PART B - CHEMISTRY

1. The standard enthalpy of formation of NH_{3} is $-46.0 \mathrm{~kJ} / \mathrm{mol}$. If the enthalpy of formation of H_{2} from its atoms is $-436 \mathrm{~kJ} / \mathrm{mol}$ and that of N_{2} is $-712 \mathrm{~kJ} / \mathrm{mol}$, the average bond enthalpy of $\mathrm{N}-\mathrm{H}$ bond in NH_{3} is :
(1) $+352 \mathrm{~kJ} / \mathrm{mol}$
(2) $-964 \mathrm{~kJ} / \mathrm{mol}$
(3) $-1102 \mathrm{~kJ} / \mathrm{mol}$
(4) $+1056 \mathrm{~kJ} / \mathrm{mol}$

Ans. (1)
Sol. Given :

$$
\begin{aligned}
& \frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\frac{3}{2} \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{NH}_{3(\mathrm{~g})} ; \Delta \mathrm{H}_{\mathrm{g}}^{\circ}=-46 \\
& \frac{1}{2} \times 712 \underset{\downarrow}{\mathrm{~N}_{(\mathrm{g})}+3 \mathrm{H}_{(\mathrm{g})}} \stackrel{3}{2} \times 436
\end{aligned}
$$

Average bond enthalpy of $\mathrm{N}-\mathrm{H}$ bond $=+352$ kJ mol.
2. The correct statement about the magnetic properties of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{FeF}_{6}\right]^{3-}$ is : ($\mathrm{Z}=26$).
(1) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is paramagnetic, $\left[\mathrm{FeF}_{6}\right]^{3-}$ is diamagnetic.
(2) both are diamagnetic.
(3) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is diamagnetic, $\left[\mathrm{FeF}_{6}\right]^{3-}$ is paramagnetic.
(4) both are paramagnetic

Ans. (4)
Sol. In $\left[\mathrm{FeF}_{6}\right]^{3-}$, 5 unpaird electron present is $\ln \left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} 1$ unpaired electron present.
3. Allyl phenyl ether can be prepared by heating:
(1) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Br}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{Br}+\mathrm{CH}_{3}-\mathrm{ONa}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{ONa}$
(4) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Br}+\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{ONa}$

Ans. (1)

Sol. $\quad \mathrm{C}_{6} \mathrm{H}_{5} \stackrel{\ominus}{\mathrm{O}} \stackrel{\oplus}{\mathrm{Na}}+\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}+\underset{\sim}{\mathrm{Br}} \longrightarrow$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ Allyl phenyl ether
4. In a nucleophilic substitution reaction :
$\mathrm{R}-\mathrm{Br}+\mathrm{Cl}^{-} \xrightarrow{\mathrm{DMF}} \mathrm{R}-\mathrm{Cl}+\mathrm{Br}^{-}$, which one of the following undergoes complete inversion of configuration?
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CCH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}_{3} \mathrm{Br}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHC}_{6} \mathrm{H}_{5} \mathrm{Br}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$

Ans. (4)

Sol.

inverted product
5. The number and type of bonds in C_{2}^{2-} ion in CaC_{2} are:
(1) Two σ bonds and one π - bond
(2) Two σ bonds and two π - bonds
(3) One σ bond and two π - bonds
(4) One σ bond and one π - bond

Ans. (3)
Sol. $\mathrm{Ca}^{+2}[\mathrm{C} \equiv \mathrm{C}]^{-2}$
6. In the following sets of reactants which two sets best exhibit the amphoteric character of $\mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{xH}_{2} \mathrm{O}$?

Set-1 : $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ (s) and $\mathrm{OH}^{-}(\mathrm{aq})$
Set-2 : $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{H}_{2} \mathrm{O}(\ell)$
Set-3 : $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{H}^{+}(\mathrm{aq})$
Set-4 : $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{NH}_{3}(\mathrm{aq})$
(1) 1 and 2
(2) 2 and 4
(3) 1 and 3
(4) 3 and 4

Ans. (3)
Sol. In set $1: \mathrm{Al}(\mathrm{OH})_{4}{ }^{-}$is formed In set $2: \mathrm{Al}^{+3} \& \mathrm{H}_{2} \mathrm{O}$ is formed
7. Dissolving 120 g of a compound of (mol. wt.

