PART C - MATHEMATICS

1. Two tangents are drawn from a point $(-2,-1)$ to the curve, $y^{2}=4 x$. If α is the angle between them, then $|\tan \alpha|$ is equal to :-
(1) $\sqrt{3}$
(2) 3
(3) $\frac{1}{3}$
(4) $\frac{1}{\sqrt{3}}$

Ans. (2)
Sol. Let equation of tangent from $(-2,-1)$ be $y+1=m(x+2)$
$\Rightarrow \mathrm{y}=\mathrm{mx}+(2 \mathrm{~m}-1)$
Condition of tangency, $C=\frac{a}{m}$
i.e., $2 \mathrm{~m}-1=\frac{1}{\mathrm{~m}}$
$\Rightarrow 2 \mathrm{~m}^{2}-\mathrm{m}-1=0$
$(2 m+1)(m-1)=0$
$\mathrm{m}=-\frac{1}{2}, 1$

Now, $|\tan \alpha|=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|=\left|\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right|=3$
2. The general solution of the diffferential equation, $\sin 2 x\left(\frac{d y}{d x}-\sqrt{\tan x}\right)-y=0$, is :-
(1) $y \sqrt{\tan \mathrm{x}}=\cot \mathrm{x}+\mathrm{c}$
(2) $y \sqrt{\cot x}=x+c$
(3) $y \sqrt{\tan \mathrm{x}}=x+c$
(4) $y \sqrt{\cot x}=\tan x+c$

Ans. (2)
Sol. $\quad \sin 2 x\left(\frac{d y}{d x}-\sqrt{\tan x}\right)-y=0$
$\frac{d y}{d x}-\frac{y}{\sin 2 x}=\sqrt{\tan x}$
I.F. $=\mathrm{e}^{-\int \operatorname{cosec} 2 \mathrm{xdx}}=\mathrm{e}^{-\frac{1}{2} \ln \tan \mathrm{x}}=\frac{1}{\sqrt{\tan \mathrm{x}}}$
\Rightarrow General solution

$$
\begin{aligned}
& y \cdot \frac{1}{\sqrt{\tan x}}=\int \sqrt{\tan x} \cdot \frac{1}{\sqrt{\tan x}}+c \\
& y \sqrt{\cot x}=x+c
\end{aligned}
$$

3. If the three distinct lines $x+2 a y+a=0$, $x+3 b y+b=0$ and $x+4 a y+a=0$ are concurrent, then the point (a, b) lies on a :-
(1) circle
(2) straight line
(3) parabola
(4) hyperbola

Ans. (2)
Sol. $x+a(2 y+1)=0$
$x+b(3 y+1)=0$
$x+a(4 y+1)=0$
$\left|\begin{array}{ccc}1 & 2 a & a \\ 1 & 3 b & b \\ 1 & 4 a & a\end{array}\right|=0$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$
$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\left|\begin{array}{ccc}1 & 2 a & a \\ 0 & 3 b-2 a & b-a \\ 0 & 2 a & 0\end{array}\right|=0$

$$
\begin{aligned}
\Rightarrow & 2 \mathrm{a}(\mathrm{~b}-\mathrm{a})=0 \\
& 2 \mathrm{a}=0 \text { or } \mathrm{b}=\mathrm{a}
\end{aligned}
$$

Locus of $(a, b) \Rightarrow x=0$ or $y=x$
4. If
$\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+\lambda)^{2} & (b+\lambda)^{2} & (c+\lambda)^{2} \\ (a-\lambda)^{2} & (b-\lambda)^{2} & (c-\lambda)^{2}\end{array}\right|$
$=k \lambda\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right| \lambda \neq 0$, then k is equal to :-
(1) $4 \lambda \mathrm{abc}$
(2) $-4 \lambda^{2}$
(3) $4 \lambda^{2}$
(4) $-4 \lambda a b c$

Ans. (3)

