JEE (ADVANCE) - 2016
 MATHEMATICS

SECTION 1 (Maximum Marks: 18)

- This section contains SIX questions
- Each question has FOUR option (A), (B), (C) and (D). ONLY ONE of these four option is correct.
- For each question, darken the bubble corresponding to the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:

Full Marks : +3 If only the bubble corresponding to the correct answer is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks : -1 In all other cases.
37. Let P be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through P and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is
(A) $x+y-3 z=0$
(B) $3 x+z=0$
(C) $x-4 y+7 z=0$ (D) $2 x-y=0$

Key (C)
Sol: Image of point $(3,1,7)$ in $x-y+z=3$
$\frac{x-3}{1}=\frac{y-1}{-1}=\frac{z-7}{1}=-2 \frac{(3-1+7-3)}{3}$
$\mathrm{x}=-1, \mathrm{y}=5, \mathrm{z}=3$
So Image is $\mathrm{P}(-1,5,3)$
Now line is $\frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{2}=\frac{z}{1}$
It passes through $\mathrm{O}(0,0,0)$
d.r. of $O P=-1,5,3$

Let d.r. of normal to plane be $\mathrm{a}, \mathrm{b}, \mathrm{c}$

$$
\begin{aligned}
& a+2 b+c=0 \\
& -a+5 b+3 c=0 \\
& \frac{a}{6-5}=\frac{b}{-1-3}=\frac{c}{5+2}
\end{aligned}
$$

So, equation of plane will be

$$
x-4 y+7 z=0
$$

38. Area of the region $\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{i}^{2}: \mathrm{y} \geq \sqrt{|\mathrm{x}+3|}, 5 \mathrm{y} \leq \mathrm{x}+9 \leq 15\right\}$ is equal to
(A) $\frac{1}{6}$
(B) $\frac{4}{3}$
(C) $\frac{3}{2}$
(D) $\frac{5}{3}$

Key (C)
Sol: $\sqrt{|x+3|}=\frac{x+9}{5} \Rightarrow x=-4,1,6$

So required area will be

$$
\begin{aligned}
& \int_{-4}^{-3}\left(\frac{x+9}{5}-\sqrt{-x-3}\right) d x+\int_{-3}^{1}\left(\frac{x+9}{5}-\sqrt{x+3}\right) d x \\
& =\left[\frac{x^{2}}{10}+\frac{9 x}{5}+\frac{2}{3}(-x-3)^{3 / 2}\right]_{-4}^{-3}+\left[\frac{x^{2}}{10}+\frac{9 x}{5}-\frac{2}{3}(x+3)^{\frac{3}{2}}\right]_{-3}^{-1}=\frac{3}{2}
\end{aligned}
$$

39. Let $b_{i}>1$ for $I=1,2, \ldots, 101$. Suppose $\log _{e} b_{1}, \log _{e} b_{2}, \ldots, \log _{e} b_{101}$ are in Arithmetic Progression (A.P) with the common difference $\log _{e} 2$. Suppose a_{1}, a_{2}, \ldots. , a_{101} are in A.P. such that $a_{1}=b_{1}$ and $a_{51}=b_{51}$. If $t=b_{1}+b_{2}+\ldots+b_{51}$ and $s=a_{1}+a_{2}+\ldots+a_{51}$, then
(A) $s>t$ and $a_{101}>b_{101}$
(B) $\mathrm{s}>\mathrm{t}$ and $\mathrm{a}_{101}<\mathrm{b}_{101}$
(C) $s<t$ and $a_{101}>b_{101}$
(D) $\mathrm{s}<\mathrm{t}$ and $\mathrm{a}_{101}<\mathrm{b}_{101}$

