JEE ADVANCED - 2013
 Paper - 2

 CHEMISTRY

 CHEMISTRY}

SECTION -1 (One or more options correct Type)

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.
*21. \quad The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 1.1×10^{-12} at 298 K . The solubility (in $\mathrm{mol} / \mathrm{L}$) of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in a $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution is
(A) 1.1×10^{-11}
(B) 1.1×10^{-10}
(C) 1.1×10^{-12}
(D) 1.1×10^{-9}

Sol. (B)
$\mathrm{K}_{\text {sp }}=1.1 \times 10^{-12}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{-2}\right]$
$1.1 \times 10^{-12}=[0.1]^{2}[\mathrm{~s}]$
$\mathrm{s}=1.1 \times 10^{-10}$
22. In the following reaction, the product(s) formed is(are)

P

Q

R

S
(A) P (major)
(C) R (minor)

Sol. (B, D)

$\mathrm{CHCl}_{3}+\overline{\mathrm{O}} \mathrm{H} \longrightarrow: \mathrm{CCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{-}$
(B) Q (minor)
(D) S (major)

23. The major product(s) of the following reaction is (are)

P

Q

(B) Q
(A) P
(D) S

Sol. (B)

24. After completion of the reactions (I and II), the organic compound(s) in the reaction mixtures is(are)

$(1.0 \mathrm{~mol})$

Reaction II :

(A) Reaction I: P and Reaction II : P
(B) Reaction I: U, acetone and Reaction II:Q, acetone
(C) Reaction I: T, U, acetone and Reaction II : P
(D) Reaction I : R, acetone and Reaction II : S, acetone

Sol. (C)
Solve as per law of limiting reagent.

25. The correct statement(s) about O_{3} is(are)
(A) $\mathrm{O}-\mathrm{O}$ bond lengths are equal.
(B) Thermal decomposition of O_{3} is endothermic.
(C) O_{3} is diamagnetic in nature.
(D) O_{3} has a bent structure

Sol. (A, C, D)

*26. In the nuclear transmutation
${ }_{4}^{9} \mathrm{Be}+\mathrm{X} \longrightarrow{ }_{4}^{8} \mathrm{Be}+\mathrm{Y}$
(X, Y) is (are)
(A) (γ, n)
(B) (p, D)
(C) (n, D)
(D) (γ, p)

Sol. (A, B)
${ }_{4}^{9} \mathrm{Be}+\gamma \longrightarrow{ }_{4}^{8} \mathrm{Be}+{ }_{0}^{1} \mathrm{n}$
${ }_{4}^{9} \mathrm{Be}+{ }_{1}^{1} \mathrm{P} \longrightarrow{ }_{4}^{8} \mathrm{Be}+{ }_{1}^{2} \mathrm{H}$
Hence (A) and (B) are correct
27. The carbon-based reduction method is NOT used for the extraction of
(A) tin from SnO_{2}
(B) iron from $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(C) aluminium from $\mathrm{Al}_{2} \mathrm{O}_{3}$
(D) magnesium from $\mathrm{MgCO}_{3} \cdot \mathrm{CaCO}_{3}$

Sol. (C, D)
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ and SnO_{2} undergoes C reduction. Hence (C) and (D) are correct.
*28. The thermal dissociation equilibrium of $\mathrm{CaCO}_{3}(\mathrm{~s})$ is studied under different conditions.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
For this equilibrium, the correct statement(s) is(are)
(A) $\Delta \mathrm{H}$ is dependent on T
(B) K is independent of the initial amount of CaCO_{3}
(C) K is dependent on the pressure of CO_{2} at a given T
(D) $\Delta \mathrm{H}$ is independent of the catalyst, if any

Sol. (A, B, D)

For the equilibrium $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{S})+\mathrm{CO}_{2}(\mathrm{~g})$. The equilibrium constant (K) is independent of initial amount of CaCO_{3} where as at a given temperature is independent of pressure of $\mathrm{CO}_{2} . \Delta \mathrm{H}$ is independent of catalyst and it depends on temperature.
Hence (A), (B) and (D) are correct.

SECTION-2 (Paragraph Type)

This section contains 4 paragraphs each describing theory, experiment, data etc. Eight questions relate to four paragraphs with two questions on each paragraph. Each question of a paragraph has only one correct answer among the four choices (A), (B), (C) and (D).

