PART C - MATHEMATICS

1. If X has a binomial distribution, $B(n, p)$ with parameters n and p such that $P(X=2)$ $=P(X=3)$, then $E(X)$, the mean of variable X, is
(1) $3-\mathrm{p}$
(2) $\frac{p}{3}$
(3) $\frac{p}{2}$
(4) $2-\mathrm{p}$

Ans. (1)
Sol. $P(x=2)=P(x=3)$
${ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{p}^{2}(1-\mathrm{p})^{\mathrm{n}-2}={ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{p}^{3}(1-\mathrm{p})^{\mathrm{n}-3}$

$$
\frac{(1-\mathrm{p})}{\mathrm{n}-2}=\frac{\mathrm{p}}{3} \Rightarrow \mathrm{n} \mathrm{p}=3-\mathrm{p}
$$

2. The integral $\int x \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) d x(x>0)$ is equal to
(1) $-x+\left(1+x^{2}\right) \tan ^{-1} x+c$
(2) $x-\left(1+x^{2}\right) \tan ^{-1} x+c$
(3) $x-\left(1+x^{2}\right) \cot ^{-1} x+c$
(4) $-x+\left(1+x^{2}\right) \cot ^{-1} x+c$

Ans. (1)
Sol. put $x=\tan \theta \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\cos ^{-1}(\cos 2 \theta)=2 \theta$
$\int \tan \theta(2 \theta) \sec ^{2} \theta d \theta$
$=2 \theta \cdot \int \tan \theta \sec ^{2} \theta d \theta-2 \int\left(\frac{d \theta}{d \theta} \cdot \int \tan \theta \sec ^{2} \theta d \theta\right) d \theta$
$=2 \theta \cdot \frac{\tan ^{2} \theta}{2}-2 \int \frac{\tan 2 \theta}{2} \mathrm{~d} \theta$
$=\theta \tan ^{2} \theta-\int\left(\sec ^{2} \theta-1\right) d \theta$
$=\theta \tan ^{2} \theta-\tan \theta+\theta+C$
$=\tan ^{-1} \mathrm{x} \cdot \mathrm{x}^{2}-\mathrm{x}+\tan ^{-1} \mathrm{x}+\mathrm{C}$
$=-x+\left(1+x^{2}\right) \tan ^{-1} x+C$
3. Left f be an odd function defined on the set of real numbers such that for $x \geq 0$,
$f(x)=3 \sin x+4 \cos x$
Then $f(x)$ at $x=-\frac{11 \pi}{6}$ is equal to
(1) $\frac{3}{2}-2 \sqrt{3}$
(2) $-\frac{3}{2}-2 \sqrt{3}$
(3) $-\frac{3}{2}+2 \sqrt{3}$
(4) $\frac{3}{2}+2 \sqrt{3}$

Ans. (1)
Sol. $f(-x)=-f(x)$ as $f(x)$ is odd function

$$
\begin{aligned}
& f\left(\frac{-11 \pi}{6}\right)=-\left[3 \sin \left(\frac{+11 \pi}{6}\right)+4 \cos \left(\frac{+11 \pi}{6}\right)\right] \\
& \quad=-\left[3 \sin \left(\frac{11 \pi}{6}\right)+4 \cos \left(\frac{11 \pi}{6}\right)\right]
\end{aligned}
$$

$$
=-\left[3 \sin \left(2 \pi-\frac{\pi}{6}\right)+4 \cos \left(2 \pi-\frac{\pi}{6}\right)\right]
$$

$$
=+3 \sin \pi / 6-4 \cos \frac{\pi}{6}
$$

$$
=3 \times \frac{1}{2}-\frac{4 \sqrt{3}}{2}=\frac{3}{2}-2 \sqrt{3}
$$

4. The plane containing the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and parallel to the line $\frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{1}=\frac{\mathrm{z}}{4}$ passes through the point
(1) $(1,0,5)$
(2) $(0,3,-5)$
(3) $(-1,-3,0)$
(4) $(1,-2,5)$

Ans. (1)
Sol. Normal vector $=\left|\begin{array}{lll}i & \mathrm{j} & \mathrm{k} \\ 1 & 2 & 3 \\ 1 & 1 & 4\end{array}\right|=5 \mathrm{i}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ point $(1,2,3)$ lies in plane so equation of plane $=5(x-1)-1(y-2)-1(z-3)=0$

$$
5 x-y-z=0
$$

so option [1] is correct
5. The volume of the largest possible right circular cylinder that can be inscribed in a sphere of radius $=\sqrt{3}$ is
(1) 4π
(2) $\frac{4}{3} \sqrt{3} \pi$
(3) $\frac{8}{3} \sqrt{3} \pi$
(4) 2π

