JEE MAIN 2014 Solutions- Math (CODE-G)

1. If $x=-1$ and $x=2$ are extreme points of $f(x)=a \log |x|+B x^{2}+x$ then:
a. $\alpha=-6, \beta=-\frac{1}{2}$
b. $\alpha=-2, \beta=-\frac{1}{2}$
c. $\alpha=-6, \beta-\frac{1}{2}$
d. $\alpha=-6, \beta=\frac{1}{2}$

Sol. $X=-1 \quad x=2$
Are maxima \& minima
$\Rightarrow \alpha \log |x|+\beta x^{2}+x=f(x)$
Taking $\mathrm{x}>0$

$$
\begin{array}{r}
\mathrm{F}(\mathrm{x})=\alpha \log \mathrm{x}+\beta \mathrm{x}^{2}+\mathrm{x} \\
\mathrm{~F}^{\prime}(\mathrm{x})=\frac{\alpha}{\beta}+2 \beta \mathrm{x}+1=0 \\
2 \beta \mathrm{x} 2+\mathrm{x}+\alpha=0 \\
\text { Now } \quad \mathrm{x}=-1 \& 2
\end{array}
$$

Must satisfy this as these are critical points

$$
X=-1
$$

$$
2 \beta-1+\alpha=0^{\prime}
$$

$$
x=2
$$

$$
2 \beta+2+\alpha=0
$$

Solving $\quad \beta=-1 / 2$

$$
\alpha=2
$$

2. The locus of the foot of perpendicular drawn from the centre of the ellipse $x^{2}+3 y^{2}=$ 6 on any tangent to it is:
a. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2}$
b. $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
c. $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}-2 y^{2}$
d. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}+2 y^{2}$

Sol. Foot of perpendicular is given by :

$$
\frac{h-x}{x}=\frac{k-y}{b}=-\frac{[a x+b y+c]}{a^{2}+b^{2}}
$$

$X, y=0,0$ eqn tangent:

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
$$

Putting values:

$$
\begin{gathered}
\frac{a h}{\cos \theta}=\frac{b k}{\sin \theta}=\frac{1}{\frac{\cos \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}} \\
\Rightarrow \quad \mathrm{~h}=\frac{b^{2} \cos \theta}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
\mathrm{~K}=\frac{a^{2} b \sin \theta}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}
\end{gathered}
$$

Now it is difficult to eliminate θ so we checkoption.
Answer $=\left(x^{2}+y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
3. Let $f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$ where $\in \quad$ and $k \geq 1$. Then $f_{4}(x)-f_{6}(x)$ equals :
a. $\frac{1}{3}$
b. $\frac{1}{4}$
c. $\frac{1}{12}$
d. $\frac{1}{6}$

Sol. $-\overline{4}=\frac{\sin ^{4} x+\cos ^{4} x}{4}$
$=1-\frac{2 \sin ^{2} x \cos ^{2} x}{6}$
$f_{6}=\frac{\sin ^{6} \quad x+\cos ^{6} x}{6}$
$=1$. $\left(\frac{\sin ^{4} x-\sin ^{2} x \cos ^{2} x+\cos ^{4} x}{6}\right)$
By formula $a^{3}+b^{3}=(\mathrm{a}+\mathrm{b})\left(a^{2}-\mathrm{ab}+b^{2}\right.$
$=\left[\frac{1-3 \sin ^{2} x \cos ^{2} x}{6}\right]$
$f_{4-f_{6}}=\frac{1-2 \sin ^{2} x \cos ^{2} x}{4}-\frac{\left(1-3 \sin ^{2} x \cos ^{2} x\right.}{6}$
$6-\frac{12 \sin ^{2} \cos ^{2} x-4+12 \sin ^{2} \cos ^{2} x}{24}$
$=\frac{2}{24}=\frac{1}{12}$ Ans.
4. If $X=\left\{4^{n}-3 n-1: n \in N\right\}$ and $Y=\{9(n-1): n \in N\}$, where N is the set of natural, then $X \cup Y$ is equal :
a. $Y-X$
b. X
c. \mathbf{Y}
d. $\quad \mathbf{N}$

Sol. $X=4 n-3 n-1$

Rewriting:

$$
x=(3+1)^{n}-3 n-1
$$

Expanding $(1+3)^{n}$
$X=\left(1+3 n+\frac{3 \cdot n \cdot(n-1)}{1 \cdot 2} \ldots \ldots 3^{n \cdot n^{n}} n\right)-3^{n-1}$
$=\frac{3 . n(n-1)}{1.2} \ldots \ldots .3^{n . n} c_{n}$
\Rightarrow All the multiple of 9 arein x which is represented by y as well but y will exceed x at some point.

