JEE(Advanced) - 2018 TEST PAPER - 1 WITH SOLUTIONS (Exam Date: 21-05-2018)

PART-1 : MATHEMATICS

SECTION-1

1. For a non-zero complex number z , let $\arg (\mathrm{z})$ denotes the principal $\operatorname{argument}$ with $-\pi<\arg (\mathrm{z}) \leq \pi$. Then, which of the following statement(s) is (are) FALSE ?
(A) $\arg (-1-i)=\frac{\pi}{4}$, where $i=\sqrt{-1}$
(B) The function $f: \mathbb{R} \rightarrow(-\pi, \pi]$, defined by $f(\mathrm{t})=\arg (-1+i t)$ for all $t \in \mathbb{R}$, is continuous at all points of \mathbb{R}, where $i=\sqrt{-1}$
(C) For any two non-zero complex numbers z_{1} and $\mathrm{z}_{2}, \arg \left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)-\arg \left(\mathrm{z}_{1}\right)+\arg \left(\mathrm{z}_{2}\right)$ is an integer multiple of 2π
(D) For any three given distinct complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}$ and z_{3}, the locus of the point z satisfying the condition $\arg \left(\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}\right)=\pi$, lies on a straight line

Ans. (A,B,D)
Sol. (A) $\arg (-1-i)=-\frac{3 \pi}{4}$,
(B) $f(\mathrm{t})=\arg (-1+\mathrm{it})= \begin{cases}\pi-\tan ^{-1}(\mathrm{t}), & \mathrm{t} \geq 0 \\ -\pi+\tan ^{-1}(\mathrm{t}), & \mathrm{t}<0\end{cases}$

Discontinuous at $\mathrm{t}=0$.
(C) $\arg \left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)-\arg \left(\mathrm{z}_{1}\right)+\arg \left(\mathrm{z}_{2}\right)$

$$
=\arg z_{1}-\arg \left(z_{2}\right)+2 n \pi-\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=2 n \pi .
$$

(D) $\arg \left(\frac{\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\mathrm{z}_{2}-\mathrm{z}_{3}\right)}{\left(\mathrm{z}-\mathrm{z}_{3}\right)\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)}\right)=\pi$
$\Rightarrow \frac{\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\mathrm{z}_{2}-\mathrm{z}_{3}\right)}{\left(\mathrm{z}-\mathrm{z}_{3}\right)\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)}$ is real.
$\Rightarrow \mathrm{z}, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ are concyclic.
2. In a triangle PQR , let $\angle \mathrm{PQR}=30^{\circ}$ and the sides PQ and QR have lengths $10 \sqrt{3}$ and 10 , respectively. Then, which of the following statement(s) is (are) TRUE ?
(A) $\angle \mathrm{QPR}=45^{\circ}$
(B) The area of the triangle PQR is $25 \sqrt{3}$ and $\angle \mathrm{QRP}=120^{\circ}$
(C) The radius of the incircle of the triangle PQR is $10 \sqrt{3}-15$
(D) The area of the circumcircle of the triangle PQR is 100π.

Ans. (B,C,D)

Sol. $\quad \cos 30^{\circ}=\frac{(10 \sqrt{3})^{2}+(10)^{2}-(\mathrm{PR})^{2}}{2 \times 10 \sqrt{3} \times 10}$