60) in 1000 g of water gave a solution of density
$1.12 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is:
(1) 2.00 M
(2) 2.50 M
(3) 4.00 M
(4) 1.00 M

Ans. (1)
Sol. Molarity of solution $=\frac{\left(\frac{120}{60}\right)}{\frac{1120}{1.12} \times \frac{1}{1000}}$

$$
=2 \mathrm{M}
$$

8. The standard electrode potentials $\left(E_{M^{+} / \mathrm{M}}^{0}\right)$ of four metals $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are -1.2 V , $0.6 \mathrm{~V}, 0.85 \mathrm{~V}$ and -0.76 V , respectively. The sequence of deposition of metals on applying potential is :
(1) D, A, B, C
(2) C, B , D, A
(3) B, D, C, A
(4) A, C, B, D

Ans. (2)
Sol. Higher the value of reduction potential more wil be the ease of deposition.
9. Which is the major product formed when acetone is heated with iodine and potassium hydroxide ?
(1) lodoacetone
(2) Acetic acid
(3) Iodoform
(4) Acetophenone

Ans. (3)

Sol.

10. In which of the following pairs A is more stable than B?
A
(1)

B

(2)

(3)

(4) $\mathrm{Ph}_{3} \mathrm{C}^{\bullet}$

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{\bullet}$

Ans. (4)
Sol. $\mathrm{Ph}_{3} \mathrm{C}^{\circ}>\left(\mathrm{CH}_{3}\right) \mathrm{C}^{\circ}$
due to resonance
11. In the hydroboration - oxidation reaction of propene with diborane, $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaOH , the organic compound formed is :
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
(3) $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

Ans. (1)
Sol. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\substack{\mathrm{H}_{2} \mathrm{O}_{2} / \overline{\mathrm{O}} \mathrm{H}}]{\mathrm{B}_{2} \mathrm{H}_{6} / \mathrm{THF}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\mathrm{C} \\ \mathrm{O} \\ \mathrm{O}}}{\mathrm{CH}_{2}}$
12. The form of iron obtained from blast furnace is:
(1) Steel
(2) Wrought Iron
(3) Cast Iron
(4) Pig iron

Ans. (4)
Sol. Iron obtained in blast furnance is known as pig iron.
13. Which one of the following reactions will not result in the formation of carbon-carbon bond?
(1) Cannizzaro reaction
(2) Friedel Craft's acylation
(3) Reimer-Tieman reaction
(4) Wurtz reaction

Ans. (1)
Sol. In cannizaro reaction carbon-carbon bond not formed

14. The half-life period of a first order reaction is 15 minutes. The amount of substance left after one hour will be :
(1) $\frac{1}{4}$ of the original amount
(2) $\frac{1}{16}$ of the original amount
(3) $\frac{1}{32}$ of the original amount
(4) $\frac{1}{8}$ of the original amount

Ans. (2)
Sol. Since : $\mathrm{t}_{1 / 2}=15 \mathrm{~min}$.
$\therefore \quad$ No. of half lives $=\frac{60}{15}=4$
\therefore Amount of substance left after one hour

$$
=\frac{\mathrm{A}_{0}}{(2)^{\mathrm{n}}}=\frac{\mathrm{A}_{0}}{(2)^{4}}=\frac{\mathrm{A}_{0}}{16}
$$

15. The major product of the reaction.

(1)

(2)

(3)

(4)

Ans. (3)

Sol.