Ans. (1)
Sol. $\quad h^{2}+r^{2}=3$

$$
\begin{array}{rlrl}
& & \mathrm{r}^{2} & =3-\mathrm{h}^{2} \\
& \mathrm{~V} & =\pi \mathrm{r}^{2} \cdot 2 \mathrm{~h} \\
& =2 \pi\left(\mathrm{r}^{2} \mathrm{~h}\right) \\
\mathrm{V} & =2 \pi\left(3 \mathrm{~h}-\mathrm{h}^{3}\right) \\
& & \frac{\mathrm{dr}}{\mathrm{dh}} & =0 \Rightarrow \mathrm{~h}^{2}=1 \Rightarrow \mathrm{~h}=1 \\
\therefore \quad & \mathrm{r}^{2} & =3-\mathrm{h}^{2} \\
& \mathrm{r}^{2} & =3-1=2 \\
\text { So } \quad \mathrm{V}_{\max } & =2 \pi(2 \times 1) \\
& =4 \pi
\end{array}
$$

6. The proposition $\sim(p v \sim q) v \sim(p \vee q)$ is logically equivalent to
(1) $\sim p$
(2) $\sim q$
(3) p
(4) q

Ans. (1)

p	q	$\sim \mathrm{q}$	$\mathrm{PV}(\sim \mathrm{q})$	pvq	$\sim(\mathrm{PV} \sim \mathrm{q})$	$\sim(\mathrm{pvq})$	AvB
T	T	F	T	T	F	F	F
F	F	T	T	F	F	T	T
T	F	T	T	T	F	F	F
F	T	F	F	T	T	F	T

Same as $\sim p$
7. If the general solution of the differential equation $y^{\prime}=\frac{y}{x}+\Phi\left(\frac{x}{y}\right)$, for some function Φ, is given by $\mathrm{y} \ln |\mathrm{cx}|=\mathrm{x}$, where c is an arbitrary constant, then $\Phi(2)$ is equal to
(1) 4
(2) -4
(3) $\frac{1}{4}$
(4) $-\frac{1}{4}$

Ans. (4)

Sol. $y^{\prime}=\frac{y}{x}+\phi\left(\frac{x}{y}\right)$...(1) is solution of
$y \ln |c x|=x$
d.w.r. to x
$\frac{y}{|c x|} \cdot \frac{|c x|}{c x} \cdot c+\ln |c x| y^{\prime}=1$
$\frac{y}{x}+\frac{x}{y} y^{\prime}=1$
(use $\ln |c x|=\frac{x}{y}$)
$y^{\prime}=\left(1-\frac{y}{x}\right) \frac{y}{x}$
use y^{\prime} in equation (1)
$\frac{y}{x}\left(1-\frac{y}{x}\right)=\frac{y}{x}+\phi\left(\frac{x}{y}\right)$

$$
\begin{aligned}
\text { put }\left(\frac{\mathrm{x}}{\mathrm{y}}\right)= & \Rightarrow\left(1-\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{2}+\phi(2) \\
& =\frac{1}{4}=\frac{1}{2}+\phi(2) \\
\phi(2) & =-\frac{1}{4}
\end{aligned}
$$

8. For the curve $y=3 \sin \theta \cos \theta, x=e^{\theta} \sin \theta$, $0 \leq \theta \leq \pi$, the tangent is parallel to x-axis when θ is
(1) $\frac{\pi}{2}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{6}$

Ans. (3)
Sol. $\frac{d y}{d x}=0 \Rightarrow \frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=0$

$$
\begin{aligned}
& \Rightarrow \frac{3\left[-\sin ^{2} \theta+\cos ^{2} \theta\right]}{\mathrm{e}^{\theta} \cos \theta+\sin \theta \mathrm{e}^{\theta}}=0 \\
& \Rightarrow \frac{3 \cos 2 \theta}{\mathrm{e}^{\theta}(\cos \theta+\sin \theta)}
\end{aligned}
$$

$\cos 2 \theta=0$

$$
2 \theta=\frac{\pi}{2}, \frac{3 \pi}{2} \Rightarrow \theta=\frac{\pi}{4}, \frac{3 \pi}{4}
$$

Reject $(3 \pi / 4)$ because at $\theta=\frac{3 \pi}{4}$
Denomentor $\cos \theta+\sin \theta=0$
So

$$
\theta=\frac{\pi}{4} \text { ans }
$$

9. If for $n \geq 1, P_{n}=\int_{1}^{e}(\log x)^{n} d x$, then $P_{10}-90 P_{8}$ is equal to
(1) 10 e
(2) 10
(3) -9
(4) -9 e