$\Rightarrow \quad \mathrm{PR}=10$
$\because \quad \mathrm{QR}=\mathrm{PR} \quad \Rightarrow \quad \angle \mathrm{PQR}=\angle \mathrm{QPR}$
$\angle \mathrm{QPR}=30^{\circ}$
(B) area of $\triangle \mathrm{PQR}=\frac{1}{2} \times 10 \sqrt{3} \times 10 \times \sin 30^{\circ}=\frac{1}{2} \times 10 \times 10 \sqrt{3} \times \frac{1}{2}$
$=25 \sqrt{3}$
$\angle \mathrm{QRP}=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)=120^{\circ}$
(C) $\mathrm{r}=\frac{\Delta}{\mathrm{S}}=\frac{25 \sqrt{3}}{\left(\frac{10+10+10 \sqrt{3}}{2}\right)}=\frac{25 \sqrt{3}}{10+5 \sqrt{3}}$
$=5 \sqrt{3} \cdot(2-\sqrt{3})=10 \sqrt{3}-15$
(D) $\mathrm{R}=\frac{\mathrm{a}}{2 \sin \mathrm{~A}}=\frac{10}{2 \sin 30^{\circ}}=10$
$\therefore \quad$ Area $=\pi \mathrm{R}^{2}=100 \pi$
3. Let $P_{1}: 2 x+y-z=3$ and $P_{2}: x+2 y+z=2$ be two planes. Then, which of the following statement(s) is (are) TRUE ?
(A) The line of intersection of P_{1} and P_{2} has direction ratios 1, 2, -1
(B) The line $\frac{3 x-4}{9}=\frac{1-3 y}{9}=\frac{z}{3}$ is perpendicular to the line of intersection of P_{1} and P_{2}
(C) The acute angle between P_{1} and P_{2} is 60°
(D) If P_{3} is the plane passing through the point $(4,2,-2)$ and perpendicular to the line of intersection of P_{1} and P_{2}, then the distance of the point $(2,1,1)$ from the plane P_{2} is $\frac{2}{\sqrt{3}}$
Ans. (C,D)
Sol. D.C. of line of intersection (a, b, c)
$\Rightarrow \quad 2 \mathrm{a}+\mathrm{b}-\mathrm{c}=0$
$a+2 b+c=0$
$\frac{\mathrm{a}}{1+2}=\frac{\mathrm{b}}{-1-2}=\frac{\mathrm{c}}{4-1}$
$\therefore \quad$ D.C. is $(1,-1,1)$
(B) $\frac{3 x-4}{9}=\frac{1-3 y}{9}=\frac{z}{3}$
$\Rightarrow \quad \frac{\mathrm{x}-4 / 3}{3}=\frac{\mathrm{y}-1 / 3}{-3}=\frac{\mathrm{z}}{3}$
$\Rightarrow \quad$ lines are parallel.
(C) Acute angle between P_{1} and $P_{2}=\cos ^{-1}\left(\frac{2 \times 1+1 \times 2-1 \times 1}{\sqrt{6} \sqrt{6}}\right)$

$$
=\cos ^{-1}\left(\frac{3}{6}\right)=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}
$$

(D) Plane is given by $(x-4)-(y-2)+(z+2)=0$
$\Rightarrow \quad x-y+z=0$
Distance of $(2,1,1)$ from plane $=\frac{2-1+1}{\sqrt{3}}=\frac{2}{\sqrt{3}}$
4. For every twice differentiable function $f: \mathbb{R} \rightarrow[-2,2]$ with $(f(0))^{2}+\left(f^{\prime}(0)\right)^{2}=85$, which of the following statement(s) is (are) TRUE ?
(A) There exist $\mathrm{r}, \mathrm{s} \in \mathbb{R}$, where $\mathrm{r}<\mathrm{s}$, such that f is one-one on the open interval (r, s)
(B) There exists $x_{0} \in(-4,0)$ such that $\left|f^{\prime}\left(x_{0}\right)\right| \leq 1$
(C) $\lim _{x \rightarrow \infty} f(x)=1$
(D) There exists $\alpha \in(-4,4)$ such that $f(\alpha)+f^{\prime \prime}(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$

Ans. (A,B,D)

Sol. $f(\mathrm{x})$ can't be constant throughout the domain. Hence we can find $\mathrm{x} \in(\mathrm{r}, \mathrm{s})$ such that $f(\mathrm{x})$ is one-one option (A) is true.