16. Vander Wall's equation for a gas is stated as, $\mathrm{p}=\frac{\mathrm{nRT}}{\mathrm{V}-\mathrm{nb}}-\mathrm{a}\left(\frac{\mathrm{n}}{\mathrm{V}}\right)^{2}$
This equation reduces to the perfect gas equation, $\mathrm{p}=\frac{\mathrm{nRT}}{\mathrm{V}}$ when,
(1) both temperature and pressure are very low
(2) both temperature and pressure are very high
(3) temperature is sufficiently high and pressure is low
(4) temperature is sufficiently low and pressure is high.
Ans. (3)
17. The temperature at which oxygen molecules have the same root mean square speed as helium atoms have at 300 K is :
(Atomic masses: $\mathrm{He}=4 \mathrm{u}, \mathrm{O}=16 \mathrm{u}$)
(1) 1200 K
(2) 600 K
(3) 300 K
(4) 2400 K

Ans. (4)
Sol. $\quad\left(\mathrm{U}_{\mathrm{ms}}\right)_{\mathrm{o}_{2}}=\left(\mathrm{U}_{\mathrm{ms}}\right)_{\mathrm{He}}$
$\Rightarrow \frac{3 \mathrm{RTo}_{2}}{32}=\frac{3 \mathrm{R} \mathrm{T}}{4 \mathrm{He}}$
$\Rightarrow \mathrm{T}_{\mathrm{o}_{2}}=8 \times 300=2400 \mathrm{~K}$
18. For the compounds
$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{Br}, \mathrm{CH}_{3} \mathrm{I}$ and $\mathrm{CH}_{3} \mathrm{~F}$,
the correct order of increasing C -halogen bond length is :
(1) $\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{I}$
(2) $\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{I}$
(3) $\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{I}$
(4) $\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{I}<\mathrm{CH}_{3} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{Cl}$

Ans. (2)
Sol. As the radius of halogen increases C -halogen bond length incread.
19. Chloro compound of Vanadium has only spin magnetic moment of 1.73 BM. This Vanadium chloride has the formula :
(at. no. of $\mathrm{V}=23$)
(1) VCl_{4}
(2) VCl_{3}
(3) VCl_{2}
(4) VCl_{5}

Ans. (1)
Sol. If the magnetic moment is 1.73 BM then the the number of unpaired $\mathrm{e}^{-} \mathrm{V}^{4+}$ having our unpaired electron
20. A current of 10.0 A flows for 2.00 h through an electrolytic cell containing a molten salt of metal X. This results in the decomposition of 0.250 mol of metal X at the cathode. The oxidation state of X in the molten salt is :
($\mathrm{F}=96,500 \mathrm{C}$)
(1) $2+$
(2) $3+$
(3) $1+$
(4) $4+$

Ans. (2)
Sol. $\quad \mathrm{W}=\frac{\mathrm{E}}{96500} \times \mathrm{It}$
\Rightarrow No. of moles $=\frac{\mathrm{It}}{96500 \times(\mathrm{n}-\text { factor })}$
$\Rightarrow 0.25=\frac{10 \times 2 \times 60 \times 60}{96500 \times \mathrm{n}-\text { factor }}$
$\Rightarrow \mathrm{n}-$ factor $=\frac{720 \times 4}{965}=3$
\therefore Oxidation state of molten salt is +3
21. Which of the following has unpaired electron(s) ?
(1) O_{2}^{-}
(2) N_{2}^{2+}
(3) O_{2}^{2-}
(4) N_{2}

Ans. (1)
Sol. O_{2}^{-}has one unpaired electron is $\pi^{*} \mathrm{MO}$.
22. The gas evolved on heating CaF_{2} and SiO_{2} with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, on hydrolysis gives a white gelatinous precipitate. The precipitate is:
(1) silica gel
(2) silicic acid
(3) hydrofluosilicic acid
(4) calciumfluorosilicate

Ans. (3)
Sol. $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{~F}_{2}+\mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2}$
$\mathrm{SiO}_{2}+2 \mathrm{H}_{2} \mathrm{~F}_{2} \longrightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{SiF}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2}\left[\mathrm{SiF}_{6}\right]$
23. The amount of oxygen in 3.6 moles of water is:
(1) 28.8 g
(2) 18.4 g
(3) 115.2 g
(4) 57.6 g