Ans. (4)
Sol. $\quad P_{n}=\int_{1}^{e}(\log x)^{n} .1 d x$
Integrate by parts
$P_{n}=\left(x(\log x)^{n}\right)_{1}^{e}-\int_{1}^{e} x n(\log x)^{n-1} \cdot \frac{1}{x} d x$
$\mathrm{P}_{\mathrm{n}}=\mathrm{e}-\mathrm{n} \mathrm{P}_{\mathrm{n}-1} \Rightarrow \mathrm{p}_{\mathrm{n}}+\mathrm{n} \mathrm{P}_{\mathrm{n}-1}=\mathrm{e}$
put $\mathrm{n}=10 \quad \mathrm{P}_{10}+10 \mathrm{P}_{9}=\mathrm{e}$
$\mathrm{n}=9 \quad \mathrm{P}_{5}+9 \mathrm{P}_{8}=\mathrm{e}$
use (2) in (1) $\quad \mathrm{P}_{10}+10\left(\mathrm{e}-9 \mathrm{P}_{8}\right)=\mathrm{e}$
$\mathrm{P}_{10}-90 \mathrm{P}_{8}=\mathrm{e}-10 \mathrm{e}$

$$
=-9 \mathrm{e}
$$

10. Let $f(x)=x|x|, g(x)=\sin x$ and $h(x)=(\operatorname{gof})(x)$. Then
(1) $h^{\prime}(x)$ is differentiable at $x=0$
(2) $h^{\prime}(x)$ is continuous at $x=0$ but is not differentiable at $x=0$
(3) $h(x)$ is differentiable at $x=0$ but $h^{\prime}(x)$ is not continuous at $x=0$
(4) $h(x)$ is not differentiable at $x=0$

Ans. (2)
Sol. $h(x)=\left\{\begin{array}{cl}\sin x^{2} & x \geq 0 \\ -\sin x^{2} & x<0\end{array}\right\}$
$h^{\prime}(x)=\left\{\begin{array}{cc}2 x \cos x^{2} & x \geq 0 \\ -2 x \cos x^{2} & x<0\end{array}\right\}$
$h^{\prime}(0)=h^{\prime}\left(0^{+}\right)=h^{\prime}\left[0^{-}\right)$
so $\mathrm{h}^{\prime}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
$h^{\prime \prime}(x)=\left\{\begin{array}{cc}2\left[\cos x^{2}-2 x^{2} \sin x^{2}\right] & x \geq 0 \\ -2\left[\cos x^{2}-2 x^{2} \sin x^{2}\right] & x<0\end{array}\right\}$
$h "\left(0^{+}\right) \neq h^{\prime \prime}\left(0^{-}\right)$so $h^{\prime \prime}(x)$ is not continuous at $\mathrm{x}=0$
so $h^{\prime}(x)$ is not differentiable at $x=0$
11. A set S contains 7 elements. A non-empty subset A of S and an element x of S are chosen at random. Then the probability that $\mathrm{x} \in \mathrm{A}$ is
(1) $\frac{64}{127}$
(2) $\frac{63}{128}$
(3) $\frac{1}{2}$
(4) $\frac{31}{128}$

Ans. (1)
Sol. Total non empty subsects $=2^{7}-1=127$
Let $x \in S$ also present in A
So no. of A's containg $x=2^{6}$
Probability $=\frac{2^{6}}{127}$
12. If $\lim _{x \rightarrow 2} \frac{\tan (x-2)\left\{x^{2}+(k-2) x-2 k\right\}}{x^{2}-4 x+4}=5$ then k is equal to
(1) 3
(2) 1
(3) 0
(4) 2

Ans. (1)
Sol. $\lim _{x \rightarrow 2} \frac{\tan (x-2)\left[x^{2}+k x-2 k-2 x\right)}{(x-2)^{2}}=5$
$\lim _{x \rightarrow 2}\left(\frac{\tan (x-2)}{(x-2)}\right) \frac{(x+k)(x-2)}{(x-2)}=5$

1. $(2+\mathrm{k})=5$
$\mathrm{K}=3$
2. Let $\mathrm{P}(3 \sec \theta, 2 \tan \theta)$ and $\mathrm{Q}(3 \sec \phi, 2 \tan \phi)$ where $\theta+\phi=\frac{\pi}{2}$, be two distinct points on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$. Then the ordinate of the point of intersection of the normals at P and Q is
(1) $\frac{-11}{3}$
(2) $\frac{-13}{2}$
(3) $\frac{13}{2}$
(4) $\frac{11}{3}$