Key (B)
Sol: $\log _{e} b_{1}, \log _{e} b_{2}, \ldots . . . \log _{e} b_{101}$ are in A.P. with common difference $\log _{e} 2=\log _{e} 2$
$\log _{\mathrm{e}} \mathrm{b}_{2}-\log _{\mathrm{e}} \mathrm{b}_{1}=\log _{\mathrm{e}} \mathrm{b}_{3}-\log _{\mathrm{e}} \mathrm{b}_{2}$
$\frac{\mathrm{b}_{2}}{\mathrm{~b}_{1}}=2, \frac{\mathrm{~b}_{3}}{\mathrm{~b}_{2}}=2$
$\mathrm{b}_{2}=2 \mathrm{~b}_{1}, \mathrm{~b}_{3}=2 \mathrm{~b}_{2}, \ldots . \mathrm{b}_{101}=2 \mathrm{~b}_{100}$
$\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3} \ldots . \mathrm{b}_{101}$ are in G.P. \Rightarrow first term $=\mathrm{b}$ common ratio $=\mathrm{r}$
$\mathrm{a}_{1}, \mathrm{a}_{2} \ldots . . \mathrm{a}_{101}$ are in A.P. \Rightarrow first term $=\mathrm{a}$ common difference $=\mathrm{d}$
$\mathrm{a}_{1}=\mathrm{b}_{1}$ and $\mathrm{a}+50 \mathrm{~d}=\mathrm{a} \cdot \mathrm{r}^{50}$
If given $t=b_{1}+b_{2}+\ldots . . b_{51}$
$=\frac{\mathrm{b}\left(\mathrm{r}^{50}-1\right)}{\mathrm{r}-1}=\frac{\mathrm{a}\left(\mathrm{r}^{50}-1\right)}{\mathrm{r}-1}$
$\mathrm{S}=\frac{51}{2}(2 \mathrm{a}+50 \mathrm{~d})$
Now, $\mathrm{S}-\mathrm{t}=\frac{51}{2}(2 \mathrm{a}+50 \mathrm{~d})-\left(\frac{\mathrm{a} \cdot \mathrm{r}^{50}-\mathrm{a}}{\mathrm{r}-1}\right)$
$=\frac{51}{2}\left(a+a_{51}\right)-\left(a_{51}-a\right)$
$=\frac{51\left(\mathrm{a}+\mathrm{a}_{51}\right)-\mathrm{a}_{51}+\mathrm{a}}{2}=\frac{52 \mathrm{a}+50 \mathrm{a}_{51}}{2}>0$
Now, $\mathrm{a}_{101}-\mathrm{b}_{101}$
$a+100 d-a . r^{100}$
$a+50 d+50 d-a^{100}$

$$
\begin{aligned}
& \mathrm{ar}^{50}+50 d-\mathrm{ar}^{100} \\
& \mathrm{ar}^{50}-\mathrm{ar}^{100}+\mathrm{ar}^{50}-\mathrm{a} \\
& \mathrm{a}\left(2^{51}-2^{100}-1\right)<0
\end{aligned}
$$

40. The value of $\sum_{\mathrm{k}=1}^{13} \frac{1}{\sin \left(\frac{\pi}{4}+\frac{(\mathrm{k}-1) \pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{\mathrm{k} \pi}{6}\right)}$ is equal to
(A) $3-\sqrt{3}$
(B) $2(3-\sqrt{3})$
(C) $2(\sqrt{3}-1)$
(D) $2(2+\sqrt{3})$

Key (C)
Sol: $\quad T_{k}=\frac{1}{\sin \left(\frac{\pi}{4}+(k-1) \frac{\pi}{6}\right) \cdot \sin \left(\frac{\pi}{4}+\frac{k \pi}{6}\right)}$
let $A=\frac{\pi}{4}+\frac{k \pi}{6}$ and $B=\frac{\pi}{4}+(k-1) \frac{\pi}{6}$
Now $\mathrm{T}_{\mathrm{k}}=2(\cot \mathrm{~B}-\cot \mathrm{A})$

