on the card drawn from the $i^{\text {th }}$ box $I=1,2,3$.

Q55. The probability that $x_{1}+x_{2}+x_{3}$ is odd, is
(A) $29 / 105$
(B) $53 / 105$
(C) $57 / 105$
(D) $1 / 2$

Sol)

box 1	box 2 even	box 3 - even
(I) odd	odd	- odd
(II)even	even	- odd
odd	- even	

$2 / 3[2 / 5.3 / 7+3 / 5.4 / 7]=36 / 105$
$1 / 3[2 / 5.4 / 7+3 / 53 / 7]=17 / 105$
Total $=53 / 105$
Q56. The probability that $x_{1}+\bar{x}_{2}+x_{3}$ are in an arithmetic progression, is
(A) $9 / 105$
(B) $10 / 105$
(C) $11 / 105$
(D) $7 / 105$

Sol) $2 \mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{x}_{3}$
Possible $\quad \mathrm{x}_{2}$
1
X_{1}
X_{3}

1

2
1
3

2	2	2
2	3	1
3	1	5
3	2	4
3	3	3
4	1	7
4	2	6
4	3	5
5	3	7

$(A x 1)=1 / 3 p\left(x_{2}\right)=1 / 5 p\left(x_{3}\right)=1 / 7$
And there are II cases
$\Rightarrow 11 \times[1 / 3 \times 1 / 5 \times 1 / 7]=11 / 105$
SECTION - 3: Matching List Type (Only One Option Correct)
This section contains four questions, each having two matching lists. Choices for the correct combination of elements from List - land tist - II are given as options (A), (B), (C) and (D), out of which one is correct.

Q57. Let $\mathrm{z}_{\mathrm{k}}=\cos (2 \mathrm{k} \pi / 10)+\mathrm{i} \sin (2 \mathrm{k} \pi / 10) ; k=1,2, \ldots, 9$.

List 1
P. For each z_{k} there exists a z_{j} such that $z_{k} \cdot z_{j}=1$

Q There exists a $k \in\{1,2, \ldots, 9\}$ such that $z_{k} . z_{j}=z_{k}$
has no solution z in the set of complex numbers,
R.
$\frac{\left|1-z_{1}\right|\left|1-z_{2}\right| \cdots\left|1-z_{9}\right|}{10}$ equals
3. 1
4. 2

```
PQRS
```

(A) 1243
(B) 2134
(C) 1234
(D) 2143

Sol) $\sum_{k=1}^{9} \operatorname{as}(25 \pi / 10)=\cos (2 \pi / 10)+\cos (9 \pi / 10)+\cos (6 \pi / 10)+\cos (8 \pi / 10)+\omega^{\circ}(10 \pi / 10)$
$+\cos (12 \pi / 10)+\cos (14 \pi / 10)+\cos (16 \pi / 10)+\cos (18 \pi / 10)$
Now $=\cos (18 \pi / 10) \cos (2 \pi-18 \pi / 10)=\cos (2 \pi / 10)$
Similarity $\cos (16 \pi / 10)=\cos (4 \pi / 10)$
$\cos (11 \pi / 10)=\cos (6 \pi / 10)$
$\cos (12 \pi / 10)=\cos (8 \pi / 10)$
$\therefore \sum_{k=1}^{9} \cos (2 \mathrm{k} \pi / 10)=2[\cos (4 \pi / 10)+\cos (6 \pi / 1 \underline{0})+\cos (8 \pi / 10)]+\cos \pi$
$=2[\underbrace{2 \sin \pi \sin (6 \pi / 10)}_{=0}+\underbrace{2 \sin \pi \sin (2 \pi / 10)}_{=0}+-1$
$=-1$
$\therefore-\sum_{k=1}^{9} \cos (2 \mathrm{k} \pi / 10)=2$
$\therefore \mathrm{s} \rightarrow 4$
(Q) $\mathrm{z}_{1} \mathrm{z}=\mathrm{z}_{\mathrm{k}}$
$\mathrm{e}^{\mathrm{i}(2 \mathrm{k} \pi / 10)} \mathrm{e}^{\mathrm{i}(2 \mathrm{k} \pi / 10)}=\mathrm{e}^{\mathrm{i}(2 \mathrm{k} \pi / 10)^{-}}$
$1+\mathrm{n}=\mathrm{k}$ for $\mathrm{K}-1,2, \ldots . . \overline{9}$
$N=0,1, \ldots \ldots . .8$
$\therefore(Q)$ is false
This is (C)
Q. 58. Let $f_{1}: R \rightarrow R, f_{2}:[0, \infty) \rightarrow R, f_{3}: R \rightarrow R$ and $f_{4}: R \rightarrow[0, \infty)$ be defined by

$$
\begin{aligned}
& f_{1}(x)= \begin{cases}|x| & \text { if } x<0, \\
e^{x} & \text { if } x \geq 0 ;\end{cases} \\
& f_{2}(x)=x^{2 ;} \text {; if } x<0, \\
& f_{3}(x)=\left\{\begin{array}{ll}
\sin x & \text { if } \quad x \geq 0 \\
x & \text { if }
\end{array},\right. \\
& \text { and } \\
& f_{4}(x)= \begin{cases}f_{2}\left(f_{1}(x)\right) & \text { if } x<0, \\
f_{2}\left(f_{1}(x)\right)-1 & \text { if } x \geq 0 .\end{cases}
\end{aligned}
$$

List I	List II
P. f_{4} is	1. onto but not one - one
Q. f_{3} is	2. neither continuous nor one - one
R. f_{2} Of f_{1} is	3. differentiable but not one - one
S. f_{2} is	4. continuous and one - one
PQRS	

(A) 3142
(B) 1342
(C) 3124
(D) 1324

Sol) $f_{2}=x_{2} \rightarrow$ continues and one - one
$\therefore \mathrm{s} \rightarrow 4$
$\mathrm{f}_{3} \rightarrow$
f_{3} differentiable but not one -one -
Q. 59.