Ans. (2)
Sol. $\mathrm{p}(3 \sec \theta, 2 \tan \theta) \quad \mathrm{Q}=(3 \sec \phi, 2 \tan \phi)$
$\theta+\phi=\frac{\pi}{2} \quad \mathrm{Q}=(3 \operatorname{cosec} \theta, 2 \cot \theta)$
Equation of normal at $p=$
$=3 \mathrm{x} \cos \theta+2 \mathrm{y} \cot \theta=13$
$=3 x \sin \theta \cos \theta+2 y \cos \theta=13 \sin \theta$
equation of normal at $Q \Rightarrow$
$=3 \mathrm{x} \sin \theta+2 \mathrm{y} \tan \theta=13$
$=3 \mathrm{x} \sin \theta \cos \theta+2 \mathrm{y} \sin \theta=13 \cos \theta$
(1)-(2) \Rightarrow
$2 \mathrm{y}(\cos \theta-\sin \theta)=13(\sin \theta-\cos \theta)$
$2 y=-13 \Rightarrow y=\frac{-13}{2}$
14. In a geometric progression, if the ratio of the sume of first 5 terms to the sum of their reciprocals is 49 , and the sum of the first and the third term is 35 . Then the first term of this geometric progression is
(1) 42
(2) 28
(3) 21
(4) 7

Ans. (2)
Sol. Let first term is a \& C.R = r
given $\frac{\left(a+a r+a r^{2}+a r^{3}+a r^{4}\right)}{\left(\frac{1}{a}+\frac{1}{a r}+\frac{1}{\mathrm{ar}^{2}}+\frac{1}{\mathrm{ar}^{3}}+\frac{1}{\mathrm{ar}^{4}}\right)}=49$
$\mathrm{a}^{2} \mathrm{r}^{4}=49 \Rightarrow \mathrm{ar}^{2}=7,-7$
also given that $\mathrm{a}+\mathrm{ar}^{2}=35$
if $\mathrm{ar}^{2}=7 \Rightarrow \mathrm{a}=35-7=28$
if $\mathrm{ar}^{2}=-7 \Rightarrow \mathrm{a}=35+7=42$
but if $\mathrm{a}=42$ then $\mathrm{r}^{2}=-\frac{7}{42}$
which is not possible so
$\mathrm{a}=28$
15. Let $\mathrm{A}\{2,3,5\}, \mathrm{B}(-1,3,2)$ and $\mathrm{C}(\lambda, 5, \mu)$ be the vertices of a $\triangle A B C$. If the median through A is equally inclined to the coordinate axes, then
(1) $8 \lambda-5 \mu=0$
(2) $10 \lambda-7 \mu=0$
(3) $5 \lambda-8 \mu=0$
(4) $7 \lambda-10 \mu=0$

Ans. (2)
Sol. Mid point of B \& C is $\left(\frac{\lambda-1}{2}, 4, \frac{\mu+2}{2}\right)$
Let say $D=\left(\frac{\lambda-1}{2}, 4, \frac{\mu+2}{2}\right)$

$$
\mathrm{A}=(2,3,5)
$$

DR's of $\mathrm{AD}=\frac{\lambda-5}{2}, 1, \frac{\mu-8}{2}$
$\lambda=7 \& \mu=10$
$\Rightarrow \lambda=\frac{\lambda}{10}=\frac{\mu}{10} \Rightarrow 10 \lambda-7 \mu=0$
16. The set of all real values of λ for which exactly two common tangents can be drawn to the circles
$x^{2}+y^{2}-4 x-4 y+6=0$ and $x^{2}+y^{2}-10 x-10 y+\lambda=0$ is the interval
(1) $(18,48)$
(2) $(12,24)$
(3) $(18,42)$
(4) $(12,32)$

Ans. (3)
Sol. $\mathrm{C}_{1}(2,2) \mathrm{C}_{2}(5,5)$
$\mathrm{r}_{1}=\sqrt{2} \quad \mathrm{r}_{2}=\sqrt{50}-1$
$\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|<\mathrm{c}_{1} \mathrm{c}_{2}<\mathrm{r}_{1}+\mathrm{r}_{2}$
$|\sqrt{50-\lambda}-\sqrt{2}|<\sqrt{9+9}<\sqrt{50-\lambda}+\sqrt{2}$

$$
\left.-18<[\sqrt{50-\lambda}-\sqrt{2}]<18 ~ \begin{array}{cc}
\sqrt{18}-\sqrt{2}<\sqrt{50-\lambda} \\
\lambda>18
\end{array} \right\rvert\, \begin{gathered}
\lambda \in 12<50-\lambda \\
\lambda<42
\end{gathered}
$$