$$
\begin{aligned}
& =2\left(\cot \left(\frac{\pi}{4}+(\mathrm{k}-1) \frac{\pi}{6}\right)\right)-\cos \left(\frac{\pi}{4}+\frac{\mathrm{k} \mathrm{\pi}}{6}\right) \\
& \mathrm{T}_{1}=2\left[\cot \left(\frac{\pi}{4}\right)-\cot \left(\frac{\pi}{4}+\frac{\pi}{6}\right)\right] \\
& \mathrm{T}_{2}=2\left[\cot \left(\frac{\pi}{4}+\frac{\pi}{6}\right)-\cot \left(\frac{\pi}{4}+\frac{2 \pi}{6}\right)\right] \\
& \mathrm{T}_{13}=2\left[\cot \left(\frac{\pi}{4}+\frac{12 \pi}{6}\right)-\cot \left(\frac{\pi}{4}+\frac{13 \pi}{6}\right)\right]
\end{aligned}
$$

$$
\mathrm{S}_{13}=2\left[\cot \frac{\pi}{4}-\cot \left(\frac{\pi}{4}+\frac{\pi}{6}\right)\right]
$$

$$
\mathrm{S}_{13}=2\left(1-\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)
$$

$$
=2(\sqrt{3}-1)
$$

41. Let $\mathrm{P}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and I be the identity matrix of order 3 . If $\mathrm{Q}=\left[\mathrm{q}_{\mathrm{ij}}\right]$ is a matrix such that $\mathrm{P}^{50}-\mathrm{Q}=\mathrm{I}$, then $\frac{\mathrm{q}_{31}+\mathrm{q}_{32}}{\mathrm{q}_{21}}$ equals
(A) 52
(B) 103
(C) 201
(D) 205

Key (B)

Sol: $P\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$

$$
\begin{aligned}
& P^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
8 & 1 & 0 \\
48 & 8 & 1
\end{array}\right] \\
& P^{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
12 & 1 & 0 \\
96 & 12 & 0
\end{array}\right]
\end{aligned}
$$

$$
\text { So } P^{n}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
4 n & 1 & 0 \\
8 n(n+1) & 4 n & 1
\end{array}\right]
$$

$$
\Rightarrow \mathrm{P}^{50}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
200 & 1 & 0 \\
20400 & 200 & 1
\end{array}\right]
$$

$$
\text { Given } Q=P^{50}-I=\left[\begin{array}{ccc}
1 & 0 & 0 \\
200 & 1 & 0 \\
20400 & 200 & 1
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
Q=\left[\begin{array}{ccc}
0 & 0 & 0 \\
200 & 0 & 0 \\
20400 & 200 & 0
\end{array}\right]
$$

Now $\mathrm{q}_{31}=20400$

$$
\begin{aligned}
& \mathrm{q}_{32}=200 \\
& \mathrm{q}_{21}=200 \\
& \frac{\mathrm{q}_{31}+\mathrm{q}_{32}}{\mathrm{q}_{21}}=\frac{20600}{200}=103
\end{aligned}
$$

42. The value of $\int_{-\pi / 2}^{\pi / 2} \frac{x^{2} \cos x}{1+e^{x}} d x$ is equal to
(A) $\frac{\pi^{2}}{4}-2$
(B) $\frac{\pi^{2}}{4}+2$
(C) $\pi^{2}-\mathrm{e}^{\pi / 2}$
(D) $\pi^{2}+\mathrm{e}^{\pi / 2}$

Key (A)
Sol: (A)

$$
\begin{align*}
& I=\int_{-\pi / 2}^{\pi / 2} \frac{x^{2} \cos x}{1+e^{x}} d x \tag{i}\\
& I=\int_{-\pi / 2}^{\pi / 2} \frac{(-x)^{2} \cos (-x)}{1+e^{-x}} d x
\end{align*}
$$

$I=\int_{-\pi / 2}^{\pi / 2} \frac{e^{x} x^{2} \cos x}{1+e^{x}} d x$
On adding (i) and (ii), we get

$$
2 I=\int_{-\pi / 2}^{\pi / 2} x^{2} \cos x d x
$$

On solving, we will get

$$
I=\frac{\pi^{2}}{4}-2
$$

SECTION 2 (Maximum Marks: 18)

- This section contains EIGHT questions
- Each question has Four options (A), (B), (C) and (D) ONE OR MORE THAN ONE of these four option(s) is (are) correct.
- For each question, marks will be awarded in one of the following categories :

Full Marks : +4 if only the bubble(s) corresponding to all the correct option(s) is (are) darkened.
Zero Marks : 0 if none of the bubbles is darkened.
Negative Marks : -2 in all other cases

- For example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (A) and (D) will result in +2 marks; and darkening (A) and (B) will result in -2 marks, as a wrong option is also darkened.