Option (B) : $\quad\left|f^{\prime}\left(\mathrm{x}_{0}\right)\right|=\left|\frac{f(0)-f(-4)}{4}\right| \leq 1 \quad$ (LMVT)
Option (C) : $\quad f(x)=\sin (\sqrt{85} x)$ satisfies given condition

$$
\text { but } \begin{aligned}
& \lim _{x \rightarrow \infty} \sin (\sqrt{85}) \text { D.N.E. } \\
& \Rightarrow \text { Incorrect }
\end{aligned}
$$

Option (D) : $g(x)=f^{2}(x)+\left(f^{\prime}(x)\right)^{2}$

$$
\mid f^{\prime}\left(x_{1}\right) \leq 1 \quad(\text { by LMVT })
$$

$$
\left|f\left(\mathrm{x}_{1}\right)\right| \leq 2 \quad \text { (given) }
$$

$$
\Rightarrow \mathrm{g}\left(\mathrm{x}_{1}\right) \leq 5 \quad \exists \mathrm{x}_{1} \in(-4,0)
$$

$$
\begin{array}{ll}
\text { Similarly } & g\left(x_{2}\right) \leq 5 \quad \exists x_{2} \in(0,4) \\
& g(0)=85 \quad \Rightarrow \quad g(x) \text { has maxima in }\left(x_{1}, x_{2}\right) \text { say at } \alpha . \\
& g^{\prime}(\alpha)=0 \& g(\alpha) \geq 85 \\
& 2 f^{\prime}(\alpha)\left(f(\alpha)+f^{\prime \prime}(\alpha)\right)=0
\end{array}
$$

If $f^{\prime}(\alpha)=0 \Rightarrow \mathrm{~g}(\alpha)=f^{2}(\alpha) \geq 85$ Not possible
$\Rightarrow f(\alpha)+f^{\prime \prime}(\alpha)=0 \quad \exists \alpha \in\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in(-4,4)$
option (D) correct.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{g}: \mathbb{R} \rightarrow \mathbb{R}$ be two non-constant differentiable functions. If $f^{\prime}(\mathrm{x})=\left(\mathrm{e}^{(f(\mathrm{x})-\mathrm{g}(\mathrm{x}))}\right) \mathrm{g}^{\prime}(\mathrm{x})$ for all $\mathrm{x} \in \mathbb{R}$, and $f(1)=\mathrm{g}(2)=1$, then which of the following statement(s) is (are) TRUE ?
(A) $f(2)<1-\log _{\mathrm{e}} 2$
(B) $f(2)>1-\log _{\mathrm{e}} 2$
(C) $g(1)>1-\log _{\mathrm{e}} 2$
(D) $g(1)<1-\log _{e} 2$