17. If $\mathrm{z}_{1}, \mathrm{z}_{2}$ and $\mathrm{z}_{3}, \mathrm{z}_{4}$ are 2 pairs of complex conjugate numbers, then
$\arg \left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{4}}\right)+\arg \left(\frac{\mathrm{z}_{2}}{\mathrm{z}_{3}}\right)$ equals
(1) 0
(2) $\frac{\pi}{2}$
(3) $\frac{3 \pi}{2}$
(4) π

Ans. (1)
Sol. $\mathrm{Z}_{2}=\overline{\mathrm{Z}}_{1} \& \mathrm{Z}_{4}=\overline{\mathrm{Z}}_{3}$
$\arg \left(\frac{Z_{1}}{Z_{4}}\right)+\arg \left(\frac{Z_{2}}{Z_{3}}\right)$
$=\arg \mathrm{Z}_{1}-\arg \mathrm{Z}_{4}+\arg \mathrm{Z}_{2}-\arg \mathrm{Z}_{3}$
$=\arg \mathrm{Z}_{1}-\arg \overline{\mathrm{Z}}_{3}+\arg \overline{\mathrm{Z}}_{1}-\arg \mathrm{Z}_{3}$
$=\arg \mathrm{Z}_{1}+\arg \mathrm{Z}_{3}-\arg \mathrm{Z}_{1}-\arg \mathrm{Z}_{3}=0$
18. If $2 \cos \theta+\sin \theta=1\left(\theta \neq \frac{\pi}{2}\right)$,
then $7 \cos \theta+6 \sin \theta$ is equal to
(1) $\frac{1}{2}$
(2) $\frac{46}{5}$
(3) 2
(4) $\frac{11}{2}$

Ans. (2)
Sol. $2 \cos \theta+\sin \theta=1$
$7 \cos \theta+6 \sin \theta=\mathrm{k}$ (let)
from (1) \& (2) $\cos \theta=\frac{6-\mathrm{k}}{5} \quad \sin \theta=\frac{2 \mathrm{k}-7}{5}$
$\because \sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow(6-\mathrm{K})^{2}+(2 \mathrm{k}-7)^{2}=25$
$\Rightarrow \mathrm{K}=2$
19. An eight digit number divisible by 9 is to be formed using digits from 0 to 9 without repeating the digits. The number of ways in which this can be done is :
(1) 18 (7!)
(2) $40(7!)$
(3) 36 (7!)
(4) 72 (7!)

Ans. (3)
Sol. Eight digit no divisible by 9 i.e. sum of digits divisible by 9
(i) Total no formed by $1,2,3,4,5,6,7,8=81$
(ii) Total no formed by $0,2,3,4,5,6,7,9=7 \times 7$!
(iii) Total no formed by $1,0,3,4,5,6,9,8=7 \times 7$!
(iv) Total no formed by $1,2,0,4,5,9,7,8=7 \times 7$!
(v) Total no formed by $1,2,3,0,5,6,7,8=7 \times 7$!

$$
\begin{aligned}
8! & +28 \times 7! \\
& =36 \times 7!
\end{aligned}
$$

20. The coefficient of x^{50} in the binomial expansion of
$(1+x)^{1000}+x(1+x)^{999}+x^{2}(1+x)^{998}+$ \qquad $+x^{1000}$ is
(1) $\frac{(1000)!}{(50)!(950)!}$
(2) $\frac{(1001)!}{(50)!(951)!}$
(3) $\frac{(1000)!}{(49)!(951)!}$
(4) $\frac{(1001)!}{(51)!(950)!}$

Ans. (2)
Sol. Coefficient of $x^{50} e^{n}$
$=(1+\mathrm{x})^{1000} \frac{\left[1-\left(\frac{\mathrm{x}}{1+\mathrm{x}}\right)^{100}\right]}{\left[1-\frac{\mathrm{x}}{1+\mathrm{x}}\right]}$
$=(1+x)^{1001}-x^{1001}$
coeficient or $\mathrm{x}^{50}={ }^{1001} \mathrm{C}_{50}=\frac{(1001)!}{(50)!(951)!}$
21. Let L_{1} be the length of the common chord of the curves $x^{2}+y^{2}=9$ and $y^{2}=8 x$, and L_{2} be the length of the latus rectum of $y^{2}=8 x$ then
(1) $\mathrm{L}_{1}<\mathrm{L}_{2}$
(2) $\mathrm{L}_{1}>\mathrm{L}_{2}$
(3) $\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}=\sqrt{2}$
(4) $\mathrm{L}_{1}=\mathrm{L}_{2}$