43. Let $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be twice differentiable functions such that $\mathrm{f}^{\prime \prime}$ and $\mathrm{g}^{\prime \prime}$ are continuous functions on R. Suppose $f^{\prime}(2)=g(2)=0, \quad f^{\prime \prime}(2) \neq 0$ and $g^{\prime}(2) \neq 0$. If $\lim _{x \rightarrow 2} \frac{f(x) g(x)}{f^{\prime}(x) g^{\prime}(x)}=1$, then
(A) f has a local minimum at $\mathrm{x}=2$
(B) f has a local maximum at $\mathrm{x}=2$
(C) f "(2) $>\mathrm{f}(2)$
(D) $f(x)-f$ " $(x)=0$ for at least one $x \in R$

Key (A, D)
Sol. (A, D)
$\lim _{x \rightarrow 2} \frac{f(x) g(x)}{f^{\prime}(x) g^{\prime}(x)}=1$
$\left(\frac{0}{0}\right)$ form
$\lim _{x \rightarrow 2} \frac{f(x) g^{\prime}(x)+g(x) f^{\prime}(x)}{f^{\prime}(x) g^{\prime \prime}(x)+f^{\prime \prime}(x) g^{\prime}(x)}=1$
$\Rightarrow \frac{\mathrm{f}(2)}{\mathrm{f} "(2)}=1 \Rightarrow \mathrm{f}(2)=\mathrm{f}$ "(2)
$\Rightarrow \mathrm{f}$ " $(2)>0$
Hence $f(x)$ has local minimum at $x=2$.
44. Let P be the point on the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ which is at the shortest distance from the centre S of the circle $x^{2}+y^{2}-4 x-16 y+64=0$. Let Q be the point on the circle dividing the line segment SP internally. Then
(A) $\mathrm{SP}=2 \sqrt{5}$
(B) $\mathrm{SQ}: \mathrm{QP}=(\sqrt{5}+1): 2$
(C) the x-intercept of the normal to the parabola at P is 6
(D) the slope of the tangent to the circle at Q is $\frac{1}{2}$

Key (A, C, D)
Sol. (A, C, D)
Since P is at the shortest distance from S, hence $S P$ is common normal of circle and parabola.
Equation of normal to the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ is $\mathrm{y}=\mathrm{mx}-2 \mathrm{~m}-\mathrm{m}^{3}$
This passes through $\mathrm{S}(2,8)$
$\Rightarrow 8=2 \mathrm{~m}-2 \mathrm{~m}-\mathrm{m}^{3} \Rightarrow \mathrm{~m}=-2$
Hence, equation of normal is $2 x+y=12$
P is given by $(4,4)$ and $S P=2 \sqrt{5}$
and, $\mathrm{SQ}: \mathrm{QP}=1: \sqrt{5}-1$ or $\sqrt{5}+1: 4$
45. Let $a, b \in R$ and $f: R \rightarrow R$ be defined by $f(x)=a \cos \left(\left|x^{3}-x\right|\right)+b|x| \sin \left(\left|x^{3}+x\right|\right)$. Then f is
(A) differentiable at $\mathrm{x}=0$ if $\mathrm{a}=0$ and $\mathrm{b}=1$
(B) differentiable at $\mathrm{x}=1$ if $\mathrm{a}=1$ and $\mathrm{b}=0$
(C) NOT differentiable at $\mathrm{x}=0$ if $\mathrm{a}=1$ and $\mathrm{b}=0$
(D) NOT differentiable at $\mathrm{x}=1$ if $\mathrm{a}=1$ and $\mathrm{b}=1$