Ans. (B,C)
Sol. $f^{\prime}(x)=e^{f(x)-g(x))} g^{\prime}(x) \forall x \in \mathbb{R}$
$\Rightarrow \quad \mathrm{e}^{-f(\mathrm{x})} \cdot f^{\prime}(\mathrm{x})-\mathrm{e}^{-\mathrm{g}(\mathrm{x})} \mathrm{g}^{\prime}(\mathrm{x})=0$
$\Rightarrow \quad \int\left(\mathrm{e}^{-f(x)} f^{\prime}(\mathrm{x})-\mathrm{e}^{-\mathrm{g}(\mathrm{x})} \cdot \mathrm{g}^{\prime}(\mathrm{x})\right) \mathrm{dx}=\mathrm{C}$
$\Rightarrow \quad-\mathrm{e}^{-f(x)}+\mathrm{e}^{-\mathrm{g}(\mathrm{x})}=\mathrm{C}$
$\Rightarrow \quad-\mathrm{e}^{-f(1)}+\mathrm{e}^{-\mathrm{g}(1)}=-\mathrm{e}^{-f(2)}+\mathrm{e}^{-\mathrm{g}(2)}$
$\Rightarrow \quad-\frac{1}{\mathrm{e}}+\mathrm{e}^{-\mathrm{g}(1)}=-\mathrm{e}^{-f(2)}+\frac{1}{\mathrm{e}}$
$\Rightarrow \quad \mathrm{e}^{-f(2)}+\mathrm{e}^{-\mathrm{g}(1)}=\frac{2}{\mathrm{e}}$
$\therefore \quad \mathrm{e}^{-f(2)}<\frac{2}{\mathrm{e}}$ and $\mathrm{e}^{-\mathrm{g}(1)}<\frac{2}{\mathrm{e}}$
$\Rightarrow-f(2)<\ln 2-1$ and $-\mathrm{g}(1)<\ln 2-1$
$\Rightarrow f(2)>1-\ln 2$ and $\mathrm{g}(1)>1-\ln 2$
6. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that $f(\mathrm{x})=1-2 \mathrm{x}+\int_{0}^{\mathrm{x}} \mathrm{e}^{\mathrm{xt}} f(\mathrm{t}) \mathrm{dt}$ for all $\mathrm{x} \in[0, \infty)$. Then, which of the following statement(s) is (are) TRUE ?
(A) The curve $\mathrm{y}=f(\mathrm{x})$ passes through the point $(1,2)$
(B) The curve $\mathrm{y}=f(\mathrm{x})$ passes through the point $(2,-1)$
(C) The area of the region $\left\{(\mathrm{x}, \mathrm{y}) \in[0,1] \times \mathbb{R}: f(\mathrm{x}) \leq \mathrm{y} \leq \sqrt{1-\mathrm{x}^{2}}\right\}$ is $\frac{\pi-2}{4}$
(D) The area of the region $\left\{(x, y) \in[0,1] \times \mathbb{R}: f(x) \leq y \leq \sqrt{1-x^{2}}\right\}$ is $\frac{\pi-1}{4}$

Ans. (B,C)

Sol. $f(\mathrm{x})=1-2 \mathrm{x}+\int_{0}^{\mathrm{x}} \mathrm{e}^{\mathrm{xt}} f(\mathrm{t}) \mathrm{dt}$
$\Rightarrow \quad \mathrm{e}^{-\mathrm{x}} f(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}(1-2 \mathrm{x})+\int_{0}^{\mathrm{x}} \mathrm{e}^{-\mathrm{t}} f(\mathrm{t}) \mathrm{dt}$
Differentiate w.r.t. x.
$-\mathrm{e}^{-\mathrm{x}} f(\mathrm{x})+\mathrm{e}^{-\mathrm{x}} f^{\prime}(\mathrm{x})=-\mathrm{e}^{-\mathrm{x}}(1-2 \mathrm{x})+\mathrm{e}^{-\mathrm{x}}(-2)+\mathrm{e}^{-\mathrm{x}} f(\mathrm{x})$
$\Rightarrow-f(\mathrm{x})+f^{\prime}(\mathrm{x})=-(1-2 \mathrm{x})-2+f(\mathrm{x})$.
$\Rightarrow f^{\prime}(\mathrm{x})-2 f(\mathrm{x})=2 \mathrm{x}-3$
Integrating factor $=e^{-2 x}$.
$f(x) . e^{-2 x}=\int \mathrm{e}^{-2 x}(2 x-3) d x$

$$
\begin{aligned}
& =(2 x-3) \int e^{-2 x} d x-\int\left((2) \int e^{-2 x} d x\right) d x \\
& =\frac{(2 x-3) e^{-2 x}}{-2}-\frac{e^{-2 x}}{2}+c
\end{aligned}
$$

$f(x)=\frac{2 x-3}{-2}-\frac{1}{2}+\mathrm{ce}^{2 \mathrm{x}}$
$f(0)=\frac{3}{2}-\frac{1}{2}+\mathrm{c}=1 \Rightarrow \mathrm{c}=0$
$\therefore \quad f(\mathrm{x})=1-\mathrm{x}$
Area $=\frac{\pi}{4}-\frac{1}{2}=\frac{\pi-2}{4}$

SECTION-2
7. The value of $\left(\left(\log _{2} 9\right)^{2}\right)^{\frac{1}{\log _{2}\left(\log _{2} 9\right)}} \times(\sqrt{7})^{\frac{1}{\log _{4} 7}} \quad$ is