Ans. (1)

Sol. $\quad x^{2}+y^{2}=9 \quad \& y^{2}=8 x$
$L_{2}=$ L.R. of $y^{2}=8 x \Rightarrow L_{2}=8$
Solve $x^{2}+8 x=9 \Rightarrow x=1,-9$
$x=-9$ reject
$\therefore y^{2}=8 \mathrm{x}$ so $\mathrm{y}^{2}=8$

$$
y= \pm \sqrt{8}
$$

Point of intersection are $(1, \sqrt{8})(1,-\sqrt{8})$
So $L_{1}=2 \sqrt{8}$
$\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}=\frac{2 \sqrt{8}}{8}=\frac{2}{\sqrt{8}}=\frac{1}{\sqrt{2}}<1$
$\mathrm{L}_{1}<\mathrm{L}_{2}$
22. The angle of elevation of the top of a vertical tower from a point P on the horizontal ground was observed to be α. After moving a distance 2 metres from P towards the foot of the tower, the angle of elevation changes to β. Then the height (in metres) of the tower is
(1) $\frac{\cos (\beta-\alpha)}{\sin \alpha \sin \beta}$
(2) $\frac{2 \sin \alpha \sin \beta}{\sin (\beta-\alpha)}$
(3) $\frac{2 \sin (\beta-\alpha)}{\sin \alpha \sin \beta}$
(4) $\frac{\sin \alpha \sin \beta}{\cos (\beta-\alpha)}$

Ans. (2)
Sol. From figure

$\tan \alpha=\frac{\mathrm{h}}{\mathrm{x}+2} \& \tan \beta=\frac{\mathrm{h}}{\mathrm{x}}$
$\mathrm{x} \tan \alpha+2 \tan \alpha=\mathrm{h}$
$\mathrm{h} \frac{\tan \alpha}{\tan \beta}+2 \tan \alpha=\mathrm{h}$
$\mathrm{h}=\frac{2 \sin \alpha \sin \beta}{\sin (\beta-\alpha)}$
23. Two ships A and B are sailing straight away from a fixed point O along routes such that $\angle \mathrm{AOB}$ is always 120°. At a certain instance, $\mathrm{OA}=8 \mathrm{~km}, \mathrm{OB}=6 \mathrm{~km}$ and the ship A is sailing at the rate of $20 \mathrm{~km} / \mathrm{hr}$ while the ship B sailing at the rate of $30 \mathrm{~km} / \mathrm{hr}$. Then the distance between A and B is changing at the rate (in $\mathrm{km} / \mathrm{hr}$)
(1) $\frac{260}{37}$
(2) $\frac{80}{37}$
(3) $\frac{80}{\sqrt{37}}$
(4) $\frac{260}{\sqrt{37}}$

Ans. (4)

Sol.

Let at any time t
$\mathrm{OA}=\mathrm{x} \quad \mathrm{OB}=\mathrm{y}$
$\frac{d x}{d t}=20 \quad \frac{d y}{d t}=30$
$\cos \left(120^{\circ}\right)=\frac{x^{2}+y^{2}-A B^{2}}{2 x y}$
$A B^{2}=x^{2}+y^{2}+x y$
D.w.R. To . t
$2(A B) \frac{d}{d t}(A B)=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}+2 \frac{d y}{d t}+y \frac{d x}{d t}$
when $x=8 y=6$ then $A B=\sqrt{148}$ from (1)
So $\frac{d}{d t}(A B)=\frac{\left(2 x \frac{d x}{d t}+2 y \frac{d y}{d t}+\frac{x d y}{d t}+y \frac{d x}{d t}\right)}{2 A B}$
use $x=8 \quad y=6 \quad A B=\sqrt{148}$
$\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{AB})=260 / \sqrt{37}$
24. If α and β are roots of the equation $x^{2}-4 \sqrt{2} k x+2 e^{4 \ln k}-1=0$ for some k, and $\alpha^{2}+\beta^{2}=66$, then $\alpha^{3}+\beta^{3}$ is equal to
(1) $248 \sqrt{2}$
(2) $280 \sqrt{2}$
(3) $-32 \sqrt{2}$
(4) $-280 \sqrt{2}$