So X UYhas to be K \& not X .
5.) IfA is a \bar{x} non - singular matrix such that $A A^{\prime}=A^{\prime} A$ and $B=A^{-1} A^{\prime}$, then $B B^{\prime}$ equals:
a. 1
b. B^{-1}
c. $\left(B^{-1} y\right.$
d. $1+B$

Sol. $B B^{1}=\left(A^{-1} A^{1}\right)\left(A^{-1} A^{1}\right)^{1}$
$\left(A^{-1} A^{1}\right)\left\{\left(A^{1}\right) 1\left(A^{-1}\right) 1\right\}$

$$
\begin{aligned}
& =A^{-1}\left(A^{1} \mathrm{~A}\right)\left(A^{1}-\right) \\
& =A^{-1}\left(\mathrm{~A} A^{1}\right)\left(A^{1}\right)-1 \\
& =A^{-1} \mathrm{~A} A^{-1} A^{1} \\
& \text { I } . \mathrm{I}=\mathrm{I} \text { Ans. }
\end{aligned}
$$

6.) The integral $\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x$ is equal to :
e. $x e^{x+\frac{1}{x}}+c$
f. $(x+1) e^{x+\frac{1}{x}}+c$
g. $-x e^{x+\frac{1}{x}}+c$
h. $(x-1) e^{x+\frac{1}{x}}+c$

Sol. $\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} . d x$
$=\int\left(e^{x+\frac{b}{x}} \cdot d x+\int\left(x-\frac{1}{x}\right) e^{x+\frac{1}{x \cdot d x}}\right.$
By pasts

$$
\begin{aligned}
& =x e^{x+\frac{1}{x}} \int e^{x+\frac{1}{x}}\left(1-\frac{1}{x^{2}}\right) \mathrm{x} \cdot \mathrm{dx}+\left(-\frac{1}{x}\right) \cdot x+\frac{1}{x} \\
& =x e^{x+\frac{1}{x}} \text { Ans. }
\end{aligned}
$$

7) The area of the region described by $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is :
$\begin{array}{ll}\text { i. } \frac{\pi}{2}-\frac{4}{3} \\ \text { i. } & \frac{\pi}{2}-\frac{1}{3} \\ \text { k. } & \frac{\pi}{2}+\frac{2}{3} \\ \text { i. } \frac{\pi}{2}+\frac{4}{3}\end{array}$
Sol. Req. Area $=$ Area $A C B+$ Area $B C D$

$$
\begin{aligned}
& =\int_{0}^{1} 1-y^{2} \cdot \mathrm{dy}+\frac{\pi r^{2}}{2} \\
& =2\left(y-\frac{y^{3}}{3}\right)+\frac{\pi}{2}
\end{aligned}
$$

$$
=\frac{\pi}{2}+\frac{4}{3} \text { Ans. }
$$

8) The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line :
a. $\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}$
b. $\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}$
c. $\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}$
d. $\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$

Sol. Plane and line are parallel.
Eqn of normal to plane

$$
\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{1}
$$

Point $\rightarrow 2 \mathrm{~K}+1,3-\mathrm{K}, 4+\mathrm{K}$
$\Rightarrow \frac{2 K+2}{2}, \frac{6-K}{2}, \frac{8+K}{2}$
Lies on plane
$2(K+1)-\frac{(6-k)}{2}+\frac{8+K}{2}+3=0$

$$
K=-2
$$

Point through which image passes $(-3,5,2)$
Hence, $\frac{x+3}{3}=\frac{Y-5}{1}=\frac{2-2}{-5}$
9) The variance of first $\mathbf{5 0}$ even natural numbers is :
as 833
b. 437