Sol. $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3}$
$\left|\begin{array}{ccc}\lambda(2 \mathrm{a}-\lambda) & \lambda(2 \mathrm{~b}-\lambda) & \lambda(2 \mathrm{c}-\lambda) \\ 4 \mathrm{a} \lambda & 4 \mathrm{~b} \lambda & 4 \mathrm{c} \lambda \\ (\mathrm{a}-\lambda)^{2} & (\mathrm{~b}-\lambda)^{2} & (\mathrm{c}-\lambda)^{2}\end{array}\right|$
$=\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{1}, \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\frac{1}{2} \mathrm{R}_{2}$
$=\left|\begin{array}{ccc}-\lambda^{2} & -\lambda^{2} & -\lambda^{2} \\ 4 a \lambda & 4 b \lambda & 4 c \lambda \\ a^{2} & b^{2} & c^{2}\end{array}\right|$
$=-4 \lambda^{3}\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|$
$=+4 \lambda^{3}\left|\begin{array}{lll}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|$
$\therefore \mathrm{K}=4 \lambda^{2}$
5. The sum of the roots of the equation, $x^{2}+|2 x-3|-4=0$, is :-
(1) -2
(2) $\sqrt{2}$
(3) $-\sqrt{2}$
(4) 2

Ans. (2)
Sol. $x^{2}+|2 x-3|-4=0$
Case-1: $x \geq \frac{3}{2}$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-3-4=0$
$\Rightarrow \mathrm{x}=-1 \pm 2 \sqrt{2}$
$\Rightarrow \mathrm{x}=-1+2 \sqrt{2}$
Case-2 : $\mathrm{x}<\frac{3}{2}$
$\Rightarrow \mathrm{x}^{2}-2 \mathrm{x}-1=0$
$\Rightarrow \quad x=1 \pm \sqrt{2}$
$\Rightarrow \quad \mathrm{x}=1-\sqrt{2}$
\Rightarrow Sum $=\sqrt{2}$
6. Let $\mathrm{z} \neq-\mathrm{i}$ be any complex number such that $\frac{\mathrm{z}-\mathrm{i}}{\mathrm{z}+\mathrm{i}}$ is a purely imaginary number. Then $\mathrm{z}+\frac{1}{\mathrm{Z}}$ is :-
(1) any non-zero real number other than 1.
(2) a purely imaginary number.
(3) 0
(4) any non- zero real number

Ans. (4)
Sol. Let $\mathrm{Z}=\mathrm{x}+\mathrm{iy}$
$\frac{\mathrm{z}-\mathrm{i}}{\mathrm{z}+\mathrm{i}}$ is a purely imaginary number
$\Rightarrow \frac{x+i(y-1)}{x+i(y+1)} \times \frac{x-i(y+1)}{x-i(y+1)}$ is a purely imaginary
$\Rightarrow \frac{\left(x^{2}+y^{2}-1\right)-i(2 x)}{x^{2}+(y+1)^{2}}$ is purely imaginary
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-1=0 \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=1$
$z+\frac{1}{z}=x+i y+\frac{1}{x+i y}$

$$
\begin{aligned}
& =(x+i y)+\frac{1}{(x+i y)} \times \frac{(x-i y)}{(x-i y)} \\
& =(x+i y)+\frac{(x-i y)}{x^{2}+y^{2}}=2 x
\end{aligned}
$$

$x \neq 1$
(\because if $\mathrm{x}=1$ then $\mathrm{y}=0$, from (i) \& z won't be complex number)
If $x=1 \Rightarrow y=0$
$\Rightarrow \mathrm{z}=1$
$\Rightarrow \frac{\mathrm{z}-\mathrm{i}}{\mathrm{z}+\mathrm{i}}=\frac{1-\mathrm{i}}{1+\mathrm{i}}$ cannot be purely imaginary.
7. If $A=\left[\begin{array}{ccc}1 & 2 & x \\ 3 & -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{l}y \\ x \\ 1\end{array}\right]$ be such that $\mathrm{AB}=\left[\begin{array}{l}6 \\ 8\end{array}\right]$, then :-
(1) $y=-2 x$
(2) $y=2 x$
(3) $y=x$
(4) $y=-x$

Ans. (2)

Sol. $\quad \mathrm{AB}=\left[\begin{array}{l}y+3 \mathrm{x} \\ 3 \mathrm{y}-\mathrm{x}+2\end{array}\right]=\left[\begin{array}{l}6 \\ 8\end{array}\right]$
$y+3 x=6$
$3 y-x=6$
$y+3 x=3 y-x$
$4 \mathrm{x}=4 \mathrm{y}$
$x=y$
8. Let \bar{X} and M.D. be the mean and the mean deviation about \bar{X} of n observation $x_{i}, i=1,2, \ldots ., n$. If each of the observation is increased by 5 , then the new mean and the mean deviation about the new mean respectively, are :-
(1) $\bar{X}+5$, M.D.
(2) $\bar{X}+5$, M.D. +5
(3) \bar{X}, M.D.
(4) \bar{X}, M.D. +5