Ans. (2)
Sol. $x^{2}-4 \sqrt{2} k x+2 k^{4}-1=0$

$$
\begin{aligned}
& \alpha+\beta=4 \sqrt{2} \mathrm{k} \\
& \alpha \beta=2 \mathrm{k}^{4}-1 \\
& \Rightarrow \alpha^{2}+\beta^{2}=66 \\
&(\alpha+\beta)^{2}-2 \alpha \beta=66 \\
& 32 \mathrm{k}^{2}-2\left(2 \mathrm{k}^{4}-1\right)=66 \\
& 2\left(2 \mathrm{k}^{4}\right)-32 \mathrm{k}^{2}+64=0 \\
& 4\left(\mathrm{k}^{2}-4\right)^{2}=0 \Rightarrow \mathrm{k}^{2}=4 \Rightarrow \mathrm{k}=2 \\
& \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \\
&=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right) \\
&=(8 \sqrt{2})(66-31)=280 \sqrt{2}
\end{aligned}
$$

25. Let for $i=1,2,3 p_{i}(x)$ be a polynomial of degree 2 in $x, p_{i}{ }^{\prime}(x)$ and $p_{i}{ }^{\prime \prime}(x)$ be the first and second order derivatives of $p_{i}(x)$ respectively.

Let, $A(x)=\left[\begin{array}{lll}p_{1}(x) & p_{1}{ }^{\prime}(x) & p_{1}{ }^{\prime \prime}(x) \\ p_{2}(x) & p_{2}{ }^{\prime}(x) & p_{2}{ }^{\prime \prime}(x) \\ p_{3}(x) & p_{3}{ }^{\prime}(x) & p_{3}{ }^{\prime \prime}(x)\end{array}\right]$
and $B(x)=\left[\begin{array}{ll} \\ A(x)\end{array}\right]^{T A}(x)$. Then determinant of B(x)
(1) Does not depend on x
(2) Is a polynomial of degree 6 in x
(3) Is a polynomial of degree 3 in x
(4) Is a polynomial of degree 2 in x

Ans. (1)
Sol. Let $P_{i}=a_{i} x^{2}+b_{i} x+c_{i} a_{i} \neq 0$
$b_{i}, c_{i} \in R$
$A(x)=\left[\begin{array}{ccc}a_{1} x^{2}+b_{1} x+c_{1} & 2 a_{1} x+b_{1} & 2 a_{1} \\ a_{2} x^{2}+b_{2} x+c_{2} & 2 a_{2} x+b_{2} & 2 a_{2} \\ a_{3} x^{2}+b_{3} x+c_{3} & 2 a_{3} x+b_{3} & 2 a_{3}\end{array}\right]$
use (i) $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{xC}_{3}$
then use (ii) $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{x}_{2}-\frac{\mathrm{x}^{2}}{2} \mathrm{C}_{3}$
$A(x)=\left[\begin{array}{lll}c_{1} & b_{1} & 2 a_{1} \\ c_{2} & b_{2} & 2 a_{2} \\ c_{3} & b_{3} & 2 a_{3}\end{array}\right] \Rightarrow|A|=$ constant
So $|\mathrm{B}|=\left|\mathrm{A}^{\mathrm{T}}\right||\mathrm{A}|=|\mathrm{A}|^{2}=$ constant independent from n
26. The sum of the first 20 terms common between the series $3+7+11+15+\ldots$. and $1+6+11+16+\ldots .$, is :
(1) 4220
(2) 4020
(3) 4000
(4) 4200

Ans. (2)

Sol.
A. $P_{1}=3,7,11,15 \quad \ldots . . \quad d_{1}=4$
$\mathrm{A} . \mathrm{P}_{2}=1,6,11,16$ \qquad
Ist common term $=11$
from x

$$
\mathrm{d}_{2}=5
$$

$$
\mathrm{d}=\operatorname{LCM}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)
$$

$$
d=20
$$

New A.P of common terms having
$\mathrm{a}=11$ as Ist term $\& \mathrm{~d}=20$
sum of 20 term $\Rightarrow \frac{20}{2}[2 \times 11+19 \times 20]$

$$
=4020
$$

27. If $|\overrightarrow{\mathrm{c}}|^{2}=60$ and $\overrightarrow{\mathrm{c}} \times(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})=\overrightarrow{0}$, then a value of $\overrightarrow{\mathbf{c}} \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k})$ is
(1) $4 \sqrt{2}$
(2) 24
(3) $12 \sqrt{2}$
(4) 12

Ans. (3)
Sol. $\overline{\mathrm{C}} \times(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})=0$

$$
\overrightarrow{\mathrm{C}}=\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})
$$