- c. $\frac{437}{4}$
d. $\frac{833}{4}$

Sol. Even Natural No.
$=2,4,6,8$----------- 100
Variance $=\sum \quad \frac{(x-\bar{x})^{2}}{n} \backslash$

$$
\begin{aligned}
& \bar{x}=\text { mean }=5 \\
& \\
& \quad n=50 \\
& \quad x=2,4,6,-------100 \\
& =\frac{(2-51)^{2}+(4-51)^{2}------(100-51)^{2}}{50} \\
& =833 \text { Ans. }
\end{aligned}
$$

10) If z is a complex number such that $|z| \geq 2$, then the minimum value of $+\frac{1}{2}:$ v

Sol. $|Z| \geqslant 2$ represents a circle with

$$
\text { Radius } \geqslant 2
$$

$|z+1 / 2| \quad$ represent distance

> From point)-1/2, 0)
[image]

$$
|2-1 / 2|=3 / 2
$$

11) Three positive numbers form anincreasing G.P. If the middle term in this G.P. is doubled, the new number is in A.P. Then the common ratio of the G.P> is :

Sol. Let GP be:
$\mathrm{a}, \mathrm{ar}, a r^{2}$
also a $2 \mathrm{ar}_{\text {_ }}$
(arein ap)
$\Rightarrow 4 \mathrm{ar}=\mathrm{at}+2^{2}$
$4 r=1+2 r$
$r=\frac{4 \pm \sqrt{ }-12^{7}}{2}$
$=2 \pm \sqrt{3}$
$r=2-\sqrt{3}$ doesn't satisfy A.P condition
$\Rightarrow \mathrm{r}=2+\sqrt{3}$ Ans.
12) If the coefficients of x^{3} and x^{4} in the expansion of $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ in powers of x are both zero, then (a, b) is equal to :

Sol. $\left(1+a x+b x^{2}\right)\left(1-2 x^{18}\right)$
x^{3} terms:
$=18_{c_{3}}+(-2 x)^{3}+18_{c_{2}}(-2 x)^{2} \cdot \mathrm{ax}+18_{c_{1}}(-2 \mathrm{x}) \cdot \mathrm{b} x^{2}=0$
$-18_{c_{3}} \cdot 8+18_{c_{2}} \cdot 4 \mathrm{a}-18_{c_{1}} \cdot 2 \mathrm{~b}=0-------$
x^{4} terms :
$18_{c_{4}}(-2 x)^{4}+18_{c_{3}}+(-2 x)^{3} \cdot \mathrm{ax}+18_{c_{2}}(-2 x)^{2} \cdot \mathrm{~b} x^{2}=0$
$-16.18_{c_{4}}-8 \mathrm{a} \cdot 18_{c_{3}}+18_{c_{2}} \cdot 4 \mathrm{~b}=0$
Solving (1) \& (2) for
$\mathrm{a} \& \mathrm{~b}$:
$\mathrm{a}=16 \quad \mathrm{~b}=\frac{272}{3}$
13) Let a, b, and d be non-zero numbers. If the point of intersection of the lines $4 a x+2 a y+$ $c=0$ and $5 b x+y+=\mathbf{0}$ lies in the fourth quadrant and is equidistant from the two axes then:-

Sol. Puttingthe condition
Solving: 4ax-2ax $+c=0$
$2 a x+c=0$ \qquad
$5 b x-2 b x+d=0$
$3 b x d=0$
Putting value of x

2a. $\left(\frac{-d}{3 b}\right)+\mathrm{c}=0$
$3 b c-2 a b=0$
14) If $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]^{2}$ then λ is equal to :