Paragraph for Question Nos. 29 and 30

An aqueous solution of a mixture of two inorganic salts, when treated with dilute HCl , gave a precipitate ($\mathbf{(P)}$ and a filtrate (\mathbf{Q}). The precipitate \mathbf{P} was found to dissolve in hot water. The filtrate (\mathbf{Q}) remained unchanged, when treated with $\mathrm{H}_{2} \mathrm{~S}$ in a dilute mineral acid medium. However, it gave a precipitate (R) with $\mathrm{H}_{2} \mathrm{~S}$ in an ammoniacal medium. The precipitate \mathbf{R} gave a coloured solution (S), when treated with $\mathrm{H}_{2} \mathrm{O}_{2}$ in an aqueous NaOH medium.
29. The precipitate \mathbf{P} contains
(A) Pb^{2+}
(B) Hg_{2}^{2+}
(C) Ag^{+}
(D) Hg^{2+}

Sol. (A)
30. The coloured solution \mathbf{S} contains
(A) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(B) CuSO_{4}
(C) ZnSO_{4}
(D) $\mathrm{Na}_{2} \mathrm{CrO}_{4}$

Sol. (D)
Solution for the Q. No. 29 to 30.

$$
\mathrm{Pb}^{+2}+2 \mathrm{HCl} \longrightarrow \mathrm{PbCl}_{2} \xrightarrow[\text { Water }]{\text { Hot }} \text { soluble. }
$$

$\mathrm{Cr}^{+3} \xrightarrow[\text { ammoniacal }]{\mathrm{H}_{2} \mathrm{~S}} \mathrm{Cr}(\mathrm{OH})_{3} \downarrow$
$\mathrm{Cr}(\mathrm{OH})_{3} \xrightarrow[\mathrm{H}_{2} \mathrm{O}_{2}]{\mathrm{NaOH}} \underset{\text { Yellow solution }}{\mathrm{Na}_{2} \mathrm{CrO}_{4}}$

Paragraph for Question Nos. 31 to 32

\mathbf{P} and \mathbf{Q} are isomers of dicarboxylic acid $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$. Both decolorize $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$. On heating, \mathbf{P} forms the cyclic anhydride.
Upon treatment with dilute alkaline $\mathrm{KMnO}_{4}, \mathbf{P}$ as well as \mathbf{Q} could produce one or more than one from \mathbf{S}, \mathbf{T} and \mathbf{U}.

S

T

*31. Compounds formed from \mathbf{P} and \mathbf{Q} are, respectively
(A) Optically active \mathbf{S} and optically active pair (T, U)
(B) Optically inactive \mathbf{S} and optically inactive pair (T, U)
(C) Optically active pair (T, U) and optically active \mathbf{S}
(D) Optically inactive pair (T, U) and optically inactive \mathbf{S}

Sol. (B)

$\mathrm{S} \rightarrow$ optically inactive

*32. In the following reaction sequences \mathbf{V} and \mathbf{W} are, respectively
$\mathrm{Q} \xrightarrow[\Delta]{\mathrm{H}_{2} / \mathrm{Ni}} \mathrm{V}$

(A)

(B)

(C)

W
(D) $\mathrm{HOH}_{2} \mathrm{C}$

Sol. (A)

Paragraph for Question Nos. 33 to 34
A fixed mass ' m ' of a gas is subjected to transformation of states from K to L to M to N and back to K as shown in the figure

*33. The succeeding operations that enable this transformation of states are
(A) Heating, cooling, heating, cooling
(B) Cooling, heating, cooling, heating
(C) Heating, cooling, cooling, heating
(D) Cooling, heating, heating, cooling

Sol. (C)

*34. The pair of isochoric processes among the transformation of states is
(A) K to L and L to M
(B) L to M and N to K
(C) L to M and M to N
(D) M to N and N to K

Sol. (B)
Solution for the Q. No. 33 to 34.

K - L heating, isobaric
L - M cooling, isochoric
$\mathrm{M}-\mathrm{N}$ cooling, isobaric
N - K heating, isochoric

Paragraph for Question Nos. 35 to 36

The reactions of Cl_{2} gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two (different) oxoacids of chlorine, \mathbf{P} and \mathbf{Q}, respectively. The Cl_{2} gas reacts with SO_{2} gas, in presence of charcoal, to give a product \mathbf{R}. \mathbf{R} reacts with white phosphorus to give a compound \mathbf{S}. On hydrolysis, \mathbf{S} gives an oxoacid of phosphorus, T.
35. $\quad \mathbf{P}$ and \mathbf{Q}, respectively, are the sodium salts of
(A) hypochlorus and chloric acids
(B) hypochlorus and chlorus acids
(C) chloric and perchloric acids
(D) chloric and hypochlorus acids

Sol. (A)
36. \mathbf{R}, \mathbf{S} and \mathbf{T}, respectively, are
(A) $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{PCl}_{5}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
(B) $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{PCl}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$
(C) $\mathrm{SOCl}_{2}, \mathrm{PCl}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$
(D) $\mathrm{SOCl}_{2}, \mathrm{PCl}_{5}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$

Sol. (A)

Solution for the Q. No. 35 to 36

SECTION - 3: (Matching List Type)

