JEE Main - 2018 (CBT)
 Exam Test Date: 16/04/2018

Part - B (Chemistry)

1. For standardizing NaOH solution, which of the following is used as a primary standard ?
(1) Sodium tetraborate
(2) Ferrous Ammonium Sulfate
(3) Oxalic acid
(4) dil. HCl

Ans. (3)
Sol. Oxalic acid is used as a primary standard for NaOH standardizing.
2. Products A and B formed in the following reactions are respectively :

(2)

and

(3)

and

(4)

and

Ans. (1)

Sol.

3. When XO_{2} is fused with an alkali metal hydroxide in presence of an oxidizing agent such as KNO_{3}; a dark green product is formed which disproportioates in acidic solution to afford a dark purple solution. X is :
(1) Mn
(2) Cr
(3) V
(4) Ti

Ans. (1)
Sol. $\mathrm{MnO}_{2}+\mathrm{KOH} \longrightarrow \underset{\text { (dark green) }}{\mathrm{K}_{2} \mathrm{MnO}_{4}} \xrightarrow[\text { solution }]{\text { Acidic }} \underset{\text { (dark purple) }}{\mathrm{KMnO}_{4}}$
4. The major product B formed in the following reaction sequence is :

(1)

(2)

(3)

(4)

Ans. (4)

Sol.

5. In a complexometric titration of metal ion with ligand
M (Metal ion) $+L$ (Ligand) $\rightarrow C$ (Complex) end point is estimated spectrophotometrically (through light absorption). If ' M ' and ' C ' do not absorb light and only ' L ' absorbs, then the titration plot between absorbed light (A) versus volume of ligand 'L' (V) would look like :
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Initially ligand consumed by metal due to formation of complex. So absorbed light (A) remain constant, after complex formation is completed, extra volume of ligand solution increases ligand concentration and also increases absorbed light.
6. The major product of the following reaction is :

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

7. Among the following, the incorrect statement is :
(1) Cellulose and amylose has 1,4-glycosidic linkage.
(2) Lactose contains β-D-galactose and β-D-glucose.
(3) Maltose and lactose has 1,4-glycosidic linkage.
(4) Sucrose and amylose has 1,2-glycosidic linkage.

Ans. (4)
Sol. In amylose 1,4-glycosidic linkage is present.
8. In the extraction of copper from its sulphide ore, metal is finally obtained by the oxidation of cuprous sulphide with :
(1) SO_{2}
(2) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(3) $\mathrm{Cu}_{2} \mathrm{O}$
(4) CO

Ans. (3)
Sol. $\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
9. Among the oxides of nitrogen:
$\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$; the molecule(s) having nitrogen-nitrogen bond is/are :
(1) $\mathrm{N}_{2} \mathrm{O}_{3}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$
(2) $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$
(3) $\mathrm{N}_{2} \mathrm{O}_{3}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$
(4) Only $\mathrm{N}_{2} \mathrm{O}_{5}$

Ans. (1)

Sol.

10. Which of the following conversions involves change in both shape and hybridisation ?
(1) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
(2) $\mathrm{BF}_{3} \rightarrow \mathrm{BF}_{4}^{-}$
(3) $\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
(4) $\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$

Ans. (2)
Sol. $\quad \mathrm{BF}_{3} \longrightarrow \mathrm{BF}_{4}^{-}$

11. The most polar compound among the following is :
(1)

(2)

(3)

(4)

Ans. (3)

Sol.
 the bond dipole vector of $C-F$ bond is not subtractive.
12. In Wilkinson's catalyst, the hybridization of central metal ion and its shape are respectively :
(1) $\mathrm{sp}^{3} \mathrm{~d}$, trigonal bipyramidal
(2) $d^{2} s p^{3}$, octahedral
(3) dsp^{2}, square planar
(4) sp^{3}, tetrahedral

Ans. (3)
Sol. Wilkinson catalyst
$\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$
13. At 320 K , a gas A_{2} is 20% dissociated to $\mathrm{A}(\mathrm{g})$. The standard free energy change at 320 K and 1 atm in $\mathrm{J} \mathrm{mol}^{-1}$ is approximately: $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; \ln 2=0.693 ; \ln 3=1.098\right)$
(1) 1844
(2) 2068
(3) 4281
(4) 4763