Sol. $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=(\vec{a} \times \vec{b}) .[(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})]$
$=[(\vec{a} \times \vec{b} \cdot(\vec{p} \times(\vec{c} \times \vec{a})]$

$$
\begin{aligned}
& \quad \text { Let } \vec{p}=(\vec{b} \times \vec{c}) \\
& =(\vec{a} \times \vec{b}) \cdot((p \cdot a) \vec{c}-(p \cdot c) \vec{c} \\
& =(\vec{a} \times \vec{b})(((\vec{b} \times \vec{c}) \cdot \vec{a} \vec{c})-(((\vec{b} \times \vec{c}) \cdot \vec{c}) \vec{a}) \\
& =(a \times v)[(b c a) \vec{c})-0 \\
& \Rightarrow \quad(\vec{o} \times \vec{b}) \cdot \vec{c}[\vec{b} \vec{c} \vec{a}] \\
& =[\vec{a} \vec{b} \vec{c}]=1
\end{aligned}
$$

15) Let A and B be two events such that $(\overline{A \cup B})=\frac{1}{6}, \quad P(A \cup B)=\frac{1}{4}$ and $P(\bar{A})=\frac{1}{6}$, where \bar{A} stands for the complement of the event A. Then the events A and B are :

Sol. $\mathrm{P}(\overline{A \cup B})=\frac{1}{6}$
$\mathrm{P}(A \cap B)=\frac{5}{6}$
$\mathrm{P}(\bar{A})=\frac{1}{4}$
$P(A)=\frac{3 V}{4}$
$P(B)=P(A \cup \bar{\cup})-P(A)+P(A \cap B)$

$$
=\frac{5}{6}-\frac{3}{4}+\frac{1}{4}
$$

$P(B)=\frac{5}{6}-\frac{1}{2}=\frac{1}{3}$
Also $\mathrm{P}(\mathrm{A}) .(\mathrm{PB})=(\mathrm{A} \cap B)$
= Independent events
$P(A) \neq P(B)$ Unlikely
16) Let PS be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$, The equation of the line passing through $(1,-1)$ and parallel to $P S$ is :

Sol. Coordinate of $S=\left(\frac{13}{2}\right.$, 1$)$ by mid point formula
Slope PS $=\frac{2-1}{2-\frac{13}{2}}=\frac{-2}{9}$
$y=\frac{-2}{9} x+C$
Putting (1, -1)
$-1=\frac{-2}{9}-C$
$C=\frac{-7}{9}$
$2 x+9 y-7=0$
17) $\lim _{x \rightarrow 0 .} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$ is equal to $\overline{3}$

Sol. Applying Hospitals Rüles
$=\lim _{x \rightarrow 0} \frac{\cos \left(\pi \cos ^{2} x\right) \pi 2 \cos x(-\sin x)}{12 x}$
$=\lim _{x \rightarrow Q} \frac{\cos \left(\pi \pi \cos ^{2} x\right)}{\Delta^{2}} \pi 2 \cos x \frac{(-\sin x)}{} x$
$=\pi \lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
18) Let \propto and β be the roots of equation $p x^{2}+q x+r=0, p \neq 0$. If p, q, r are in A.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=4$, then the value of $|\propto-\beta|$ is:

Sol. $A-\beta=\sqrt{\left(\alpha+\beta^{2}-4 \alpha \beta\right.}$
$=\sqrt{\frac{q^{2}}{p}-4 \cdot \frac{r}{p}}$
$=\frac{\alpha+\beta}{\alpha \beta}=4$
$=-\frac{\frac{q}{p}}{\frac{p}{p}}=\frac{-q}{r}=4$
$2 q=r+p$
$2=\frac{r}{q}+\frac{p}{q}$
$2=\frac{-1}{4}+\frac{p}{q}$
$=\frac{p}{q}-\frac{9}{4}----$
From (1) \& (2)
$=\frac{r}{p}=\frac{-1}{9}$
Putting the values from (2) \& (3)
$(\alpha-\beta)=\sqrt{\frac{4}{9}^{2}+4 \cdot \frac{1}{9}}$
$=\sqrt{\frac{52}{81}}=\frac{2 \sqrt{13}}{9}$ Ans.
19) A bird is sitting on the top of a vertical pole 20 m high and its elevation from a point O on the ground is 45°. It flies off horizontally straight away from the point 0 . After one second, the elevation of the bird from 0 is reduced to 30°. Then the speed (in m / s) of the bird is :