$|C|=\lambda \sqrt{30} \Rightarrow \lambda^{2}(30)=|c|^{2}=60$

$$
\begin{gathered}
\lambda= \pm \sqrt{2} \\
\Rightarrow \overline{\mathrm{C}} \cdot(-7 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \\
\Rightarrow \lambda(\mathrm{i}+2 \mathrm{j}+5 \mathrm{k}) \cdot(-7 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}) \\
\Rightarrow \lambda(-7+4+15)=12 \lambda \\
=12 \sqrt{2} \quad \text { or }-12 \sqrt{2}
\end{gathered}
$$

28. Let A be a 3×3 matrix such that

$$
\mathrm{A}\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Then A^{-1} is
(1) $\left[\begin{array}{lll}3 & 2 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & 0\end{array}\right]$
(2) $\left[\begin{array}{lll}3 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 1\end{array}\right]$
(3) $\left[\begin{array}{lll}0 & 1 & 3 \\ 0 & 2 & 3 \\ 1 & 1 & 1\end{array}\right]$
(4) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 3\end{array}\right]$

Ans. (2)
Sol. $\quad \therefore \mathrm{AA}^{-1}=\mathrm{I}$
given $A\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
use column transformation and make RHS as I
(i) $\mathrm{C}_{1} \leftrightarrow \mathrm{C}_{3} \quad \mathrm{~A}\left[\begin{array}{lll}3 & 2 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
(ii) $\mathrm{C}_{2} \leftrightarrow \mathrm{C}_{3} \quad \mathrm{~A}\left[\begin{array}{lll}3 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\mathrm{A}^{-1}=\left[\begin{array}{lll}
3 & 1 & 2 \\
3 & 0 & 2 \\
1 & 0 & 1
\end{array}\right]
$$

29. A stair-case of length l rests against a vertical wall and a floor of a room,. Let P be a point on the stair-case, nearer to its end on the wall, that divides its length in the ratio $1: 2$. If the stair-case begins to slide on the floor, then the locus of P is :
(1) An ellipse of eccentricity $\frac{\sqrt{3}}{2}$
(2) A circle of radius $\frac{\ell}{2}$
(3) An ellipse of eccentricity $\frac{1}{2}$
(4) A circle of radius $\frac{\sqrt{3}}{2} \ell$

Ans. (1)

Sol.

Let any time one end is A ($\mathrm{x}, 0$) \& other and $\mathrm{B}(0, \mathrm{y})$ so

$$
\begin{equation*}
\ell^{2}=x^{2}+y^{2} \tag{1}
\end{equation*}
$$

Let P is (h, k) using section formula
$(\mathrm{h}, \mathrm{k})=\left(\frac{\mathrm{x}}{3}, \frac{2 \mathrm{y}}{3}\right)$
$x=3 h \& y=\frac{3 k}{2}$
use in (1)
$9 h^{2}+\frac{9 k^{2}}{4}=\ell^{2}$
Locus of Pt p is ellipse
which equation is $\left(9 x^{2}+\frac{9 y^{2}}{4}=\ell^{2}\right)$

$$
\frac{\mathrm{x}^{2}}{\left(\frac{\ell^{2}}{9}\right)}+\frac{9^{2}}{\left(\frac{4 \ell^{2}}{9}\right)}=1
$$

$e=\sqrt{1-\frac{\ell^{2}}{9 \times \frac{4 \ell^{2}}{2}}}=\frac{\sqrt{3}}{2}$
30. Ihe base of an equilateral triangle is along the line given by $3 x+4 y=9$. If a vertex of the triangle is $(1,2)$, then the length of a side of the triangle is :
(1) $\frac{4 \sqrt{3}}{15}$
(2) $\frac{4 \sqrt{3}}{5}$
(3) $\frac{2 \sqrt{3}}{15}$
(4) $\frac{2 \sqrt{3}}{5}$

Ans. (1)
Sol. Let BC is base of equilater triangle ABC with side a and A $(1,2)$

$$
\mathrm{AD}=\mathrm{a} \sin 60^{\circ}
$$

AD is perpendicular distance of PtA from line $3 x+4 y-9=0$

$$
\mathrm{AD}=\left|\frac{3 \times 1+4 \times 2-9}{\sqrt{3^{2}+4^{2}}}\right|
$$

$$
a \sin 60^{\circ}=\frac{2}{5}
$$

$$
a=\frac{4}{5 \sqrt{3}}=\frac{4 \sqrt{3}}{15}
$$