Ans. (3)
Sol. $A_{2}(g) \rightleftharpoons 2 A(g)$
10
$1-1 \times \frac{20}{100} \quad 2 \times \frac{20}{100}$
$0.8 \quad 0.4$
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{p}_{\mathrm{A}}\right)^{2}}{\left(\mathrm{p}_{\mathrm{A}_{2}}\right)}=\frac{0.4 \times 0.4}{0.8}=0.2$
$\Delta G^{\circ}=-2.303 \times 8.314 \times 320 \log _{10} 0.2=4281 \mathrm{~J} / \mathrm{mole}$
14. Which of the following complexes will show geometrical isomerism ?
(1) Potassium tris(oxalato)chromate(III)
(2) Pentaaquachlorochromium(III)chloride
(3) Aquachlorobis(ethylenediamine)cobalt(II) chloride
(4) Potassium amminetrichloroplatinate(II)

Ans. (3)
Sol. $\quad\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}(\mathrm{en})_{2}\right] \mathrm{Cl}$

(Geometrical Isomer)
15. Which of the following statements is false ?
(1) Splitting of spectral lines in electrical field is called Stark effect.
(2) Frequency of emitted radiation from a black body goes from a lower wavelength of higher wavelength as the temperature increases.
(3) Photon has momentum as well as wavelength.
(4) Rydberg constant has unit of energy.

Ans. (2) and (4) [both are false]
Sol. When temperature is increased, black body emit high energy radiation, from higher wavelength to lower wavelength.
Rydberg constant has unit length ${ }^{-1}$ (i.e. cm^{-1})
16. When 9.65 ampere current was passed for 1.0 hour into nitrobenzene in acidic medium, the amount of p-aminophenol produced is :
(1) 109.0 g
(2) 98.1 g
(3) 9.81 g
(4) 10.9 g

Ans. (3)

Sol.

$4 \mathrm{e}^{-}+4 \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \longrightarrow \underset{\substack{\text { M.W. }=109 \mathrm{~g}}}{\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})\left(\mathrm{NH}_{2}\right)}+\mathrm{H}_{2} \mathrm{O}$
(v.f. $)=4 \quad W=Z I t=\frac{E}{F} \times I \times t \quad\left(E=\frac{M}{4}\right)$
$W=\frac{109 \times 9.65 \times 60 \times 60}{4 \times 96500}$
$\mathrm{W}=9.81 \mathrm{~g}$
17. For which of the following processes, $\Delta \mathrm{S}$ is negative ?
(1) C (diamond) $\rightarrow \mathrm{C}$ (graphite)
(2) $\mathrm{N}_{2}(\mathrm{~g}, 1 \mathrm{~atm}) \rightarrow \mathrm{N}_{2}(\mathrm{~g}, 5 \mathrm{~atm})$
(3) $\mathrm{N}_{2}(\mathrm{~g}, 273 \mathrm{~K}) \rightarrow \mathrm{N}_{2}(\mathrm{~g}, 300 \mathrm{~K})$
(4) $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$

Ans. (2)
Sol. $\quad N_{2}(\mathrm{~g}, 1 \mathrm{~atm}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g}, 5 \mathrm{~atm})$
$\Delta S=\left(n C_{p} \ln \frac{T_{2}}{T_{1}}\right)+n R \ln \frac{V_{2}}{V_{1}} \quad$ for isothermal process $T_{1}=T_{2}$ and $\frac{V_{2}}{V_{1}}=\frac{P_{1}}{P_{2}}$
$=0+n R \ln \frac{P_{1}}{P_{2}}=n R \ln \frac{1}{5}$
$\Delta S<0$
18. An unknown chlorohydrocarbon has 3.55% of chlorine. If each molecule of the hydrocarbon has one chlorine atom only ; chlorine atoms present in 1 g of chlorohydrocarbon are :
(Atomic wt. of $\mathrm{Cl}=35.5 \mathrm{u}$; Avogadro constant $=6.023 \times 10^{23} \mathrm{~mol}^{-1}$)
(1) 6.023×10^{9}
(2) 6.023×10^{23}
(3) 6.023×10^{21}
(4) 6.023×10^{20}

Ans. (4)
Sol. $\quad \mathrm{C}_{x} \mathrm{H}_{y} \mathrm{Cl}$
$\% \mathrm{Cl}=3.55$
Weight of $\mathrm{Cl}=1 \times \frac{3.55}{100}$
$\mathrm{n}_{\mathrm{Cl}^{-}}=\frac{1 \times 3.55}{100 \times 35.5}$
No of Cl^{-}ion $=\frac{1 \times 3.55}{100 \times 35.5} \times 6.023 \times 10^{23}$

$$
=6.023 \times 10^{20}
$$

19. The incorrect statement is :
(1) Cu^{2+} ion gives chocolate coloured precipitate with potassium ferrocyanide solution.
(2) Cu^{2+} and Ni^{2+} ions give black precipitate with $\mathrm{H}_{2} \mathrm{~S}$ in presence of HCl solution.
(3) Ferric ion gives blood red colour with potassium thiocyanate.
(4) Cu^{2+} salts give red coloured borax bead test in reducing flame.