Ans. (1)
Sol. If all the observations are increased by K then mean is increased by K but M.D. remains same.
9. If for a continuous function $f(x)$, $\int_{-\pi}^{t}(f(x)+x) d x=\pi^{2}-t^{2}$, for all $t \geq-\pi$, then $\mathrm{f}\left(-\frac{\pi}{3}\right)$ is equal to :-
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{2}$
(4) π

Ans. (4)
Sol. $\int_{-\pi}^{t}(f(x)+x) d x=\pi^{2}-t^{2}$
$\Rightarrow \int_{-\pi}^{t} f(x) d x+\int_{-\pi}^{t} x d x=\pi^{2}-t^{2}$
$\Rightarrow \int_{-\pi}^{\mathrm{t}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\frac{3}{2}\left(\pi^{2}-\mathrm{t}^{2}\right)$
$\Rightarrow \int_{-\pi}^{t} f(x) d x=\int_{-\pi}^{t}-3 x d x \Rightarrow f(x)=-3 x$
$f\left(-\frac{\pi}{3}\right)=-3\left(-\frac{\pi}{3}\right)=\pi$
10. A number x is chosen at random from the set
$\{1,2,3,4, \ldots ., 100\}$. Define the event :
$\mathrm{A}=$ the chosen number x satisfies
$\frac{(x-10)(x-50)}{(x-30)} \geq 0$
Then $\mathrm{P}(\mathrm{A})$ is :-
(1) 0.20
(2) 0.51
(3) 0.71
(4) 0.70

Ans. (3)
Sol. $\mathrm{S}=\{1,2,3$.
A : Chosen no. x satisfies

$$
\frac{(x-10)(x-50)}{(x-30)} \geq 0
$$

$\therefore \quad \mathrm{x} \in\{10,11,12 \ldots . .29\} \cup\{50,51 \ldots$
$\mathrm{P}(\mathrm{A})=\frac{71}{100}=0.71$
11. Let f and g be two diffrentiable functions on \mathbf{R} such that $\mathrm{f}^{\prime}(\mathrm{x})>0$ and $\mathrm{g}^{\prime}(\mathrm{x})<0$, for all $\mathrm{x} \in \mathbf{R}$. Then for all x :-
(1) $g(f(x))>g(f(x-1))$
(2) $\mathrm{f}(\mathrm{g}(\mathrm{x}))>\mathrm{f}(\mathrm{g}(\mathrm{x}-1))$
(3) $g(f(x))<g(f(x+1))$
(4) $f(g(x))>f(g(x-1))$

Ans. (4)
Sol. $f^{\prime}(x)>0 \Rightarrow f(x)$ is increasing function $g^{\prime}(x)<0 \Rightarrow g(x)$ is decreasing function Now,
(i) $x>x-1$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})>\mathrm{f}(\mathrm{x}-1) \\
& \mathrm{g}(\mathrm{f}(\mathrm{x}))<\mathrm{g}(\mathrm{f}(\mathrm{x}-1))
\end{aligned}
$$

and
(ii) $\mathrm{x}+1>\mathrm{x}$
$f(x+1)>f(x)$
$\mathrm{g}(\mathrm{f}(\mathrm{x}+1))<\mathrm{g}(\mathrm{f}(\mathrm{x}))$
(iii) $\mathrm{x}>\mathrm{x}-1$
$g(x)<g(x-1)$
$\mathrm{f}(\mathrm{g}(\mathrm{x}))<\mathrm{f}(\mathrm{g}(\mathrm{x}-1))$
(iv) $\mathrm{x}+1>\mathrm{x}$
$g(x+1)<g(x)$
$\mathrm{f}(\mathrm{g}(\mathrm{x}+1))<\mathrm{f}(\mathrm{g}(\mathrm{x}))$
12. If $f(x)=x^{2}-x+5, x>\frac{1}{2}$, and $g(x)$ is its inverse function, then $g^{\prime}(7)$ equals :-
(1) $\frac{1}{3}$
(2) $-\frac{1}{3}$
(3) $-\frac{1}{13}$
(4) $\frac{1}{13}$