Ans. (4)
Sol. 3.6 moles of $\mathrm{H}_{2} \mathrm{O}=3.6$ moles of O

$$
\begin{aligned}
& =3.6 \times 16 \mathrm{gm} \text { of oxygen } \\
& =57.6 \mathrm{gm}
\end{aligned}
$$

24. Which of the following is not formed when $\mathrm{H}_{2} \mathrm{~S}$ reacts with acidic $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution ?
(1) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(2) $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(3) S
(4) CrSO_{4}

Ans. (4)
Sol. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{S}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
25. In a face centered cubic lattice atoms A are at the corner points and atoms B at the face centered points. If atom B is missing from one of the face centered points, the formula of the ionic compound is :
(1) AB_{2}
(2) $\mathrm{A}_{2} \mathrm{~B}_{3}$
(3) $\mathrm{A}_{5} \mathrm{~B}_{2}$
(4) $\mathrm{A}_{2} \mathrm{~B}_{5}$

Ans. (4)

Sol.

$A=8 \times \frac{1}{8}=1$
B $=6 \times \frac{1}{2}-1 \times \frac{1}{2}=\frac{5}{2}$
A : B
$1: \frac{5}{2} \quad \Rightarrow \quad 2: 5$
26. An octahedral complex of Co^{3+} is diamagnetic. The hybridisation involved in the formation of the complex is :
(1) $d^{2} s^{3}$
(2) $d^{3} p^{3} d$
(3) dsp^{2}
(4) $\mathrm{sp}^{3} \mathrm{~d}^{2}$

Ans. (1)
Sol. Co^{+3} is diamagnetic \& having d^{6} by configuration under SFL.
27. At a certain temperature, only $50 \% \mathrm{HI}$ is dissociated into H_{2} and I_{2} at equilibrium. The equilibrium constant is :
(1) 3.0
(2) 0.5
(3) 0.25
(4) 1.0

Ans. (3)
Sol. $\begin{array}{r}2 \mathrm{HI} \\ 1-\alpha\end{array} \underset{\frac{\alpha}{2}}{\mathrm{H}_{2}}+\begin{aligned} & \mathrm{I}_{2} \\ & \frac{\alpha}{2}\end{aligned}$
$\mathrm{K}_{\mathrm{eq}}=\frac{\left(\frac{\alpha}{2}\right)^{2}}{(1-\alpha)^{2}}=\frac{\alpha^{2}}{4(1-\alpha)^{2}}$
$\mathrm{K}_{\mathrm{eq}}=\frac{\left(\frac{1}{2}\right)^{2}}{4(1 / 2)^{2}}=\frac{1}{4}$
28. Which one of the following class of compounds is obtained by polymerization of acetylene ?
(1) Poly-ene
(2) Poly-yne
(3) Poly-amide
(4) Poly-ester

Ans. (2)
Sol. $\underset{\substack{\mathrm{n} \text { ye } \\ \mathrm{nHC} \\ \mathrm{CH}}}{\text { Polymerisation }} \underset{\substack{\mathrm{CH}=\mathrm{CH})_{\mathrm{n}} \\ \text { poly-yne }}}{\mathrm{CH}}$
29. Structure of some important polymers are given. Which one represents Buna-S ?
(1)

(2)

(3)

(4) $\left(-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\underset{\mathrm{CN}}{\mathrm{CH}}-\mathrm{CH}_{2}-\right)_{\mathrm{n}}$

Ans. (2)
Sol.

30. The energy of an electron in first Bohr orbit of H -atom is -13.6 eV . The energy value of electron in the excited state of Li^{2+} is :
(1) -30.6 eV
(2) -27.2 eV
(3) 27.2 eV
(4) 30.6 eV

Ans. (1)
Sol. Energy of e^{-}in the excited state of Li^{+2}

$$
\begin{aligned}
E & =-13.6 \frac{Z^{2}}{n^{2}} \\
& =-13.6 \times \frac{(3)^{2}}{(2)^{2}} \mathrm{eV} \\
& =-\frac{9}{4} \times 13.6 \mathrm{eV} \\
& =-30.6 \mathrm{eN}
\end{aligned}
$$