Ans. (8)

Sol. $\quad \log _{2} 9^{\frac{2}{\log _{2}\left(\log _{2} 9\right)}} \times 7^{\frac{1 / 2}{\log _{4} 7}}$

$$
\begin{aligned}
& =\left(\log _{2} 9\right)^{2 \log _{\log _{2} 9}} \times 7^{\frac{1}{2} \log _{7} 4} \\
& =4 \times 2=8
\end{aligned}
$$

8. The number of 5 digit numbers which are divisible by 4 , with digits from the set $\{1,2,3,4,5\}$ and the repetition of digits is allowed, is \qquad
Ans. (625)
Sol. Option for last two digits are (12), (24), (32), (44) are (52).
\therefore Total No. of digits
$=5 \times 5 \times 5 \times 5=625$
9. Let X be the set consisting of the first 2018 terms of the arithmetic progression $1,6,11, \ldots .$. , and Y be the set consisting of the first 2018 terms of the arithmetic progression $9,16,23, \ldots .$. Then, the number of elements in the set $\mathrm{X} \cup \mathrm{Y}$ is \qquad
Ans. (3748)
Sol. $\mathrm{X}: 1,6,11$, \qquad 10086

Y:9, 16, 23,, 14128
$\mathrm{X} \cap \mathrm{Y}: 16,51,86, \ldots \ldots$
Let $\mathrm{m}=\mathrm{n}(\mathrm{X} \cap \mathrm{Y})$
$\therefore \quad 16+(m-1) \times 35 \leq 10086$
$\Rightarrow \mathrm{m} \leq 288.71$
$\Rightarrow \mathrm{m}=288$
$\therefore \quad \mathrm{n}(\mathrm{X} \cup \mathrm{Y})=\mathrm{n}(\mathrm{X})+\mathrm{n}(\mathrm{Y})-\mathrm{n}(\mathrm{X} \cap \mathrm{Y})$
$=2018+2018-288=3748$
10. The number of real solutions of the equation

$$
\sin ^{-1}\left(\sum_{i=1}^{\infty} x^{i+1}-x \sum_{i=1}^{\infty}\left(\frac{x}{2}\right)^{i}\right)=\frac{\pi}{2}-\cos ^{-1}\left(\sum_{i=1}^{\infty}\left(-\frac{x}{2}\right)^{i}-\sum_{i=1}^{\infty}(-x)^{i}\right)
$$

lying in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ is
(Here, the inverse trigonometric functions $\sin ^{-1} \mathrm{x}$ and $\cos ^{-1} \mathrm{x}$ assume value in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $[0, \pi]$, respectively.)
Ans. (2)
Sol. $\sum_{i=1}^{\infty} x^{i+1}=\frac{x^{2}}{1-x}$

$$
\sum_{i=1}^{\infty}\left(\frac{x}{2}\right)^{i}=\frac{x}{2-x}
$$

$$
\sum_{i=1}^{\infty}\left(-\frac{x}{2}\right)^{i}=\frac{-x}{2+x}
$$

$$
\sum_{i=1}^{\infty}(-x)^{i}=\frac{-x}{1+x}
$$

To have real solutions

$$
\begin{aligned}
& \sum_{i=1}^{\infty} x^{i+1}-x \sum_{i=1}^{\infty}\left(\frac{x}{2}\right)^{i}=\sum_{i=1}^{\infty}\left(\frac{-x}{2}\right)^{i}-\sum_{i=1}^{\infty}(-x)^{i} \\
& \frac{x^{2}}{1-x}-\frac{x^{2}}{2-x}=\frac{-x}{2+x}+\frac{x}{1+x} \\
& x\left(x^{3}+2 x^{2}+5 x-2\right)=0
\end{aligned}
$$

$\therefore \mathrm{x}=0$ and let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}+5 \mathrm{x}-2$

$$
\mathrm{f}\left(\frac{1}{2}\right) \cdot \mathrm{f}\left(-\frac{1}{2}\right)<0
$$

