PART B – CHEMISTRY

1. The standard enthalpy of formation of NH_3 is -46.0 kJ/mol. If the enthalpy of formation of H_2 from its atoms is -436 kJ/mol and that of N_2 is -712 kJ/mol, the average bond enthalpy of N—H bond in NH_3 is :

$$(1) + 352 \text{ kJ/mol}$$
 $(2) - 964 \text{ kJ/mol}$

$$(3) - 1102 \text{ kJ/mol}$$
 $(4) + 1056 \text{ kJ/mol}$

Ans. (1)

Sol. Given :

$$\frac{\frac{1}{2}N_{2(g)} + \frac{3}{2}H_{2(g)} \longrightarrow NH_{3(g)}; \Delta H_{g}^{\circ} = -46$$

$$\frac{1}{2} \times 712 \bigvee_{N_{(g)} + 3H_{(g)}} \bigvee \frac{3}{2} \times 436 \int_{N_{(g)} + 3H_{(g)}}$$

Average bond enthalpy of N–H bond = +352 kJ mol.

- 2. The correct statement about the magnetic properties of $[Fe(CN)_6]^{3-}$ and $[FeF_6]^{3-}$ is : (Z = 26).
 - (1) $[Fe(CN)_6]^{3-}$ is paramagnetic, $[FeF_6]^{3-}$ is diamagnetic.
 - (2) both are diamagnetic.
 - (3) [$Fe(CN)_6$]³⁻ is diamagnetic, [FeF_6]³⁻ is paramagnetic.
 - (4) both are paramagnetic

Ans. (4)

- Sol. In $[FeF_6]^{3-}$, 5 unpaird electron present is In $[Fe(CN)_6]^{3-}$ 1 unpaired electron present.
- 3. Allyl phenyl ether can be prepared by heating: (1) $CH_2 = CH - CH_2 - Br + C_6H_5ONa$
 - (2) $C_6H_5 CH = CH Br + CH_3 ONa$
 - (3) $C_6H_5Br + CH_2 = CH CH_2 ONa$
 - (4) $CH_2 = CH Br + C_6H_5 CH_2 ONa$

Ans. (1)

Sol.
$$C_6H_5ONa + CH_2=CH-CH_2 + Br \longrightarrow C_6H_5O-CH_2-CH=CH_2$$

Allyl phenyl ether

In a nucleophilic substitution reaction : R - Br + Cl⁻ DMF → R - Cl + Br⁻, which one of the following undergoes complete inversion of configuration? (1) C₆H₅CCH₃C₆H₅Br (2) C₆H₅CHCH₃Br (3) C₆H₅CHC₆H₅Br

(4)
$$C_6H_5CH_2Br$$

Ans. (4)

$$Cl^{\Theta}$$
 $C_{6}H_{5}$ Cl^{Θ} H_{5} H

Sol.

inverted product

5. The number and type of bonds in C_2^{2-} ion in CaC_2 are:

(1) Two σ bonds and one π – bond

- (2) Two σ bonds and two π bonds
- (3) One σ bond and two π bonds
- (4) One σ bond and one π bond

Ans. (3)

Sol. $Ca^{+2}[C=C]^{-2}$

6. In the following sets of reactants which two sets best exhibit the amphoteric character of Al₂O₃. xH₂O ?

Set-1 :
$$Al_2O_3.xH_2O(s)$$
 and OH^- (aq)
Set-2 : $Al_2O_3.xH_2O(s)$ and $H_2O(\ell)$

Set-3 : $Al_2O_3.xH_2O(s)$ and H^+ (aq) **Set-4** : $Al_2O_3.xH_2O(s)$ and NH_3 (aq) (1) 1 and 2 (2) 2 and 4 (3) 1 and 3 (4) 3 and 4

Ans. (3)

Sol. In set 1 : $Al(OH)_4^-$ is formed In set 2 : Al^{+3} & H_2O is formed

Dissolving 120 g of a compound of (mol. wt. 60) in 1000 g of water gave a solution of density 1.12 g/mL. The molarity of the solution is:

Ans. (1)

Sol. Molarity of solution = $\frac{\left(\frac{120}{60}\right)}{\frac{1120}{1.12} \times \frac{1}{1000}}$

- 8. The standard electrode potentials $(E^0_{M^+/M})$ of four metals A, B, C and D are -1.2 V, 0.6 V, 0.85 V and -0.76 V, respectively. The sequence of deposition of metals on applying potential is :
 - (1) D, A, B, C (3) B, D, C, A (2) C, B, D, A (4) A, C, B, D
- Ans. (2)
- **Sol.** Higher the value of reduction potential more wil be the ease of deposition.
- **9.** Which is the major product formed when acetone is heated with iodine and potassium hydroxide ?
 - (1) lodoacetone(2) Acetic acid(3) Iodoform(4) Acetophenone
- Ans. (3)

Sol.
$$CH_3-C-CH_3 \xrightarrow{I_2 + KOH} CHI_3 + CH_3-C-OK$$

Idooform reaction $CHI_3 + CH_3-C-OK$
Iodoform

10. In which of the following pairs A is more stable than B ?

Ans. (4)