This section contains $\mathbf{4}$ multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
37. The unbalanced chemical reactions given in List - I show missing reagent or condition (?) which are provided in List - II. Match List - I with List - II and select the correct answer using the code given below the lists:

> List - I

List - II
(P) $\quad \mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{?} \mathrm{PbSO}_{4}+\mathrm{O}_{2}+$ other product
(1) NO
(Q) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{?} \mathrm{NaHSO}_{4}+$ other product
(2) I_{2}
(R) $\mathrm{N}_{2} \mathrm{H}_{4} \xrightarrow{?} \mathrm{~N}_{2}+$ other product
(3) Warm
(S) $\mathrm{XeF}_{2} \xrightarrow{?} \mathrm{Xe}+$ other product
(4) Cl_{2}

Codes:

	P	Q	R	S
(A)	4	2	3	1
(B)	3	2	1	4
(C)	1	4	2	3
(D)	3	4	2	1

Sol. (D)
(P) $\mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\Delta} \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}$
(Q) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaCl}+2 \mathrm{NaHSO}_{4}+2 \mathrm{~S}$
(R) $\mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{I}_{2} \longrightarrow \mathrm{~N}_{2}+4 \mathrm{HI}$
(S) $\mathrm{XeF}_{2}+2 \mathrm{NO} \longrightarrow \mathrm{Xe}+2 \mathrm{NOF}$
*38. Match the chemical conversions in List - I with appropriate reagents in List - II and select the correct answer using the code given below the lists:
(P)

(Q)

List - II

(1) (i) $\mathrm{Hg}(\mathrm{OAc})_{2}$; (ii) NaBH_{4}
(2) NaOEt
(R)

(3) $\mathrm{Et}-\mathrm{Br}$
(S)

(4) (i) BH_{3}; (ii) $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$

Codes:

	P	Q	R	S
(A)	2	3	1	4
(B)	3	2	1	4
(C)	2	3	4	1
(D)	3	2	4	1

Sol. (A)
(P)

(Q)

(R)

(S)

39. An aqueous solution of X is added slowly to an aqueous solution of Y as shown in List $-I$. The variation in conductivity of these reactions in List - II. Match List - I with List - II and select the correct answer using the code given below the lists:

	List - I		List - II
(P)	$\underset{\mathrm{X}}{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}} \mathrm{~N}+\mathrm{CH}_{3} \mathrm{COOH}$	(1)	Conductivity decreases and then increases
(Q)	$\underset{\mathrm{X}}{\mathrm{KI}(0.1 \mathrm{M})}+\underset{\mathrm{Y}}{\mathrm{AgNO}_{3}} \mathrm{O}_{\mathrm{Y}}^{(0.01 \mathrm{M})}$	(2)	Conductivity decreases and then does not change much
(R)	$\underset{\mathrm{x}}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{\mathrm{Y}}{\mathrm{KOH}}$	(3)	Conductivity increases and then does not change much
(S)	$\underset{X}{\mathrm{NaOH}}+\underset{\mathrm{Y}}{\mathrm{HI}}$	(4)	Conductivity does not change much and then increases

Codes:

	P	Q	R	S
(A)	3	4	2	1
(B)	4	3	2	1
(C)	2	3	4	1
(D)	1	4	3	2

Sol. (A)

(P) $\underset{x}{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}} \mathrm{~N}+\underset{\mathrm{Y}}{\mathrm{CH}_{3} \mathrm{COOH}} \longrightarrow\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+} \mathrm{CH}_{3} \mathrm{COO}^{-}$

Initially conductivity increases due to ion formation after that it becomes practically constant because X alone can not form ions. Hence (3) is the correct match.
(Q) $\underset{\mathrm{X}}{\mathrm{KI}}\left(\underset{\mathrm{Y}}{0.1 \mathrm{M})}+\underset{\mathrm{Y}}{\mathrm{AgNO}_{3}}(0.01 \mathrm{M}) \longrightarrow \mathrm{AgI} \downarrow+\mathrm{KNO}_{3}\right.$

Number of ions in the solution remains constant until all the AgNO_{3} precipitated as AgI . Thereafter conductance increases due to increases in number of ions. Hence (4) is the correct match.
(R) Initially conductance decreases due to the decrease in the number of $\overline{\mathrm{O}} \mathrm{H}$ ions thereafter it slowly increases due to the increases in number of H^{+}ions. Hence (2) is the correct match.
(S) Initially it decreases due to decrease in H^{+}ions and then increases due to the increases in $\overline{\mathrm{O}} \mathrm{H}$ ions. Hence (1) is the correct match.
40. The standard reduction potential data at $25^{\circ} \mathrm{C}$ is given below:

$$
\begin{aligned}
& \mathrm{E}^{\circ}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}\right)=+0.77 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Fe}^{2+}, \mathrm{Fe}\right)=-0.44 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Cu}^{2+}, \mathrm{Cu}\right)=+0.34 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Cu}^{+}, \mathrm{Cu}\right)=+0.52 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left[\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\right]=+1.23 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left[\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}\right]=+0.40 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Cr}^{3+}, \mathrm{Cr}\right)=-0.74 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Cr}^{2+}, \mathrm{Cr}\right)=-0.91 \mathrm{~V}
\end{aligned}
$$

