PART B - CHEMISTRY

1. The appearance of colour in solid alkali metal halides is generally due to :
(1) Frenkel defect
(2) F-centres
(3) Schottky defect
(4) Interstitial position

Ans. (2)
2. Complete reduction of benzene-diazonium chloride with $\mathrm{Zn} / \mathrm{HCl}$ gives :
(1) Aniline
(2) Phenylhydrazine
(3) Hydrazobenzene
(4) Azobenzene

Ans. (2)
3. Which of the following statements about $\mathrm{Na}_{2} \mathrm{O}_{2}$ is not correct?
(1) $\mathrm{Na}_{2} \mathrm{O}_{2}$ oxidises Cr^{3+} to CrO_{4}^{2-} in acid medium
(2) It is diamagnetic in nature
(3) It is the super oxide of sodium
(4) It is a derivative of $\mathrm{H}_{2} \mathrm{O}_{2}$

Ans. (3)
Sol. $\mathrm{Na}_{2} \mathrm{O}_{2}$ is a peroxide O_{2}^{2-} which is occupied all paired el ectrons with $\pi^{*} 2 \mathrm{px} \& \pi^{*} 2 \mathrm{py}$.
4. In allene $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)$, the type(s) of hybridization of the carbon atoms is (are):
(1) only sp^{2}
(2) sp^{2} and sp
(3) sp and sp^{3}
(4) sp^{2} and sp^{3}

Ans. (2)

Sol.

5. In the reaction of formation of sulphur trioxide by contact process $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$ the rate of reaction was measured as $\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=-2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}{ }^{-1} \mathrm{~s}^{-1}$. The rate of reaction in terms of [SO_{2}] in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ will be
(1) -2.50×10^{-4}
(2) -5.00×10^{-4}
(3) -1.25×10^{-4}
(4) -3.75×10^{-4}

Ans. (2)
Sol. $\quad-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{SO}_{2}\right]=-\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{O}_{2}\right]$

$$
\begin{aligned}
\Rightarrow \quad \frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{SO}_{2}\right] & =-2 \times 2.5 \times 10^{-4} \\
& =-5 \times 10^{-4}
\end{aligned}
$$

6. Based on the equation

$$
\Delta \mathrm{E}=-2.0 \times 10^{-18} \mathrm{~J}\left(\frac{1}{\mathrm{n}_{2}^{2}}-\frac{1}{\mathrm{n}_{1}^{2}}\right)
$$

the wavelength of the light that must be absorbed to excite hydrogen electron from level $\mathrm{n}=1$ to level $\mathrm{n}=2$ will be $\mathrm{h}=6.625 \times 10^{-34} \mathrm{Js}, \mathrm{C}$ $=3 \times 10^{8} \mathrm{~ms}^{-1}$)
(1) $2.650 \times 10^{-7} \mathrm{~m}$
(2) $1.325 \times 10^{-7} \mathrm{~m}$
(3) $1.325 \times 10^{-10} \mathrm{~m}$
(4) $5.300 \times 10^{-10} \mathrm{~m}$

Ans. (2)
Sol. $\frac{1}{\lambda}=\frac{2 \times 10^{-18}}{\mathrm{hc}}\left[\frac{1}{(1)^{2}}-\frac{1}{(2)^{2}}\right]$
$\Rightarrow \frac{1}{\lambda}=\frac{2 \times 10^{-18}}{6.625 \times 10^{-34} \times 3 \times 10^{8}} \times \frac{3}{4}$
$\Rightarrow \lambda=\frac{2 \times 6.625 \times 10^{-34} \times 10^{8}}{10^{-18}}$
$=13.25 \times 10^{-8}$
$=1.325 \times 10^{-7} \mathrm{~m}$
7. Given :-
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) ; \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s}) ; \mathrm{E}^{\circ}=-1.66 \mathrm{~V}$
$\mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-} ; \mathrm{E}^{\circ}=+1.09 \mathrm{~V}$
Considering the electrode potentials, which of the following represents the correct order of reducing power?
(1) $\mathrm{Al}<\mathrm{Fe}^{2+}<\mathrm{Br}^{-}$
(2) $\mathrm{Al}<\mathrm{Br}^{-}<\mathrm{Fe}^{2+}$
(3) $\mathrm{Fe}^{2+}<\mathrm{Al}<\mathrm{Br}^{-}$
(4) $\mathrm{Br}^{-}<\mathrm{Fe}^{2+}<\mathrm{Al}$