List I	List II
$\begin{aligned} & \text { P. Let } y(x)=\cos \left(3 \cos ^{-1} x\right), x \in[-1,1], x \neq \pm \sqrt{3 / 2} \\ & \text { Then } 1 / y(x)\left\{\left(x^{2}-1\right) d^{2} y(x) / d x^{2}+\bar{x} d y(x) / d x\right. \text { equals } \end{aligned}$	1.1
Q. Let $A_{1}, A_{2}, \ldots . ., A_{n}(n>2)$ be the vertices of a regular polygon of n sides with its centre at the origin. Let $\overrightarrow{a k}$ be the position vector of the point $\mathrm{A}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots, \mathrm{n} .\|\mathrm{f}\| \sum_{k=1}^{n-1}\left(\vec{a}_{\mathrm{k}} * \overrightarrow{a_{k}+1} \mid=\right.$ $\mid \sum_{k=1}^{n-1}\left(\vec{a}_{k} \cdot \overrightarrow{a_{k}}+1 \mid\right.$, then the minimum value of n is	2. 2
R. If the normal from the point $P(h, 1)$ on the ellipse $x^{2} / 6+y^{2} / 3=1$ is perpendicular to the line $x+y=8$, then the value of h is	4. 9
S. Number of positive solutions satisfying the equation $\tan ^{-1}(1 / 2 x+1)+\tan ^{-1}(1 / 4 x+1)=\tan ^{-}$ ${ }^{1}\left(2 / x^{2}\right)$ is	4. 9

(A) 4321
(B) 2431
(C) 4312
(D) 2413 .

Sol) (p) $y=4 x^{3}-3 x$ where $\cos \theta=x$
Dy/dx $=12 x^{2}-3$
$\mathrm{d}^{2} / \mathrm{dx}^{2}+\mathrm{xdy} / \mathrm{dx}=\left(\mathrm{x}^{2}-1\right) 24 \mathrm{x}=\mathrm{x}\left(12 \mathrm{x}^{2}-3\right)$
$=36 x^{3}-27 x=9\left(4 x^{3}-3 x\right)=9 y$
Hence, $1 / y\left\{\left(x^{2}-1\right) d^{2} y / d x^{2}+x d y / d x\right\}=9$
(R) Equation of normal $6 x / h-3 y / 1=3$ (Equation of normal is $a^{3} x / x-b^{2} y / y_{1}=a^{2}-b^{2}$)

Slope $=6 / 3 h=1 \cos$ it is perpendicular to $x+y=1$.
$\Rightarrow \mathrm{R}=2$
Q. 60.

List I	List II
P. The number of polynomials $f(x)$ with non negative integer coefficients of degree ≤ 2, satisfying $\mathrm{f}(0)=0$ and $\int_{0}^{1} f(\mathrm{x}) \mathrm{dx}=1$, is	1.8
Q. The number of points in the interval $\Gamma-\sqrt{13}, \sqrt{13}$ at which $f(x)=\sin \left(x^{2}\right)+\cos \left(x^{2}\right)$ attains its maximum value, is	2. 2
R. $\int_{-2}^{2} 3 x^{2} /\left(1+\mathrm{e}^{\mathrm{x}}\right) \mathrm{dx}$ equals	3.4
S. $\left(\int_{-1 / 2}^{1 / 2} \cos 2 x \log (1+x)(1-x) \mathrm{dx} /\right.$ $\left(\int_{0}^{1 / 2} \cos 2 x \log (1+x) /(1-x) \mathrm{dx}\right)$ equals	4. 0

(A) 3241
(B) 2341
(C) 3214
(D) 2314 .

Sol) $\mathrm{Q}=$
$f(x)=\sin \left(x^{2}\right)+\cos \left(x^{2}\right)$
$x \in[-\sqrt{13}, \sqrt{ } 13]$
$\mathrm{x}^{2} \in[0,13]$
let $\mathrm{x}^{2}=\mathrm{t}$
$\Rightarrow \mathrm{t} \in[0,13]$
$F(x) \sin t+\cos t$
$\mathrm{f}(\mathrm{x})=52 \sin (\pi / 4+\mathrm{t})$
it is max when
$\pi / 4+t=\pi / 2 \pi$
$\sin (\pi / 4+t)=\sin (\pi / 2)$
$\pi / 4+\mathrm{t}=\mathrm{n} \pi+(-1)+(-1)^{\mathrm{n}} \pi / 2$
$\pi / 4+t=n \pi+(-1)^{n} \pi / 2$
for $\mathrm{n}=1$
$\pi / 4+t=\pi-\pi / 2$
$t=\pi / 4$ also $\pi-\pi / 4$
i.e. $t=3 \pi / 4$ will satisfy
for $\mathrm{n}=2$
$\pi / 4+t=2 \pi+\pi / 2$
$t=2 \pi+\pi / 4+9 \pi / 4$
for $\mathrm{n}=3$
$\pi / 4+t=3 \pi-\pi / 2=3 \pi-\pi / 2-\pi / 4$
$12 \pi-$
Also $t=2 \pi+(\pi-\pi / 4)=11 \pi / 4$ will satisfy
So 4 solution in the interval $[0,13]$