Key (A, B)
Sol. (A, B)
$f(x)=a \cos \left(\left|x^{3}-x\right|\right)+b|x| \sin \left(\left|x^{3}+x\right|\right)$
$f(x)$ can be written as
$f(x)=a \cos \left(x^{3}-x\right)+b x \sin \left(x^{3}+x\right)$
$f(x)$ is differentiable everywhere
Hence correct options are ' A ' and ' B '
46. Let $f:\left[-\frac{1}{2}, 2\right] \rightarrow R$ and $g:\left[-\frac{1}{2}, 2\right] \rightarrow R \quad$ be function defined by $f(x)=\left[x^{2}-3\right]$ and $g(x)=|x| f(x)+|4 x-7| f(x)$, where [y] denotes the greatest integer less than or equal to y for $y \in R$. Then
(A) f is discontinuous exactly at three points in $\left[-\frac{1}{2}, 2\right]$
(B) f is discontinuous exactly at four points in $\left[-\frac{1}{2}, 2\right]$
(C) g is NOT differentiable exactly at four points in $\left(-\frac{1}{2}, 2\right)$
(D) g is NOT differentiable exactly at five points in $\left(-\frac{1}{2}, 2\right)$

Key (B, C)
Sol. $f(x)= \begin{cases}-3 & \frac{-1}{2} \leq x<1 \\ -2 & 1 \leq x<\sqrt{2} \\ -1 & \sqrt{2} \leq x<\sqrt{3} \\ 0 & \sqrt{3} \leq x<2 \\ 1 & x=2\end{cases}$
Clearly function f is discontinuous exactly at four points is $\left[-\frac{1}{2}, 2\right]$

$$
g(x)= \begin{cases}15 x-21 & -\frac{1}{2} \leq x<0 \\ 9 x-21 & 0 \leq x<1 \\ 6 x-14 & 1 \leq x<\sqrt{2} \\ 3 x-7 & \sqrt{2} \leq x<\sqrt{3} \\ 0 & \sqrt{3} \leq x<\frac{7}{4} \\ 0 & \frac{7}{4} \leq x<2 \\ 3 & x=2\end{cases}
$$

Function g is non-differentiable at $x=0,1, \sqrt{2}, \sqrt{3}$ i.e at 4 points in $\left(-\frac{1}{2}, 2\right)$
47. Let $f(x)=\lim _{n \rightarrow \infty}\left(\frac{n^{n}(x+n)\left(x+\frac{n}{2}\right) \ldots \ldots .\left(x+\frac{n}{n}\right)}{n!\left(x^{2}+n^{2}\right)\left(x^{2}+\frac{n^{2}}{4}\right) \ldots .\left(x^{2}+\frac{n^{2}}{n^{2}}\right)}\right)^{\frac{x}{n}}$, for all $x>0$ Then
(A) $f\left(\frac{1}{2}\right) \geq f(1)$
(B) $f\left(\frac{1}{3}\right) \leq f\left(\frac{2}{3}\right)$
(C) $f^{\prime}(2) \leq 0$
(D) $\frac{f^{\prime}(3)}{f(3)} \geq \frac{f^{\prime}(2)}{f(2)}$

Key (A, B, C, D)

Sol. $f(x)=\lim _{n \rightarrow \infty}\left(\frac{n^{n} \cdot n^{n}\left(\frac{x}{n}+1\right)\left(\frac{x}{n}+\frac{1}{2}\right)\left(\frac{x}{n}+\frac{1}{3}\right) \ldots .\left(\frac{x}{n}+\frac{1}{n}\right)}{n!\left(n^{2}\right)^{n}\left(\frac{x^{2}}{n^{2}}+1\right)\left(\frac{x^{2}}{n^{2}}+\frac{1}{4}\right) \ldots .\left(\frac{x^{2}}{n^{2}}+\frac{1}{n^{2}}\right)}\right)^{\frac{X}{n}}$

$$
f(x)=1
$$

So A,B,C,D all are correct
48. Let $\alpha, \lambda, \mu \in R$. Consider the system of linear equations

$$
\begin{aligned}
& \alpha x+2 y=\lambda \\
& 3 x-2 y=\mu
\end{aligned}
$$

Which of the following statement(s) is (are) correct?
(A) If $\alpha=-3$, then the system has infinitely many solutions for all values of λ and μ
(B) If $\alpha \neq-3$, then the system has a unique solution for all values of λ and μ
(C) If $\lambda+\mu=0$, then the system has infinitely many solutions for $\alpha=-3$
(D) If $\lambda+\mu \neq 0$, then the system has no solution for $\alpha=-3$