Ans. (4)
8. Consider the following equilibrium
$\mathrm{AgCl} \downarrow+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}^{-}$
White precipitate of AgCl appears on adding which of the following?
(1) NH_{3}
(2) Aqueous NaCl
(3) Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$
(4) Aqueous HNO_{3}

Ans. (2)

Sol. $\operatorname{AgCl}(\downarrow)+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]+\stackrel{\ominus}{\mathrm{Cl}}$

$$
\underset{\downarrow}{\mathrm{HNO}_{3} / \mathrm{H}^{\oplus}} \begin{gathered}
\text { (Acid) }
\end{gathered}
$$

$\operatorname{AgCl}(\downarrow)+\stackrel{\oplus}{\mathrm{H}}_{4}+\mathrm{NO}_{3}^{\ominus}$ (pptd)
9. Tischenko reaction is a modification of
(1) Cannizzaro reaction
(2) Claisen condensation
(3) Pinacol-pinacolon reaction
(4) Aldol condensation

Ans. (1)
10. Which one of the following does not have a pyramidal shape?
(1) $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$
(2) $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}$
(3) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(4) $\mathrm{P}\left(\mathrm{SiH}_{3}\right)_{3}$

Ans. (2)
Sol. In $\mathrm{N}\left(\mathrm{SiH}_{3}\right)_{3} \ell$ p present on nitrogen atom of 2 nd shall has greater donating tendency to vacant 3dorbital of 'Si' but not this donating tendency to vacant 3d-orbital of 'Si' but not this donating tendency with P , due to $3^{\text {rd }} \mathrm{pd}$ element.
11. The following reaction

is known as
(1) Perkin reaction
(2) Kolbe's reaction
(3) Gattermann reaction
(4) Gattermann-Koch Formylation

Ans. (4)
Sol. In $\left(\mathrm{SiH}_{3}\right) \mathrm{N}$ has strong back bonding tendency than other gsap.
12. Chlorobenzne reacts with trichloro acetaldehyde in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$

The major product formed is
(1)

(2)

(3)

(4)

Ans. (4)
13. Shapes of certain interhalogen compounds are stated below. Which one of them is not correctly stated?
(1) IF_{7} : Pentagonal bipyramid
(2) BrF_{5} : Trigonal bipyramid
(3) $\mathrm{ICl}_{3}:$ Planar dimeric
(4) BrF_{3} : Planar T-shaped

Ans. (2)

Sol.

BrF_{5} has square pyramidal shape ($\mathrm{sp}^{3} \mathrm{~d}^{2}$) with one lone pair at below the basal plane.
14. Which one of the following statements is not correct?
(1) Alcohols are weaker acids than water
(2) The bond angle
 108.9°
(3) Acid strength of alcohols decreases in the following order
$\mathrm{RCH}_{2} \mathrm{OH}>\mathrm{R}_{2} \mathrm{CHOH}>\mathrm{R}_{3} \mathrm{COH}$
(4) Carbon-oxygen bond length in methanol, $\mathrm{CH}_{3} \mathrm{OH}$ is shorter than that of $\mathrm{C}-\mathrm{O}$ bond length in phenol
Ans. (4)
15. Which of the following series correctly represents relations between the elements from X to Y ?
$\mathrm{X} \rightarrow \mathrm{Y}$
(1) ${ }_{18} \mathrm{Ar} \rightarrow{ }_{54} \mathrm{Xe}$
(2) ${ }_{3} \mathrm{Li} \rightarrow{ }_{19} \mathrm{~K}$
(3) ${ }_{6} \mathrm{C} \rightarrow{ }_{32} \mathrm{Ge}$
(4) ${ }_{9} \mathrm{~F} \rightarrow{ }_{35} \mathrm{Br}$