Ans. (1)
Sol. $f(x)=x^{2}-x+5$
$g(f(x))=x$
$g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$
$\Rightarrow \quad \mathrm{g}^{\prime}(\mathrm{f}(2))=\frac{1}{\mathrm{f}^{\prime}(2)}$
$\Rightarrow \quad g^{\prime}(7)=\frac{1}{3}$
13. Statement I : The equation
$\left(\sin ^{-1} \mathrm{x}\right)^{3}+\left(\cos ^{-1} \mathrm{x}\right)^{3}-\mathrm{a} \pi^{3}=0$ has a solution for all $\mathrm{a} \geq \frac{1}{32}$.

Statement II : For any $x \in R$,
$\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$ and
$0 \leq\left(\sin ^{-1} \mathrm{x}-\frac{\pi}{4}\right)^{2} \leq \frac{9 \pi^{2}}{16}$
(1) Both statement I and II are true
(2) Statement I is true and statement II is false
(3) Statement I is false and statement II is true
(4) Both statements I and II are false

Ans. (3)
Sol. Statement-I

$$
\begin{aligned}
& \left(\sin ^{-1} \mathrm{x}\right)^{3}+\left(\cos ^{-1} \mathrm{x}\right)^{3}-\mathrm{a} \pi^{3}=0 \\
& \Rightarrow\left(\sin ^{-1} \mathrm{x}\right)^{3}+\left(\cos ^{-1} \mathrm{x}\right)^{3}=\mathrm{a} \pi^{3} \\
& \Rightarrow\left(\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{x}\right)^{3}-3 \sin ^{-1} \mathrm{x} \cos ^{-1} \mathrm{x}\left(\sin ^{-1} \mathrm{x}+\right. \\
& \left.\quad \cos ^{-1} \mathrm{x}\right)=\mathrm{a} \pi^{3} \\
& \Rightarrow \\
& \frac{\pi^{3}}{8}-\frac{3 \pi}{2}\left(\frac{\pi}{2}-\cos ^{-1} \mathrm{x}\right) \cos ^{-1} \mathrm{x}=\mathrm{a} \pi^{3}
\end{aligned}
$$

$\Rightarrow \frac{\pi^{3}}{8}-\frac{3 \pi^{2}}{4} \cos ^{-1} x+\frac{3 \pi}{2}\left(\cos ^{-1} x\right)^{2}=a \pi^{3}$
$\Rightarrow \frac{3 \pi}{2}\left[\left(\cos ^{-1} x\right)^{2}-\frac{\pi}{2} \cos ^{-1} x\right]+\frac{\pi^{3}}{8}=\mathrm{a} \pi^{3}$
$\Rightarrow \frac{3 \pi}{2}\left[\left(\cos ^{-1} \mathrm{x}-\frac{\pi}{4}\right)^{2}-\frac{\pi^{2}}{16}\right]+\frac{\pi^{3}}{8}=\mathrm{a} \pi^{3}$

$$
\begin{align*}
& \left(\cos ^{-1} \mathrm{x}-\frac{\pi}{4}\right)^{2}=\left(\frac{2 \mathrm{a}}{3}-\frac{1}{48}\right) \pi^{2} \tag{1}\\
\because \quad & 0 \leq \cos ^{-1} \mathrm{x} \leq \pi \\
& -\frac{\pi}{4} \leq\left(\cos ^{-1} \mathrm{x}-\frac{\pi}{4}\right) \leq \frac{3 \pi}{4} \\
& 0 \leq\left(\cos ^{-1} \mathrm{x}-\frac{\pi}{4}\right)^{2} \leq \frac{9 \pi^{2}}{16}
\end{align*}
$$

From equation (1)

$$
\frac{1}{32} \leq a \leq \frac{7}{8}
$$

\therefore Statement-I is false

Statement-II

$\sin ^{-1} \mathrm{X}+\cos ^{-1} \mathrm{X}=\frac{\pi}{2} \forall \mathrm{x} \in[-1,1]$
not for any $x \in R$ so Statement-II is false
14. Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be two functions defined by $f(x)=\left\{\begin{array}{l}x \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0 \quad, x=0\end{array}\right.$, and $g(x)=x f(x):-$