Ans. (2)
Sol. Due to common ion effect, sufficient S^{2-} concentration not produce and not formed ppt of NiS.
20. The mass of a non-volatile, non-electrolyte solute (molar mass $=50 \mathrm{~g} \mathrm{~mol}^{-1}$) needed to be dissolved in 114 g octane to reduce its vapour pressure to 75%, is :
(1) 37.5 g
(2) 75 g
(3) 150 g
(4) 50 g

Ans. (Bonus)
Sol. $\quad \frac{P^{0}-P_{s}}{P_{s}}=\frac{n}{N}$

$$
\begin{aligned}
& \frac{100 P-75 P}{75 P}=\frac{\frac{W}{50}}{1} \\
& \frac{25}{75}=\frac{W}{50} \\
& W=\frac{50}{3} g
\end{aligned}
$$

21. The incorrect geometry is represented by :
(1) NF_{3} - trigonal planar
(2) BF_{3} - trigonal planar
(3) AsF_{5} - trigonal bipyramidal
(4) $\mathrm{H}_{2} \mathrm{O}$ - bent

Ans. (1)
Sol. $\quad \mathrm{NF}_{3}$

22. Assuming ideal gas behaviour, the ratio of density of ammonia to that of hydrogen chlroide at same temperature and pressure is: (Atomic wt. of Cl 35.5 u)
(1) 1.46
(2) 1.64
(3) 0.46
(4) 0.64

Ans. (3)
Sol. $d=\frac{P(M . w .)}{R T}$
$\frac{\mathrm{d}_{\mathrm{NH}_{3}}}{\mathrm{~d}_{\mathrm{HCl}}}=\frac{(\text { M.w. })_{\mathrm{NH}_{3}}}{(\text { M.w. })_{\mathrm{HCl}}}=\frac{17}{36.5}=0.46$
23. The correct match between items of List-I and List-II is :

	List-I		List-II
(A)	Phenelzine	(P)	Pyrimidine
(B)	Chloroxylenol	(Q)	Furan
(C)	Uracil	(R)	Hydrazine
(D)	Ranitidine	(S)	Phenol
(1) (A)-(S), (B)-(R), (C)-(Q), (D)-(P)	(2) (A)-(R), (B)-(S), (C)-(P), (D)-(Q)		
(3) (A)-(R), (B)-(S), (C)-(Q), (D)-(P)	(4) (A)-(S), (B)-(R), (C)-(P), (D)-(Q)		

Ans. (2)
Sol. \rightarrow Phenelzine contains hydrazine
\rightarrow Chloroxylenol contains phenol
\rightarrow Uracil is the pyrimidine base
\rightarrow Ranitidine contains furan ring
24. The gas phase reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is an exothermic reaction. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$, in equilibrium mixture of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$, can be increased by :
(1) addition of an inert gas at constant pressure.
(2) lowering the temperature
(3) increasing the pressure
(4) addition of an inert gas at constant volume.

Ans. (1)
Sol. $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}=(-)$
By addition of an inert gas at constant pressure, volume increases, so reaction moving in backward direction and decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ increases.
25. Which one of the following is not a property of physical adsorption ?
(1) Higher the pressure, more the adsorption
(2) Greater the surface area, more the adsorption
(3) Lower the temperature, more the adsorption
(4) Unilayer adsorption occurs

Ans. (4)
Sol. Physical adsorption is multilayer adsorption.
26. A group 13 element ' X ' reacts with chlorine gas to produce a compound $X C I_{3}$. $X C l_{3}$ is electron deficient and easily reacts with NH_{3} to form $\mathrm{Cl}_{3} \mathrm{X} \leftarrow \mathrm{NH}_{3}$ adduct; however, XCl_{3} does not dimerize. X is :
(1) B
(2) Al
(3) In
(4) Ga

Ans. (1)
Sol. BCl_{3}

27. The major product of the following reaction is :

(1)

(2)

(3)

(4)

Ans. (3)

Sol.

Inversion takes place at the carbon containing bromine atom.
28. If 50% of a reaction occurs in 100 second and 75% of the reaction occurs in 200 second, the order of this reaction is :
(1) 2
(2) 3
(3) Zero
(4) 1

Ans. (4)

First order reaction as half life is constant.
29. The major product of the following reaction is :

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

30. Which of the following compounds will most readily be dehydrated to give alkene under acidic condition?
(1) 4-Hydroxypentan-2-one
(2) 3-Hydroxypentan-2-one
(3) 1-Pentanol
(4) 2-Hydroxycyclopentanone

Ans. (1)
Sol.