Ans. (3)
Sol. e^{ℓ} on moving down the gsaap shell number increases so its radii also increase from "C to Ge".
16. Which of the following statements about the depletion of ozone layer is correct?
(1) The problem of ozone depletion is more serious at poles because ice crystals in the clouds over poles act as catalyst for photochemical reactions involving the decomposition of ozone by Cl^{\bullet} and ClO^{\bullet} radicals
(2) The problem of ozone depletion is less serious at poles because NO_{2} solidifies and is not available for consuming ClO^{\bullet} radicals
(3) Oxides of nitrogen also do not react with ozone in stratosphere
(4) Freons, chlorofluorocarbons, are inert chemically, they do not react with ozone in stratosphere
Ans. (1)
17. The initial volume of a gas cylinder is 750.0 mL . If the pressure of gas inside the cylinder changes from 840.0 mm Hg to 360.0 mm Hg , the final volume the gas will be
(1) 1.750 L
(2) 7.50 L
(3) 3.60 L
(4) 4.032 L

Ans. (1)

$$
\text { Sol. } \begin{aligned}
& P_{1} V_{1}=P_{2} V_{2} \\
\Rightarrow 840 & \times 750=360 \times V_{2} \\
\Rightarrow V_{2} & =\frac{840 \times 750}{360} \\
& =1750 \mathrm{ml} \\
& =1.75 \mathrm{~L}
\end{aligned}
$$

18. If λ_{0} and λ be the threshold wavelength and wavelength of incident light, the velocity of photoelectron ejected from the metal surface is
(1) $\sqrt{\frac{2 \mathrm{hc}}{\mathrm{m}}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)}$
(2) $\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~m}}\left(\frac{1}{\lambda_{0}}-\frac{1}{\lambda}\right)}$
(3) $\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~m}}\left(\lambda_{0}-\lambda\right)}$
(4) $\sqrt{\frac{2 h \mathrm{c}}{\mathrm{m}}\left(\lambda_{0}-\lambda\right)}$

Ans. (1)
Sol. $\quad \mathrm{E}=\mathrm{W}+\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \frac{\mathrm{hc}}{\lambda}=\frac{\mathrm{hc}}{\lambda_{0}}+\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \mathrm{v}^{2}=\frac{2 \mathrm{hc}}{\mathrm{m}}\left[\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right] \Rightarrow \mathrm{v}=\sqrt{\frac{2 \mathrm{hc}}{\mathrm{m}}\left[\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right]}$
$\Rightarrow \mathrm{v}=\sqrt{\frac{2 \mathrm{hc}}{\mathrm{m}}\left[\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right]}$
19. Which one of the following is used as Antihistamine?
(1) Diphenhydramine
(2) Norethindrone
(3) Omeprazole
(4) Chloranphenicol

Ans. (1)
20. The molar heat capacity $\left(\mathrm{C}_{\mathrm{p}}\right)$ of $\mathrm{CD}_{2} \mathrm{O}$ is 10 cals at 1000 K . The change in entropy associated with cooling of 32 g of $\mathrm{CD}_{2} \mathrm{O}$ vapour from 1000 K to 100 K at constant pressure will be ($\mathrm{D}=$ deuterium, at. mass $=2 \mathrm{u}$)
(1) $-23.03 \mathrm{cal} \mathrm{deg}^{-1}$
(2) $2.303 \mathrm{cal} \mathrm{deg}^{-1}$
(3) $23.03 \mathrm{cal} \mathrm{deg}^{-1}$
(4) $-2.303 \mathrm{cal} \mathrm{deg}^{-1}$

Ans. (1)
Sol. $\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{p}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)$
$=2.303 \times n \times C_{p} \log \left(\frac{T_{2}}{T_{1}}\right)$
$=2.303 \times 1 \times 10 \log \frac{100}{1000}$
$=-23.03 \mathrm{cal} \mathrm{deg}^{-1}$
21. The gas liberated by the electrolysis of Dipotassium succinate solution is
(1) Ethyne
(2) Ethene
(3) Propene
(4) Ethane

Ans. (2)
22. Which of the following name formula combinations is not correct?