Hence two solutions exist
11. For each positive integer n , let

$$
\mathrm{y}_{\mathrm{n}}=\frac{1}{\mathrm{n}}(\mathrm{n}+1)(\mathrm{n}+2) \ldots(\mathrm{n}+\mathrm{n})^{1 / \mathrm{n}}
$$

For $x \in \mathbb{R}$, let $[x]$ be the greatest integer less than or equal to x. If $\lim _{n \rightarrow \infty} y_{n}=L$, then the value of [L] is \qquad

Ans. (1)
Sol. $y_{n}=\left\{\left(1+\frac{1}{\mathrm{n}}\right)\left(1+\frac{2}{\mathrm{n}}\right) \ldots .\left(1+\frac{\mathrm{n}}{\mathrm{n}}\right)\right\}^{\frac{1}{\mathrm{n}}}$
$\mathrm{y}_{\mathrm{n}}=\prod_{\mathrm{r}=1}^{\mathrm{n}}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{1 / \mathrm{n}}$
$\log \mathrm{y}_{\mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{r}=1}^{\mathrm{n}} \ell \mathrm{n}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)$
$\Rightarrow \quad \lim _{\mathrm{n} \rightarrow \infty} \log \mathrm{y}_{\mathrm{n}}=\lim _{\mathrm{x} \rightarrow \infty} \sum_{\mathrm{r}=1}^{\mathrm{n}} \frac{1}{\mathrm{n}} \ell \mathrm{n}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)$
$\Rightarrow \quad \log \mathrm{L}=\int_{0}^{1} \ell \mathrm{n}(1+\mathrm{x}) \mathrm{dx}$
$\Rightarrow \quad \log \mathrm{L}=\log \frac{4}{\mathrm{e}}$
$\Rightarrow \mathrm{L}=\frac{4}{\mathrm{e}}$
$\Rightarrow \quad[\mathrm{L}]=1$
12. Let \vec{a} and \vec{b} be two unit vectors such that $\vec{a} \cdot \vec{b}=0$. For some $x, y \in \mathbb{R}$, let $\vec{c}=x \vec{a}+y \vec{b}+(\vec{a} \times \vec{b})$. If $|\vec{c}|=2$ and the vector \vec{c} is inclined at the same angle α to both \vec{a} and \vec{b}, then the value of $8 \cos ^{2} \alpha$ is -

Ans. (3)
Sol. $\vec{c}=x \vec{a}+y \vec{b}+\vec{a} \times \vec{b}$
$\overrightarrow{\mathrm{c}} . \overrightarrow{\mathrm{a}}=\mathrm{x}$ and $\mathrm{x}=2 \cos \alpha$
$\vec{c} \cdot \vec{b}=y$ and $y=2 \cos \alpha$
Also, $|\vec{a} \times \vec{b}|=1$
$\therefore \quad \vec{c}=2 \cos (\vec{a}+\vec{b})+\vec{a} \times \vec{b}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{c}}^{2}=4 \cos ^{2} \alpha(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})^{2}+(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})^{2}+2 \cos \alpha(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \\
& 4=8 \cos ^{2} \alpha+1 \\
& 8 \cos ^{2} \alpha=3
\end{aligned}
$$

13. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three non-zero real numbers such that the equation

$$
\sqrt{3} a \cos x+2 b \sin x=c, \quad x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

has two distinct real roots α and β with $\alpha+\beta=\frac{\pi}{3}$. Then the value of $\frac{\mathrm{b}}{\mathrm{a}}$ is _