Match E^{0} of the redox pair in List - I with the values given in List - II and select the correct answer using the code given below the lists:
(P) $\quad \mathrm{E}^{\circ}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}\right)$
(Q) $\quad \mathrm{E}^{\circ}\left(4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{H}^{+}+4 \mathrm{OH}^{-}\right)$
(R) $\quad \mathrm{E}^{\circ}\left(\mathrm{Cu}^{2+}+\mathrm{Cu} \longrightarrow 2 \mathrm{Cu}^{+}\right)$
(S) $\quad \mathrm{E}^{\circ}\left(\mathrm{Cr}^{3+}, \mathrm{Cr}^{2+}\right)$
(1) -0.18 V
(2) -0.4 V
(3) $\quad-0.04 \mathrm{~V}$
(4) -0.83 V

Codes:

	P	Q	R	S
(A)	4	1	2	3
(B)	2	3	4	1
(C)	1	2	3	4
(D)	3	4	1	2

Sol. (D)
(P) $\Delta \mathrm{G}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}^{\mathrm{o}}=\Delta \mathrm{G}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\mathrm{o}}+\Delta \mathrm{G}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\mathrm{o}}$
$\Rightarrow-3 \times \mathrm{FE}_{\left(\mathrm{Fe}^{+3} / \mathrm{Fe}\right)}^{\mathrm{o}}=-1 \times \mathrm{FE}_{\left(\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}\right)}^{\mathrm{o}}+\left(-2 \times \mathrm{FE}_{\mathrm{Fe}^{+2} / \mathrm{Fe}}^{\mathrm{o}}\right)$
$\Rightarrow \mathrm{E}_{\mathrm{Fe}^{+3} / \mathrm{Fe}}^{\mathrm{o}}=-0.04 \mathrm{~V}$

$$
\begin{align*}
& \text { (Q) } \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{O}^{-} \mathrm{H} \quad \mathrm{E}^{\mathrm{o}}=0.40 \mathrm{~V} \tag{i}\\
& 2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \quad \mathrm{E}^{0}=-1.23 \mathrm{~V} \tag{ii}\\
& \text { So } 4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{H}^{+}+4 \mathrm{OH} \\
& \mathrm{E}^{\mathrm{o}} \text { for } \mathrm{III}^{\text {rd }} \text { reduction }=0.40-1.23=-0.83 \mathrm{~V} \text {. } \\
& \text { (R) } \Delta \mathrm{G}_{\left(\mathrm{Cu}^{\left.u^{2} / \mathrm{Cu}\right)}\right.}^{\mathrm{o}}=\Delta \mathrm{G}_{\left(\mathrm{Cu}^{+2} / \mathrm{Cu}^{+}\right)}^{\mathrm{o}}+\Delta \mathrm{G}_{\left(\mathrm{Cu}^{+} / \mathrm{Cu}\right)}^{\mathrm{o}} \\
& -2 \times \mathrm{FE}_{\mathrm{Cu}^{+} / \mathrm{Cu}}^{0}=-1 \times \mathrm{FE}_{\mathrm{Cu}^{+2} / \mathrm{Cu}^{+}}^{0}+\left(-1 \times \mathrm{F} \times \mathrm{E}_{\mathrm{Cu}^{+} / \mathrm{Cu}}^{0}\right) \\
& \Rightarrow \mathrm{E}_{\mathrm{Cu}^{+2} / \mathrm{Cu}}^{0}=-0.18 \mathrm{~V} \text {. } \\
& \text { (S) } \Delta \mathrm{G}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{2}}^{\mathrm{o}}=\Delta \mathrm{G}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{\circ}}^{\mathrm{o}}+\Delta \mathrm{G}_{\mathrm{Cr}^{\prime} / \mathrm{rr}^{+2}}^{\mathrm{o}} \\
& -1 \times \mathrm{F} \times \mathrm{E}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{12}}^{0}=-3 \times \mathrm{F} \times \mathrm{E}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{0}}^{0}+\left(-2 \times \mathrm{F} \times \mathrm{E}_{\mathrm{Cr}^{2} / \mathrm{Cr}^{+2}}^{0}\right) \\
& \Rightarrow \mathrm{E}_{\mathrm{Cr}^{18} / \mathrm{cr}^{2}}^{\mathrm{o}}=-0.4 \mathrm{~V} \text {. }
\end{align*}
$$