 $Ph_3C^\circ > (CH_3)C^\circ$

- Sol. $\frac{1130}{400} = \frac{1130}{100}$
- 11. In the hydroboration oxidation reaction of propene with diborane, H_2O_2 and NaOH, the organic compound formed is :
 - (1) $CH_3CH_2CH_2OH$ (2) $(CH_3)_3COH$
 - $(3) CH_3 CHOHCH_3 \qquad (4) CH_3 CH_2 OH$
- Ans. (1)

Sol.
$$CH_3-CH=CH_2 \xrightarrow{B_2H_6/THF} CH_3-CH_2-CH_2$$

- 12. The form of iron obtained from blast furnace is :(1) Steel(2) Wrought Iron
 - (3) Cast Iron (4) Pig iron

Ans. (4)

- **Sol.** Iron obtained in blast furnance is known as pig iron.
- 13. Which one of the following reactions will not result in the formation of carbon-carbon bond?(1) Cannizzaro reaction
 - (2) Friedel Craft's acylation
 - (3) Reimer-Tieman reaction
 - (4) Wurtz reaction

Ans. (1)

Sol. In cannizaro reaction carbon-carbon bond not formed

$$\begin{array}{c} O \\ H \\ 2H-C-H \xrightarrow{\text{conc. KOH}} H-C-OK + CH_2 - OH \end{array}$$

- 14. The half-life period of a first order reaction is 15 minutes. The amount of substance left after one hour will be :
 - (1) $\frac{1}{4}$ of the original amount
 - (2) $\frac{1}{16}$ of the original amount
 - (3) $\frac{1}{32}$ of the original amount
 - (4) $\frac{1}{8}$ of the original amount
- Ans. (2)

Sol. Since : $t_{1/2} = 15$ min.

$$\therefore$$
 No. of half lives = $\frac{60}{15} = 4$

 \therefore Amount of substance left after one hour

$$= \frac{A_0}{(2)^n} = \frac{A_0}{(2)^4} = \frac{A_0}{16}$$

15. The major product of the reaction.

Ans. (3)

16. Vander Wall's equation for a gas is stated as,

$$p = \frac{nRT}{V - nb} - a\left(\frac{n}{V}\right)^2$$

This equation reduces to the perfect gas

equation, $p = \frac{nRT}{V}$ when,

- (1) both temperature and pressure are very low
- (2) both temperature and pressure are very high(3) temperature is sufficiently high and
- pressure is low
- (4) temperature is sufficiently low and pressure is high.

Ans. (3)

17. The temperature at which oxygen molecules have the same root mean square speed as helium atoms have at 300 K is :

(Atomic masses : He = 4 u, O = 16 u) (1) 1200 K (2) 600 K (3) 300 K (4) 2400 K

Ans. (4)

Sol. $(U_{rms})_{o_2} = (U_{rms})_{He}$ $\Rightarrow \frac{3RTo_2}{32} = \frac{3R T_{He}}{4}$ $\Rightarrow T_{o_2} = 8 \times 300 = 2400 \text{ K}$

- **18.** For the compounds
 - CH₃Cl, CH₃Br, CH₃I and CH₃F,

the correct order of increasing C-halogen bond length is :

- (1) $CH_3F < CH_3Br < CH_3Cl < CH_3I$
- (2) $CH_3F < CH_3Cl < CH_3Br < CH_3I$
- (3) $CH_3Cl < CH_3Br < CH_3F < CH_3I$
- (4) $CH_3F < CH_3I < CH_3Br < CH_3Cl$

Ans. (2)

Sol. As the radius of halogen increases C—halogen bond length incread.

19. Chloro compound of Vanadium has only spin magnetic moment of 1.73 BM. This Vanadium chloride has the formula :
(at. no. of V = 23)
(1) VCl = (2) VCl = (2) VCl = (4) VCl

(1) VCl_4 (2) VCl_3 (3) VCl_2 (4) VCl_5 ns (1)

Ans. (1)

- **Sol.** If the magnetic moment is 1.73 BM then the the number of unpaired e⁻ V⁴⁺ having our unpaired electron
- 20. A current of 10.0 A flows for 2.00 h through an electrolytic cell containing a molten salt of metal X. This results in the decomposition of 0.250 mol of metal X at the cathode. The oxidation state of X in the molten salt is : (F = 96,500 C)

(1) 2 + (2) 3 + (3) 1 + (4) 4 +Ans. (2)

Sol.
$$W = \frac{E}{96500} \times It$$

 \Rightarrow No. of moles $= \frac{It}{96500 \times (n - factor)}$

$$\Rightarrow 10.01 \text{ mores} = 96500 \times (n - \text{factor})$$
$$\Rightarrow 0.25 = \frac{10 \times 2 \times 60 \times 60}{96500 \times n - \text{factor}}$$
$$\Rightarrow n - \text{factor} = \frac{720 \times 4}{965} = 3$$