Ans. (0.5)
Sol. $\sqrt{3} \cos \mathrm{x}+\frac{2 \mathrm{~b}}{\mathrm{a}} \sin \mathrm{x}=\frac{\mathrm{c}}{\mathrm{a}}$

$$
\text { Now, } \begin{aligned}
& \sqrt{3} \cos \alpha+\frac{2 \mathrm{~b}}{\mathrm{a}} \sin \alpha=\frac{\mathrm{c}}{\mathrm{a}} \\
& \sqrt{3} \cos \beta+\frac{2 \mathrm{~b}}{\mathrm{a}} \sin \beta=\frac{\mathrm{c}}{\mathrm{a}} \\
& \sqrt{3}[\cos \alpha-\cos \beta]+\frac{2 \mathrm{~b}}{\mathrm{a}}(\sin \alpha-\sin \beta)=0 \\
& \sqrt{3}\left[-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)\right]+\frac{2 \mathrm{~b}}{\mathrm{a}}\left[2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)\right]=0 \\
& -\sqrt{3}+2 \sqrt{3} \cdot \frac{\mathrm{~b}}{\mathrm{a}}=0 \\
& \frac{\mathrm{~b}}{\mathrm{a}}=\frac{1}{2}=0.5
\end{aligned}
$$

14. A farmer F_{1} has a land in the shape of a triangle with vertices at $P(0,0), Q(1,1)$ and $R(2,0)$. From this land, a neighbouring farmer F_{2} takes away the region which lies between the side PQ and a curve of the form $y=x^{n}(n>1)$. If the area of the region taken away by the farmer F_{2} is exactly 30% of the area of $\triangle \mathrm{PQR}$, then the value of n is \qquad
Ans. (4)

Sol.

$$
\text { Area }=\int_{0}^{1}\left(x-x^{n}\right) d x=\frac{3}{10}
$$

$$
\left[\frac{x^{2}}{2}-\frac{x^{n+1}}{n+1}\right]_{0}^{1}=\frac{3}{10}
$$

$$
\frac{1}{2}-\frac{1}{\mathrm{n}+1}=\frac{3}{10} \quad \therefore \mathrm{n}+1=5
$$

$$
\Rightarrow \mathrm{n}=4
$$

SECTION-3

Paragraph ' X "

Let S be the circle in the $x y$-plane defined by the equation $x^{2}+y^{2}=4$.
(There are two question based on Paragraph " X ", the question given below is one of them)
15. Let $E_{1} E_{2}$ and $F_{1} F_{2}$ be the chord of S passing through the point $P_{0}(1,1)$ and parallel to the x-axis and the y-axis, respectively. Let $G_{1} G_{2}$ be the chord of S passing through P_{0} and having slop -1 . Let the tangents to S at E_{1} and E_{2} meet at E_{3}, the tangents of S at F_{1} and F_{2} meet at F_{3}, and the tangents to S at G_{1} and G_{2} meet at G_{3}. Then, the points $\mathrm{E}_{3}, \mathrm{~F}_{3}$ and G_{3} lie on the curve
(A) $x+y=4$
(B) $(x-4)^{2}+(y-4)^{2}=16$
(C) $(x-4)(y-4)=4$
(D) $x y=4$

Ans. (A)

Sol.

co-ordinates of E_{1} and E_{2} are obtained by solving $y=1$ and $x^{2}+y^{2}=4$
$\therefore \quad \mathrm{E}_{1}(-\sqrt{3}, 1)$ and $\mathrm{E}_{2}(\sqrt{3}, 1)$
co-ordinates of F_{1} and F_{2} are obtained by solving

$$
\begin{aligned}
& \mathrm{x}=1 \text { and } \mathrm{x}^{2}+\mathrm{y}^{2}=4 \\
& \mathrm{~F}_{1}(1, \sqrt{3}) \text { and } \mathrm{F}_{2}(1,-\sqrt{3})
\end{aligned}
$$

Tangent at $E_{1}:-\sqrt{3} x+y=4$
Tangent at $E_{2}: \sqrt{3} x+y=4$
$\therefore \quad \mathrm{E}_{3}(0,4)$
Tangent at $F_{1}: x+\sqrt{3} y=4$
Tangent at $F_{2}: x-\sqrt{3} y=4$
$\therefore \quad \mathrm{F}_{3}(4,0)$
and similarly $\mathrm{G}_{3}(2,2)$
$(0,4),(4,0)$ and $(2,2)$ lies on $x+y=4$