Formula

(1) $\mathrm{K}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{4}\right]$
(III)
(2) $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \Pi \mathrm{SO}_{4}\right.$ Tetraammine
aquaiodo cobalt (III)
sulphate
(3) $\left[\mathrm{Mn}(\mathrm{CN})_{5}\right]^{2-}$
(4) $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$

Ans. (3)
Sol. Correct Name of $\left[\mathrm{Mn}(\mathrm{CN})_{5}\right]^{2-}$ is Pentacyanomagnate (III) ion.
23. For the reaction, $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$, the rate equation can be expressed in two ways

$$
-\frac{\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] \text { and }+\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\mathrm{k}^{\prime}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]
$$

k and k^{\prime} are related as
(1) $k=k^{\prime}$
(2) $\mathrm{k}=4 \mathrm{k}^{\prime}$
(3) $2 \mathrm{k}=\mathrm{k}^{\prime}$
(4) $\mathrm{k}=2 \mathrm{k}^{\prime}$

Ans. (3)
Sol. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
$-\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
Now
$\Rightarrow-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\frac{1}{4} \times \mathrm{K}^{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$
$\Rightarrow 2 \mathrm{k}=\mathrm{k}^{\prime}$
24. An organic compound $\mathrm{A}, \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$; reacts with $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ and $\mathrm{CH}_{3} \mathrm{COOH}$ as described below:

A is
(1)

(2)

(3)

(4)

Ans. (1)
25. A gaseous compound of nitrogen and hydrogen contains 12.5% (by mass) of hydrogen. The density of the compound relative to hydrogen is 16 . The molecular formula of the compound is :
(1) NH_{2}
(2) NH_{3}
(3) $\mathrm{N}_{3} \mathrm{H}$
(4) $\mathrm{N}_{2} \mathrm{H}_{4}$

Ans. (4)
Sol.

	N	H
Mass \%	87.5	12.5
Mol	$\frac{87.5}{14}$	$\frac{12.5}{1}$
	$=6.25$	$=12.5$
	1	2

Empirical formula $=\mathrm{NH}_{2}$
Since \quad Vapour density $=16$
\therefore mol. wt. $=32$
\because Molecular formula $=\mathrm{n} \times$ Emp. formula

$$
\begin{aligned}
& =2 \times \mathrm{NH}_{2} \\
& =\mathrm{N}_{2} \mathrm{H}_{4}
\end{aligned}
$$

26. Assuming that the degree of hydrolysis is small, the pH of 0.1 M solution of sodium acetate $\left(\mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-5}\right)$ will be
(1) 5.0
(2) 8.0
(3) 6.0
(4) 9.0

Ans. (4)
Sol. $\mathrm{CH}_{3} \mathrm{COONa} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$

27. The reagent needed for converting

is
(1) H_{2} /Lindlar Cat.
(2) Cat. Hydrogenation
(3) LiAlH_{4}
(4) $\mathrm{Li} / \mathrm{NH}_{3}$

Ans. (4)
28. Consider the coordination compound, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$. In the formation of this complex, the species which acts as the Lewis acid is :
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(2) NH_{3}
(3) Co^{3+}
(4) CI^{-}

Ans. (3)
Sol. Metalcation i.e. Ca^{3+} act as a lewis acid which accept lone pair from ligands of NH_{3}.
29. The correct order of bond dissociation energy among $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{O}_{2}-$ is shown in which of the following arrangements?
(1) $\mathrm{N}_{2}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
(2) $\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{N}_{2}$
(3) $\mathrm{N}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}$
(4) $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{N}_{2}$

Ans. (1)
Sol. Bond energy \propto Bond order bondorder :-
$\mathrm{N}_{2}=\mathrm{Nb}=10, \mathrm{Na}=4$
B.O. $=\left(\mathrm{N}_{2}\right)=\frac{10-4}{2}=3$
$\mathrm{O}_{2}=\mathrm{Nb}=10, \mathrm{Na}=6$
B. $\mathrm{O}_{\left(\mathrm{O}_{2}\right)}=\frac{10-6}{2}=2$
$\mathrm{O}_{2}{ }^{-}=\mathrm{Nb}=10, \mathrm{Na}=7$
B.O. ${ }_{\left(\mathrm{O}_{2}\right)}=\frac{10-7}{2}=\frac{3}{2}=1.5$

Hence the order of B.O.

$$
\mathrm{N}_{2}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}
$$

30. In some solutions, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ remains constant even when small amounts of strong acid or strong base are added to them.
These solutions are known as :-
(1) Colloidal solutions
(2) True solutions
(3) Ideal solutions
(4) Buffer solutions

Ans. (4)