Statement I : f is a continuous function at $\mathrm{x}=0$.
Statement II : g is a differentiable function at $\mathrm{x}=0$.
(1) Statement I is false and statement II is true
(2) Statement I is true and statement II is false
(3) Both statement I and II are true
(4) Both statements I and II are false

Ans. (3)

Sol. Statement-I
$f(x)=\left\{\begin{array}{cl}x \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$
$\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0=f(0)$
Hence $f(x)$ is continuous function
$g(0)=0=\lim _{x \rightarrow 0} g(x)$
LHD :
$\lim _{x \rightarrow 0} \frac{g(o-h)-g(0)}{-h}$
$\lim _{x \rightarrow 0} \frac{h^{2} \sin \left(-\frac{1}{h}\right)-0}{-h}$

LHD $=0$
RHD :
$\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}$
$\lim _{h \rightarrow 0} \frac{h^{2} \sin \left(\frac{1}{h}\right)-0}{h}$
RHD $=0$
LHD = RHD
Hence $g(x)$ at $x=0$ is diff. function.
15. For the two circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}-2 y=0$, there is / are:-
(1) no common tangent
(2) two pairs of common tangents
(3) one pair of common tangents
(4) three common tangents

Ans. (1)
Sol. S-I : $\mathrm{x}^{2}+\mathrm{y}^{2}=4^{2}$
S-II : $x^{2}+(y-1)^{2}=1$
Aliter : Distance between their centres is 1 units and sum of their radii is 3 so one of them lie completely inside the other, hence no common tangent.
Also, from figure we can say no common tangent :

16. If $\left(2+\frac{x}{3}\right)^{55}$ is expanded in the ascending powers of x and the coefficients of powers of x in two consecutive terms of the expansion are equal, then these terms are :-
(1) $28^{\text {th }}$ and $29^{\text {th }}$
(2) $8^{\text {th }}$ and $9^{\text {th }}$
(3) $7^{\text {th }}$ and $8^{\text {th }}$
(4) $27^{\text {th }}$ and $28^{\text {th }}$

Ans. (2)
Sol. $\left(2+\frac{x}{3}\right)^{55}$
General term
${ }^{55} \mathrm{C}_{\mathrm{r}} \times 2^{55-\mathrm{r}} \times\left(\frac{\mathrm{x}}{3}\right)^{\mathrm{r}}$
Let $\mathrm{T}_{\mathrm{r}+1}$ and $\mathrm{T}_{\mathrm{r}+2}$ are having some co-efficients
\Rightarrow Coff. of $T_{r+1}=$ Coff. of T_{r+2}

$$
{ }^{55} \mathrm{C}_{\mathrm{r}} \times 2^{55-\mathrm{r}} \times\left(\frac{1}{3}\right)^{\mathrm{r}}={ }^{55} \mathrm{C}_{\mathrm{r}+1} \times(2)^{54-\mathrm{r}} \times\left(\frac{1}{3}\right)^{\mathrm{r}+1}
$$

$\Rightarrow \mathrm{r}=6$
\Rightarrow Coff. of $\mathrm{T}_{7}=$ Coff. of T_{8}
17. If the distance between planes,
$4 \mathrm{x}-2 \mathrm{y}-4 \mathrm{z}+1=0$ and $4 \mathrm{x}-2 \mathrm{y}-4 \mathrm{z}+\mathrm{d}=0$
is 7 , then d is :-
(1) 41 or -42
(2) - 42 or 44
(3) 42 or -43
(4) -41 or 43

Ans. (4)

Sol. $\left|\frac{d-1}{\sqrt{4^{2}+2^{2}+4^{2}}}\right|=7 \Rightarrow\left|\frac{d-1}{6}\right|=7$
$\mathrm{d}-1= \pm 42$
$\mathrm{d}=+43,-41$
18. The minimum area of a triangle formed by any tangent to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{81}=1$ and the coordinate axes is :-
(1) 26
(2) 18
(3) 36
(4) 12

Ans. (3)
Sol. Let $\mathrm{P}(4 \cos \theta, 9 \sin \theta)$ be a point on ellipse equation of tangent $\frac{x}{4} \cos \theta+\frac{y}{9} \sin \theta=1$

Let A \& B are point of intersection of tangent at P with co-ordinate axes.