PARAGRAPH "X"

Let S be the circle in the $x y$-plane defined by the equation $x^{2}+y^{2}=4$
(There are two questions based on Paragraph " X ", the question given below is one of them)
16. Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N . Then, the mid-point of the line segment MN must lie on the curve -
(A) $(x+y)^{2}=3 x y$
(B) $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$
(C) $x^{2}+y^{2}=2 x y$
(D) $x^{2}+y^{2}=x^{2} y^{2}$

Ans. (D)

Sol.

Tangent at $\mathrm{P}(2 \cos \theta, 2 \sin \theta)$ is $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=2$
$\mathrm{M}(2 \sec \theta, 0)$ and $\mathrm{N}(0,2 \operatorname{cosec} \theta)$
Let midpoint be (h, k)
$\mathrm{h}=\sec \theta, \mathrm{k}=\operatorname{cosec} \theta$

$$
\frac{1}{\mathrm{~h}^{2}}+\frac{1}{\mathrm{k}^{2}}=1
$$

$$
\frac{1}{x^{2}}+\frac{1}{\mathrm{y}^{2}}=1
$$

PARAGRAPH "A"

There are five students S_{1}, S_{2}, S_{4} and S_{5} in a music class and for them there are five sets $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5} arranged in a row, where initially the seat R_{i} is allotted to the student S_{i}, $\mathrm{i}=1,2,3,4,5$. But, on the examination day, the five students are randomly allotted the five seats.
(There are two questions based on Paragraph " A ". the question given below is one of them)
17. The probability that, on the examination day, the student S_{1} gets the previously allotted seat R_{1} and NONE of the remaining students gets the seat previously allotted to him/her is -
(A) $\frac{3}{40}$
(B) $\frac{1}{8}$
(C) $\frac{7}{40}$
(D) $\frac{1}{5}$

Ans. (A)

Sol. Required probability $=\frac{4!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right)}{5!}=\frac{9}{120}=\frac{3}{40}$

PARAGRAPH "A"

There are five students $S_{1}, S_{2}, S_{3}, S_{4}$ and S_{5} in a music class and for them there are five seats R_{1}, R_{2}, R_{3}, R_{4} and R_{5} arranged in a row, where initially the seat R_{i} is allotted to the student $S_{i}, i=1,2,3,4$, 5. But, on the examination day, the five students are randomly allotted the five seats.
(There are two questions based on Paragraph " A ", the question given below is one of them)
18. For $\mathrm{i}=1,2,3,4$, let T_{i} denote the event that the students S_{i} and $\mathrm{S}_{\mathrm{i}+1}$ do NOT sit adjacent to each other on the day of the examination. Then the probability of the event $T_{1} \cap T_{2} \cap T_{3} \cap T_{4}$ is-
(A) $\frac{1}{15}$
(B) $\frac{1}{10}$
(C) $\frac{7}{60}$
(D) $\frac{1}{5}$

Ans. (C)
Sol. $\mathrm{n}\left(\mathrm{T}_{1} \cap \mathrm{~T}_{2} \cap \mathrm{~T}_{3} \cap \mathrm{~T}_{4}\right)=$ Total $-\mathrm{n}\left(\overline{\mathrm{T}}_{1} \cup \overline{\mathrm{~T}}_{2} \cup \overline{\mathrm{~T}}_{3} \cup \overline{\mathrm{~T}}_{4}\right)$
$=5!-\left({ }^{4} \mathrm{C}_{1} 4!2!-\left({ }^{3} \mathrm{C}_{1} \cdot 3!2!+{ }^{3} \mathrm{C}_{1} 3!2!2!\right)+\left({ }^{2} \mathrm{C}_{1} 2!2!+{ }^{4} \mathrm{C}_{1} \cdot 2 \cdot 2!\right)-2\right)$
$=14$
Probability $=\frac{14}{5!}=\frac{7}{60}$