Key (B,C,D)
Sol. In the Equation.
$a_{1} x+b_{1} y+c_{1}=0$
$a_{2} x+b_{2} y+c_{2}=0$
If $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \Rightarrow$ unique solution
So ' B ' is correct
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \Rightarrow$ no solution
So ' D ' is correct
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow$ infinitely many solution
So ' C ' is correct
49. Let $\hat{u}=u_{1} \hat{i}+u_{2} \hat{j}+u_{3} \hat{k}$ be a unit vector in R^{3} and $\hat{\omega}=\frac{1}{\sqrt{6}}(\hat{i}+\hat{j}+2 \hat{k})$. given that there exists a vector $\stackrel{1}{v}$ in R^{3} such that $\left|\hat{u} \times \frac{1}{v}\right|=1$ and $\hat{\omega} .(\hat{u} \times \stackrel{\mathrm{r}}{v})=1$. Which of the following statement(s) is (are) correct?
(A) There is exactly one choice for such $\stackrel{1}{v}$
(B) There are infinitely many choices for such $\stackrel{1}{v}$
(C) If \hat{u} lies in the $x y$-plane then $\left|u_{1}\right|=\left|u_{2}\right|$
(D) If \hat{u} lies in the $x z$-plane then $2\left|u_{1}\right|=\left|u_{3}\right|$

Key (B, C)
Sol. $\quad|\hat{u} \times \stackrel{1}{v}|=1$ and $\hat{\omega} .(\hat{u} \times \stackrel{r}{v})=1$
$\Rightarrow|\hat{\omega}||\hat{u} \times \stackrel{I}{V}| \cos \theta=1$
$\Rightarrow|\hat{\omega}| \cos \theta=1$
$\Rightarrow \cos \theta=1$
$\Rightarrow \hat{\omega}$ is parallel to $\hat{u} \times \hat{V}$
Hence $\hat{\omega}$ is perpendicular to \hat{u} and $\hat{\omega}$ is perpendicular to $\stackrel{1}{v}$.
Let $\stackrel{\mathrm{r}}{v}=x_{1} \hat{i}+x_{2} \hat{j}+x_{3} \hat{k}$ then $\hat{\omega} \cdot \stackrel{1}{v}=0$
$\Rightarrow \quad x_{1}+x_{2}+2 x_{3}=0$
u_{1}, u_{2}, u_{3} are constants.
$|\hat{u} \times \stackrel{1}{v}|=1$
$\Rightarrow|\hat{u} \| \stackrel{1}{v}| \sin \alpha=1$
$\Rightarrow|\stackrel{r}{v}| \sin \alpha=\frac{1}{|\hat{u}|}=1$
$\Rightarrow \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{3}} \sin \alpha=1$
So by changing angle α and values of x_{1}, x_{2}, x_{3} we have. In finitely choices for $\stackrel{1}{v}$
Now if \hat{u} lies in the xy plane.
Then. $u_{3}=0$ and $\hat{\omega} \cdot \hat{u}=0 \Rightarrow u_{1}+u_{2}=0$
$\Rightarrow u_{1}=-u_{2}$
Hence $\left|u_{1}\right|=\left|u_{2}\right|$
Hence option C is correct
Now if \hat{u} lies in the $x z$-plane, $u_{2}=0$

$$
\begin{aligned}
& \hat{\omega} . \hat{u}=0 \\
& \Rightarrow u_{1}+2 u_{3}=0 \\
& \Rightarrow u_{1}=-2 u_{3} \\
& \Rightarrow\left|u_{1}\right|=\left|-2 u_{3}\right|=2\left|u_{3}\right|
\end{aligned}
$$