$\mathrm{A}\left(\frac{4}{\cos \theta}, 0\right) \mathrm{B}\left(0, \frac{9}{\sin \theta}\right)$

Area of $\triangle \mathrm{OAB}=\frac{1}{2}\left(\frac{4}{\cos \theta}\right)\left(\frac{9}{\sin \theta}\right)=\frac{36}{\sin 2 \theta}$
$(\text { Area })_{\min }=36$ as $\sin 2 \theta=1$
19. If \hat{x}, \hat{y} and \hat{z} are three unit vectors in threedimensional space, then the minimum value of $|\hat{x}+\hat{y}|^{2}+|\hat{y}+\hat{z}|^{2}+|\hat{z}+\hat{x}|^{2}$ is :-
(1) $\frac{3}{2}$
(2) $3 \sqrt{3}$
(3) 3
(4) 6

Ans. (3)
Sol. $|\hat{x}+\hat{\mathrm{y}}|^{2}+|\hat{\mathrm{y}}+\hat{\mathrm{z}}|^{2}+|\hat{\mathrm{z}}+\hat{\mathrm{x}}|^{2}=\mathrm{K}$ let
$K=2 \hat{x}^{2}+2 \hat{y}^{2}+2 \hat{z}^{2}+2 \hat{x} . \hat{y}+2 \hat{y} \cdot \hat{z}+2 \hat{z} \cdot \hat{x}$
$K=2+2+2+2\left[\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}\right]$
When $\theta_{1}=\theta_{2}=\theta_{3}=\frac{2 \pi}{3}$
Then $K_{\min }=6+2\left(-\frac{3}{2}\right)=6-3=3$
20. Let G be the geometric mean of two positive numbers a and b , and M be the arthemetic mean of $\frac{1}{\mathrm{a}}$ and $\frac{1}{\mathrm{~b}}$. If $\frac{1}{\mathrm{M}}: G$ is $4: 5$, then $\mathrm{a}: \mathrm{b}$ can be :-
(1) $2: 3$
(2) $1: 4$
(3) $1: 2$
(4) $3: 4$

Ans. (2)
21. The least positive integer n such that $1-\frac{2}{3}-\frac{2}{3^{2}}-\ldots \ldots-\frac{2}{3^{n-1}}<\frac{1}{100}$, is :-
(1) 7
(2) 4
(3) 5
(4) 6

Ans. (4)
Sol. $\quad 1-2\left(\frac{1}{3^{1}}+\frac{1}{3^{2}} \ldots \ldots . \frac{1}{3^{\mathrm{n}-1}}\right)<\frac{1}{100}$

$$
\begin{aligned}
& 1-2\left(\frac{1}{3}\right) \frac{\left[1-\frac{1}{3^{\mathrm{n}-1}}\right]}{\left(\frac{2}{3}\right)}<\frac{1}{100} \\
& \Rightarrow 1-1+\frac{1}{3^{\mathrm{n}-1}}<\frac{1}{100} \\
& 100<3^{\mathrm{n}-1} \\
& \mathrm{n}-1=5 \\
& n=6
\end{aligned}
$$

22. If a line intercepted between the coordinate axes is trisected at a point $\mathrm{A}(4,3)$, which is nearer to x-axis, then its equation is :-
(1) $3 x+8 y=36$
(2) $4 x-3 y=7$
(3) $x+3 y=13$
(4) $3 x+2 y=18$

Ans. (4)
Sol. $4=\frac{\mathrm{a}}{3} \quad \mathrm{a}=12$
$3=\frac{2 b}{3} \quad b=\frac{9}{2}$
$\frac{x}{12}+\frac{y}{9}(2)=1$
$3 x+8 y=36$
23. If $f(\theta)=\left|\begin{array}{ccc}1 & \cos \theta & 1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1\end{array}\right|$ and
A and B are respectively the maximum and the minimum values of $f(\theta)$, then (A, B) is equal to :-
(1) $(4,2-\sqrt{2})$
(2) $(2+\sqrt{2}, 2-\sqrt{2})$
(3) $(3,-1)$
(4) $(2+\sqrt{2},-1)$