 \therefore Oxidation state of molten salt is +3

21. Which of the following has unpaired electron(s) ?

(1)
$$O_2^-$$
 (2) N_2^{2+} (3) O_2^{2-} (4) N_2

Ans. (1)

- **Sol.** O_2^- has one unpaired electron is π^* MO.
- 22. The gas evolved on heating CaF_2 and SiO_2 with concentrated H_2SO_4 , on hydrolysis gives a white gelatinous precipitate. The precipitate is: (1) silica gel
 - (2) silicic acid
 - (3) hydrofluosilicic acid
 - (4) calciumfluorosilicate

- Sol. $CaF_2 + H_2SO_4 \longrightarrow H_2F_2 + Ca(HSO_4)_2$ $SiO_2 + 2H_2F_2 \longrightarrow SiF_4 + 2H_2O$ $SiF_4 + H_2O \longrightarrow H_2[SiF_6]$
- 23. The amount of oxygen in 3.6 moles of water is:
 (1) 28.8 g (2) 18.4 g (3) 115.2g (4) 57.6g

Ans. (4)

- **Sol.** 3.6 moles of $H_2O = 3.6$ moles of O
 - = 3.6 × 16 gm of oxygen = 57.6 gm

- 24. Which of the following is **not** formed when H_2S reacts with acidic $K_2Cr_2O_7$ solution ?
 - (1) K_2SO_4 (2) $Cr_2(SO_4)_3$
 - $(3) S (4) CrSO_4$

Ans. (4)

Sol. $K_2Cr_2O_7 + H_2S \rightarrow Cr_2(SO_4)_3 + S + K_2SO_4 + H_2O$

25. In a face centered cubic lattice atoms A are at the corner points and atoms B at the face centered points. If atom B is missing from one of the face centered points, the formula of the ionic compound is :

(1) AB_2 (2) A_2B_3 (3) A_5B_2 (4) A_2B_5 Ans. (4)

Sol.

$$A = 8 \times \frac{1}{8} = 1$$

$$B = 6 \times \frac{1}{2} - 1 \times \frac{1}{2} = \frac{5}{2}$$

$$A : B$$

$$1 : \frac{5}{2} \implies 2 : 5$$

26. An octahedral complex of Co³⁺ is diamagnetic. The hybridisation involved in the formation of the complex is :

(1) d^2sp^3 (2) dsp^3d (3) dsp^2 (4) sp^3d^2 Ans. (1)

- **Sol.** Co⁺³ is diamagnetic & having d⁶ by configuration under SFL.
- 27. At a certain temperature, only 50% HI is dissociated into H_2 and I_2 at equilibrium. The equilibrium constant is :

(1) 3.0 (2) 0.5 (3) 0.25 (4) 1.0 **Ans.** (3)

Sol. 2HI \rightleftharpoons H₂ + I₂ 1- α $\frac{\alpha}{2}$ $\frac{\alpha}{2}$

$$K_{eq} = \frac{\left(\frac{\alpha}{2}\right)^2}{(1-\alpha)^2} = \frac{\alpha^2}{4(1-\alpha)^2}$$

$$K_{eq} = \frac{\left(\frac{1}{2}\right)^2}{4(1/2)^2} = \frac{1}{4}$$

- 28. Which one of the following class of compounds is obtained by polymerization of acetylene ?(1) Poly and (2) Poly and (3)
 - Poly-ene
 Poly-yne
 Poly-amide
 Poly-ester

Ans. (2)

Sol. nHC=CH
$$\xrightarrow{\text{Polymerisation}}$$
 $\xrightarrow{\text{(-CH=CH)}_n}$

29. Structure of some important polymers are given. Which one represents Buna-S ?

(1)
$$(-CH_2 - C = CH - CH_2 -)_n$$

(2) $(-CH_2 - CH = CH - CH_2 - CH - CH_2 -)_n$
(3) $(-CH_2 - CH = CH - CH_2 -)_n$

(4)
$$(-CH_2 - CH = CH - CH_2 - CH - CH_2 -)_n$$

 I
 CN

Ans. (2) **Sol.**

$$\begin{array}{c} \text{CH}_2=\text{CH}-\text{CH}=\text{CH}_2+\text{CH}_2=\text{CH}\\ \text{Buta-1, 3-diene} & \bigoplus_{\text{styrene}} & \overbrace{\text{-}(\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-\text{CH}-\text{CH}_2)_n}^{\text{Polymerisation}}\\ & \xrightarrow{\text{-}(\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-\text{CH}-\text{CH}_2)_n}\\ & \text{Buna-S} \end{array}$$

30. The energy of an electron in first Bohr orbit of H-atom is - 13.6 eV. The energy value of electron in the excited state of Li²⁺ is :
(1) -30.6 eV
(2) -27.2 eV

Ans. (1)

Sol. Energy of e⁻ in the excited state of Li⁺²

$$E = -13.6 \frac{Z^2}{n^2}$$

= -13.6 × $\frac{(3)^2}{(2)^2}$ eV
= $-\frac{9}{4}$ × 13.6 eV
= -30.6 eN