Sol. In $\triangle A O B$
$=\frac{A B}{O B}=\frac{20}{O B}=\tan 45=1$
$O B=20$

Similarly in $\Delta A^{1} O B^{1}$
$O B^{1}=20 \sqrt{3}$
Distance moved:
$O B^{1}-\mathrm{OB}=20(\sqrt{3}-1)$
Velocity $=\frac{20(\sqrt{3}-1)}{1}$
$=20(\sqrt{3}-1)$
20) If $a \in R$ and the equation $-3(x-[x])^{2}+2\left(x+a^{2}=0\right.$ (where [] denotes the greatest integer $\leq x)$ has no integral solution, then all possible values of a lie in the interval :

Sol -3 $(\mathrm{x}-[\mathrm{x}])^{2}+2(\mathrm{x}-[\mathrm{x}])+a^{2}$
$(x-[x])=\{x\}$
$R=[0,1]$
for $\{x\}=0$
$a^{2}=0$
for $\{x\}=1$
$-1+a^{2}=0$
for the eqn. not to hold:
a * $(0,1)$ u ($-1,0$)
$(-1,0)$ u $(0,1)$
21) The integral $\int_{0}^{\pi} \sqrt{1+4 \sin ^{2} \frac{x}{2}-4 \sin \frac{x}{2} d x}$ equals :

Sol. $\int_{0}^{\pi} \sqrt{1+4-2 \frac{x}{2}-4 \sin \frac{x}{2} d x}$
$=\int_{0}^{\pi} \sqrt{\left(1-2 \sin \frac{x}{2}\right)^{2}} \cdot \mathrm{dx}$
$=\int_{0}^{\pi}\left(\left(1-2 \sin \frac{x}{2}\right) \cdot d x\right.$
$X+2 \cos \frac{x}{2} .2$
$=(\pi-4)$
22) If f and g are differentiable functions in $[0,1]$ satisfying $f(0)=g(1), g(0)=0$ and $f(1)=6$, then for some $C \epsilon] 0,1[$:

Sol. $x=0 \quad 1$
$f(x) \quad 2 \quad 6$
$g(x) \quad 2 \quad 6$
By Rolles theorem:
$f^{1}(x)=\frac{6-2}{1}=4$
$g^{1}(x)=\frac{2-0}{1}=2$
$f^{1}(x)=2 g^{1}(x)$
23) If g is the inverse of a function f and $f^{\prime}=\frac{1}{1+x^{5},}$, ${ }^{\circ}($ is equal to :

Sol. $f^{1}(\mathrm{x})=\frac{1}{1+x^{5}}$
$\mathrm{f}(\mathrm{x})=\int_{0}^{x} \frac{1}{1+x^{5}} . \mathrm{dx}$
\rightarrow Inverse fun:
$\mathrm{X}=\int_{0}^{g(x)} \frac{1}{1+x g^{5(x)}} \cdot \mathrm{d}\left(d_{(x)}\right)$
Differentiating:
$1=\frac{1}{1+x g^{5(x)}} \cdot g(x)$
$G(x)=1+5 x$
24) If $(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+\ldots+10(11)^{9}=k(10)^{9}$, then k is equal to :

Sol. $(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+\ldots+10(11)^{9}=k(10)^{9}$
$1=2\left(\frac{11}{10}\right)+3\left(\frac{11}{10}\right)^{2}---10 \cdot \frac{11^{9}}{10^{9}}=K$
Subtracting:
$1+\frac{11}{10}+\left(\frac{11}{10}\right)^{2}----\left(\frac{11}{10}\right)^{9}-10 \cdot\left(\frac{11}{10}\right)^{10}=\frac{-K}{10}$
$=\frac{\left(\frac{11}{10}\right)^{10-1}}{\frac{1}{10}} 10 \cdot\left(\frac{11}{10}\right)^{10}=\frac{K}{10}$
$10 \cdot\left(\frac{11}{10}\right)^{10}-1010 \cdot\left(\frac{11}{10}\right)^{10}=\frac{-K}{10}$
$K=100$ Ans.
25) If $\propto, \beta \neq 0$, and $f\left(n 0=\alpha^{n}+\beta^{n}\right.$ and $\left|\begin{array}{ccc}3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4)\end{array}\right|=-\alpha^{2}(1-$ $\beta)^{2}(\alpha-\beta)^{2}$, then K is equal to