Ans. (2)
Sol. Expanding the determinant, we get
$f(\theta)=1(1+\sin \theta \cos \theta)+\cos \theta(\sin \theta+\cos \theta)+$ $1\left(1-\sin ^{2} \theta\right)$
$=1+2 \sin \theta \cos \theta+2 \cos ^{2} \theta$
$=1+\sin 2 \theta+(1+\cos 2 \theta)$
$=2+\sin 2 \theta+\cos 2 \theta$
Now,
$\sin 2 \theta+\cos 2 \theta$ lies between $-\sqrt{2}$ to $\sqrt{2}$

$$
\begin{aligned}
& {\left[\sqrt{2}\left(\sin \left(\frac{\pi}{4}+2 \theta\right)\right) \rightarrow \pm \sqrt{2}\right] } \\
\therefore & A=2+\sqrt{2} ; \quad B=2-\sqrt{2}
\end{aligned}
$$

24. The integral $\int \frac{\sin ^{2} x \cos ^{2} x}{\left(\sin ^{3} x+\cos ^{3} x\right)^{2}} d x$ is equal to :-
(1) $-\frac{\cos ^{3} \mathrm{x}}{3\left(1+\sin ^{3} \mathrm{x}\right)}+\mathrm{c}$
(2) $\frac{1}{\left(1+\cot ^{3} \mathrm{x}\right)}+\mathrm{c}$
(3) $-\frac{1}{3\left(1+\tan ^{3} \mathrm{x}\right)}+\mathrm{c}$
(4) $\frac{\sin ^{3} \mathrm{x}}{\left(1+\cos ^{3} \mathrm{x}\right)}+\mathrm{c}$

Ans. (3)
Sol. $\int \frac{\sin ^{2} x \cos ^{2} x d x}{\left(\sin ^{3} x+\cos ^{3} x\right)^{2}}=\int \frac{\tan ^{2} x \sec ^{2} x d x}{\left(1+\tan ^{3} x\right)^{2}}$
Put $\tan ^{3} \mathrm{x}=\mathrm{t}$
$3 \tan ^{2} \mathrm{x} \cdot \sec ^{2} \mathrm{xdx}=\mathrm{dt}$
$\int \frac{\mathrm{dt}}{3(1+\mathrm{t})^{2}}=\frac{-1}{3(1+\mathrm{t})}+\mathrm{C}$

$$
=\frac{-1}{3\left(1+\tan ^{3} x\right)}+C
$$

25. A symmetrical form of the line of intersection of the planes $x=a y+b$ and $z=c y+d$ is :-
(1) $\frac{x-a}{b}=\frac{y-0}{1}=\frac{z-c}{d}$
(2) $\frac{x-b-a}{b}=\frac{y-1}{0}=\frac{z-d-c}{d}$
(3) $\frac{x-b-a}{a}=\frac{y-1}{1}=\frac{z-d-c}{c}$
(4) $\frac{x-b}{a}=\frac{y-1}{1}=\frac{z-d}{c}$

Ans. (3)

Sol. $\frac{x-b}{a}=y=\frac{z-d}{c}$
$\Rightarrow \frac{x-b}{a}-1=y-1=\frac{z-d}{c}-1$

$$
\frac{\mathrm{x}-\mathrm{b}-\mathrm{a}}{\mathrm{a}}=\frac{\mathrm{y}-1}{1}=\frac{\mathrm{z}-\mathrm{d}-\mathrm{c}}{\mathrm{c}}
$$

26. 8-digit numbers are formed using the digits $1,1,2,2,2,3,4,4$. The number of such number in which the odd digits do not occupy odd places, is :-
(1) 60
(2) 48
(3) 160
(4) 120

Ans. (4)
Sol. No. of ways of selecting 3 odd places out of 4 odd places.
${ }^{4} \mathrm{C}_{3} \times \frac{3!}{2!} \times \frac{5!}{3!2!}$
$=4 \times 3 \times 5 \times 2$
$=120$
27. If $1+x^{4}+x^{5}=\sum_{i=0}^{5} a_{i}(1+x)^{i}$, for all x in \mathbf{R}, then a_{2} is :-
(1) -8
(2) 6
(3) 10
(4) -4