Hence option D is incorrect
50. Let $a, b \in R$ and $a^{2}+b^{2} \neq 0$. Suppose $S=\left\{z \in C: z=\frac{1}{a+i b t}, t \in R, t \neq 0\right\}$, where $i=-1$. If $z=x+i y$ and $z \in S$, then (x, y) lies on
(A) the circle with radius $\frac{1}{2 a}$ and centre $\left(\frac{1}{2 a}, 0\right)$ for $a>0, b \neq 0$
(B) the circle with radius $-\frac{1}{2 a}$ and centre $\left(-\frac{1}{2 a}, 0\right)$ for $a<0, b \neq 0$
(C) the x-axis for $a \neq 0, b=0$
(D) the y-axis for $a=0, b \neq 0$

Key (A, C, D)
Sol. $\quad x+i y=\frac{1}{a+i b t}$

$$
\begin{aligned}
& \Rightarrow(x+i y)(a+i b t)=1 \\
& \Rightarrow a x-b y t-1+i(b t x+a y)=0 \\
& \Rightarrow a x-1-b y t=0
\end{aligned}
$$

And $b t x+a y=0$

$$
\begin{aligned}
& \Rightarrow t=\frac{-a y}{b x} \\
& \Rightarrow a x-b y\left(\frac{-a y}{b x}\right)-1=0 \\
& \Rightarrow a x^{2}+a y^{2}-x=0 \\
& \Rightarrow x^{2}+y^{2}-\frac{x}{a}=0 \\
& \Rightarrow x^{2}-2 \cdot \frac{1}{2 a} x+\left(\frac{1}{2 a}\right)^{2}-\left(\frac{1}{2 a}\right)^{2}+y^{2}=0 \\
& \Rightarrow\left(x-\frac{1}{2 a}\right)^{2}+y^{2}=\left(\frac{1}{2 a}\right)^{2}
\end{aligned}
$$

Hence locus is circle with centre $\left(\frac{1}{2 a}, 0\right)$ and radius $\frac{1}{2 a}$ if $a>0, b \neq 0$
Hence option A is correct
If $a<0$. then as radius remains positive radius $=\frac{-1}{2 a}$ but centre will be remain $\left(\frac{1}{2 a}, 0\right)$
Hence option B is incorrect.
Now if , $a \neq 0, b=0$
$x+i y=\frac{1}{a}$
$a x+a y i-1=0$
$\Rightarrow a x-1=0$ and $a y=0$
$\Rightarrow x=\frac{1}{a}$ and $y=0$
Hence option C is correct

$$
\begin{aligned}
& \text { If } a=0, \quad b \neq 0 \\
& x+i y=\frac{1}{i b t} \\
& \Rightarrow x b t i-b y t=1 \\
& \Rightarrow x b t i=1+b y t . \\
& \Rightarrow x b t=0 \& b y t=-1 \\
& t=\frac{-1}{b y} \\
& \Rightarrow \frac{-x}{y}=0 \\
& \Rightarrow x=0
\end{aligned}
$$

Hence locus is y-axis
Hence option D is correct.

Section 3 (Maximum Marks : 12)

- This section contains TWO paragraphs.
- Based on each paragraph, there are TWO questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is correct.
- For each question darken the bubble corresponding to the correct option in the ORS.
- For each question marks will e awarded in one of the following categories

Full marks : +3 If only the bubble corresponding to the correct option is darkend.
Zero marks: 0 In all other cases

Paragraph 1

Football teams T_{1} and T_{2} have to play two games against each other. It is assumed that the outcomes of the two games are independent. The probabilities of T_{1} winning, drawing and losing a game against T_{2} are $\frac{1}{2}, \frac{1}{6}$ and $\frac{1}{3}$, respectively. Each team gets 3 point for a win, 1 point for a draw and 0 point for a loss in game. Let X and Y denote the total points scored by teams T_{1} and T_{2}, respectively, after two games
51. $P(X>Y)$ is
(A) $\frac{1}{4}$
(B) $\frac{5}{12}$
(C) $\frac{1}{2}$
(D) $\frac{7}{12}$