Sol. $\begin{array}{ccc}3 & 1+\alpha+\beta) & 1+\alpha(2)+\beta(2) \\ 1+\alpha+\beta) & 1+\alpha(2)+\beta(2) & 1+\alpha(3)+\beta(3) \\ 1+\alpha(2)+\beta(2) & 1+\alpha(3)+(3) & 1+\ldots 4+\beta(3)\end{array}$

3	2	6
2	6	8
6	8	18

Solving we get $\mathrm{K}=1$
26) The slope of the line touching both the parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is

Sol. $y^{2}=4 x$

Tangent $y=m x+\frac{1}{m}$

Touches $x^{2}=-32 y$

$=x^{2} \equiv-32\left(\mathrm{mx}+\frac{1}{m}\right)$
$=x^{2}+32 m x+\frac{32}{m}=0$
$\mathrm{D}=0 \rightarrow(32 m)^{2}-4 \cdot \frac{32}{m}=0$
$=m^{3}=\frac{1}{8}$
$\mathrm{m}=\frac{1}{2}$ Ans.
27) The statement $\sim(P \leftrightarrow \sim \boldsymbol{q})$ is :

Sol.

P	Q	$\sim \mathrm{P}$	$\sim \mathrm{q}$	$\mathrm{P} \leftrightarrow \mathrm{q}$	$\mathrm{P} \leftrightarrow \sim \mathrm{q}$	$\sim \mathrm{P} \leftrightarrow \mathrm{q}$	$\sim(\mathrm{P} \leftrightarrow \sim \mathrm{q})$
T	F	F	T	F	T	T	F
F	T	T	F	F	T	T	F
T	T	F	F	T	F	F	T
F	F	T	T	T	F	F	T

28) Let the population of rabbits surviving at a time t be governed by the differential
equation $\frac{d p(t)}{d t}=\frac{1}{2} p(t)-200$. If $P(0)=100$, then $P(t)$ equals:
Sol. $\frac{d p(t)}{d t}=\frac{1}{2} p(\mathrm{t})-200$
$=\int_{100}^{p} \frac{d p(t)}{\frac{1}{2} p(t)-200}=\int_{0}^{t} d t$
$2\left[\log \left(\frac{1}{2} p(t)-200\right)-\log (-150)\right]$
$\log \frac{\frac{1}{2 p(t)-200}}{-150}=\frac{t}{2}$
$=\frac{1}{2} p(t)-200=-150 e^{\frac{t}{2}}$
$P(t)=400-300 e^{\frac{t}{2}}$ Ans.
29) Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centred at $(0, y)$, passing through origin and touching the circle C externally, then the radius of T is equal to :

Sol. (Image)
$=r_{1}+r_{2}=\sqrt{(1-0)^{2}}(1-y)^{2}$
$1+\sqrt{(y-0)^{2}+(0-0)^{2}}=\sqrt{1+(1-y)^{2}}$
$=(1+y)^{2}=2+y^{2}-2 y$
$1+y^{2}+2 \mathrm{y}=2+y^{2}-2 \mathrm{p}$
$4 y=1$
$\mathrm{Y}=\frac{1}{4}$ Ans.
30) The angle between the lines whose direction cosine satisfy the equations $\boldsymbol{l}+\boldsymbol{m}+\boldsymbol{n}=$ 0 and $l^{2}=m^{2}+n^{2}$ is :

Sol. $(I+n)=-m$
$l^{2}=(1+\mathrm{n})^{2}+n^{2}$
$l^{2}=l^{2}+n^{2} 2 \ln +n^{2}$
$2 n^{2}+2 \ln =0$
$2 n(n+I)=0$
$N=0$
$N=-1$
$L=-m$
$\mathrm{M}=0$
dr 'sl, $-l, o$

I, 0, -I.
$\cos \theta=\frac{1}{\sqrt{2 \sqrt{2}}}=\frac{1}{2}$
$\theta=\frac{\pi}{3}$ Ans.