Ans. (4)
Sol. $1+x^{4}+x^{5}=a_{0}+a_{1}(1+x)+a_{2}(1+x)^{2}+$
$a_{3}(1+x)^{3}+a_{4}(1+x)^{4}+a_{5}(1+x)^{5}$
$=a_{0}+a_{1}(1+x)+a_{2}\left(1+2 x+x^{2}\right)+a_{3}(1+3 x$
$\left.+3 x^{2}+x^{3}\right)+a_{4}\left(1+4 x+6 x^{2}+4 x^{3}+x^{4}\right)+a_{5}(1$
$\left.+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5}\right)$
So, Coeff. of x^{i} in LHS $=$ Coeff. of x^{i} on RHS
$i=5 \Rightarrow 1=a_{5}$
$\mathrm{i}=4 \Rightarrow 1=\mathrm{a}_{4}+5 \mathrm{a}_{5}=\mathrm{a}_{4}+5$

$$
\begin{equation*}
\Rightarrow \mathrm{a}_{4}=-4 \tag{ii}
\end{equation*}
$$

$\mathrm{i}=3 \Rightarrow 0=\mathrm{a}_{3}+4 \mathrm{a}_{4}+10 \mathrm{a}_{5}$

$$
\Rightarrow a_{3}-16+10=0
$$

$$
\begin{equation*}
\Rightarrow a_{3}=6 \tag{iii}
\end{equation*}
$$

$\mathrm{i}=2 \Rightarrow 0=\mathrm{a}_{2}+3 \mathrm{a}_{3}+6 \mathrm{a}_{4}+10 \mathrm{a}_{5}$

$$
\Rightarrow \mathrm{a}_{2}+18-24+10=0
$$

$$
\Rightarrow a_{2}=-4
$$

Put $\mathrm{x}=-1$
$1=\mathrm{a}_{0}$
Now differentiate w.r.t. x.
$4 x^{3}+5 x^{4}=a_{1}+2 a_{2}(1+x)+3 a_{3}(1+x)^{2}+\ldots$.
Put $x=-1$
$\Rightarrow 1=\mathrm{a}_{1}$
Again differentiate w.r.t. x
$12 x^{2}+20 x^{3}=2 x_{2}+6 a_{3}(1+x)$
Put $x=-1$
$12-20=2 \mathrm{a}_{2} \Rightarrow \mathrm{a}_{2}=-4$
28. Let p, q, r denote arbitrary statements. Then the logically equivalent of the statement $p \Rightarrow(q \vee r)$ is :-
(1) $(p \vee q) \Rightarrow r$
(2) $(\mathrm{p} \Rightarrow \sim \mathrm{q}) \wedge(\mathrm{p} \Rightarrow \mathrm{r})$
(3) $(\mathrm{p} \Rightarrow \mathrm{q}) \wedge(\mathrm{p} \Rightarrow \sim \mathrm{r})$
(4) $(p \Rightarrow q) \vee(p \Rightarrow r)$

Ans. (4)
Sol. $\mathrm{p} \rightarrow(\mathrm{q} \vee \mathrm{r})$
$\sim p \vee(q \vee r)$
$(\sim \mathrm{p} \vee \mathrm{q}) \vee(\sim \mathrm{p} \vee \mathrm{r})$
$(\mathrm{p} \Rightarrow \mathrm{q}) \vee(\mathrm{p} \Rightarrow \mathrm{r})$
29. If [] denote the greatest integer function, then the integral $\int_{0}^{\pi}[\cos x] d x$ is equal to :-
(1) 0
(2) $\frac{\pi}{2}$
(3) $-\frac{\pi}{2}$
(4) -1

Ans. (3)

Sol. $\int_{0}^{\pi}[\cos x] d x$
$=\int_{0}^{\pi / 2} 0 . d x+\int_{\frac{\pi}{2}}^{\pi}-1 d x$
$=[-\mathrm{x}]_{\frac{\pi}{2}}^{\pi}=-\frac{\pi}{2}$
30. A relation on the set $A=\{x:|x|<3, x \in Z\}$, where Z is the set of integers is defined by $R=\{(x, y): y=|x|, x \neq-1\}$. Then the number of elements in the power set of R is : :-
(1) 32
(2) 64
(3) 16
(4) 8

Ans. (3)
Sol. $A=\{-2,-1,0,1,2\}$
$\mathrm{R}=\{(-2,2)(0,0)(1,1),(1,2)\}$
$n(P(R))=2^{4}=16$