Key. B

Sol. For Team T_{1}
Probability of T_{1} wining $=\frac{1}{2}$
Probability of T_{1} drawing $=\frac{1}{6}$
Probability of T_{1} Losing $=\frac{1}{3}$
Number of possibilities in which $P(X>Y)$
$=P\{W W, W D, D W\}$
$=P(W W)+P(W D)+P(D W)$
$=P(W) P(W)+P(W) P(D)+P(D) P(W)$
$=\frac{1}{4}+\frac{1}{6} \times \frac{1}{2}+\frac{1}{6} \times \frac{1}{2}=\frac{1}{4}+\frac{1}{12}+\frac{1}{12}=\frac{5}{12}$
52. $P(X=Y)$ is
(A) $\frac{11}{36}$
(B) $\frac{1}{3}$
(C) $\frac{13}{36}$
(D) $\frac{1}{2}$

Key (C)
Sol. Number of possible cases are $W L, D D, L W$

$$
\begin{aligned}
& P(X=Y)=P(W L)+P(D D)+P(L W) \\
& =P(W) P(L)+P(D) P(D)+P(L) P(W) \\
& =\frac{1}{2} \times \frac{1}{3}+\frac{1}{6} \times \frac{1}{6}+\frac{1}{3} \times \frac{1}{2}=\frac{13}{36}
\end{aligned}
$$

Paragraph 2

Let $F_{1}\left(x_{1}, 0\right)$ and $F_{2}\left(x_{2}, 0\right)$, for $x_{1}<0$ and $x_{2}>0$, be the foci of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{8}=1$. Suppose a parabola having vertex at the origin and focus at F_{2} intersects the ellipse at point M in the first quadrant and at point N in the fourth quadrant.
53. The orthocentre of the triangle $F_{1} M N$ is
(A) $\left(-\frac{9}{10}, 0\right)$
(B) $\left(\frac{2}{3}, 0\right)$
(C) $\left(\frac{9}{10}, 0\right)$
(D) $\left(\frac{2}{3}, \sqrt{6}\right)$

Key (A)

Sol. $\quad \frac{x^{2}}{9}+\frac{y^{2}}{8}=1$

$$
\begin{aligned}
& F_{2}=(1,0) \\
& F_{1}=(-1,0)
\end{aligned}
$$

$\frac{x^{2}}{3^{2}}+\frac{y^{2}}{(2 \sqrt{2})^{2}}=1$
$e=\sqrt{1-\frac{8}{9}}, e=\frac{1}{3}, a=3$
Equation of parabola $y^{2}=4 x$
By solving parabola \& ellipse $\frac{x^{2}}{9}+\frac{4 x}{8}=1$
$2 x^{2}+9 x-18=0$
$2 x^{2}+12 x-3 x-18=0$
$2 x(x+6)-3(x+6)=0$
$x=\frac{3}{2}$
$x=-6$
We take $x=\frac{3}{2}$ only as $x>0$
So $y^{2}=4 \times \frac{3}{2}$
$y= \pm \sqrt{6}$

Solving MP and $\mathrm{F}_{1} \mathrm{~B}$
We get orthocentre $\equiv\left(-\frac{9}{10}, 0\right)$
54. If the tangents to the ellipse at M and N meet at R and the normal to the parabola at M meets the x-axis at Q , then the ratio of area of the triangle MQR to area of the quadrilateral $M F_{1} N F_{2}$ is
(A) $3: 4$
(B) $4: 5$
(C) $5: 8$
(D) $2: 3$

Key (C)
Sol. Equation of tangent $\frac{x}{9} \times \frac{3}{2}+\frac{y}{8} \sqrt{6}-1=0$
$R \equiv(6,0)$
Equation of Normal at M to the parabola $y^{2}=4 x$ is $y-\sqrt{6}=-\frac{\sqrt{6}}{2}\left(x-\frac{3}{2}\right)$
$Q \equiv\left(\frac{7}{2}, 0\right)$

Area of $\triangle \mathrm{QMR} \quad \Delta \mathrm{QMR}=\frac{5 \sqrt{6}}{4}$
Area of $\mathrm{MF}_{1} \mathrm{NF}_{2}=2 \sqrt{6}$
Required Ratio $=\frac{5}{8}$

