# JEE Main - 2018 (CBT) Exam <br> Test Date: 15/04/2018 <br> Test Time: $\quad$ 9:30 AM - 12:30 PM <br> Subject: JEE Main 2018 CBT EH 

## Chemistry

## Q1:

The main reduction product of the following compound with NaBH 4 in methanol is:


Options
1.
2.

3.

4.



Q2:
A white sodium salt dissolves readily in water to give a solution which is neutral to litmus. When silver nitrate solution is added to the aforementioned solution, a white precipitate is obtained which does not dissolve in dil. nitric acid. The anion is:

## Options

1. $\mathrm{Cl}^{-}$
2. $S^{2}$
3. $\mathrm{SO}_{4}{ }^{2-}$
4. $\mathrm{CO}_{3}{ }^{2-}$

## Q3:

Which of the following statements about colloids is False?

## Options

1. Freezing point of colloidal solution is lower than true solution at same concentration of a solute.
2. When silver nitrate solution is added to potassium iodide solution, a negatively charged colloidal solution is formed.
3. Colloidal particles can pass through ordinary filter paper.
4. When excess of electrolyte is added to colloidal solution, colloidal particle will be precipitated.

## Q4:

A sample of $\mathrm{NaClO}_{3}$ is converted by heat to NaCl with a loss of 0.16 g of oxygen. The residue is dissolved in water and precipitated as AgCl . The mass of AgCl (ing) obtained will be: (Given: Molar mass of $\mathrm{AgCl}=$ $143.5 \mathrm{~g} \mathrm{~mol}^{-1}$ )

## Options

1. 0.35
2. 0.48
3. 0.54
4. 0.41

## Q5:

In which of the following reactions, an increase in the volume of the container will favour the formation of -products?

## Options

1. $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$
2. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
3. $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
4. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

Q6:
The reagent(s) required for the following conversion are:


Options

1. (i) $\mathrm{LiAlH}_{4}$ (ii) $\mathrm{H}_{3} \mathrm{O}^{+}$
2. (i) $\mathrm{B}_{2} \mathrm{H}_{6}$ (ii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$ (iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
3. (i) $\mathrm{B}_{2} \mathrm{H}_{6}$ (ii)DIBAL-H (iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
4. (i) $\mathrm{NaBH}_{4}$ (ii)Raney $\mathrm{Ni} / \mathrm{H}_{2}$ (iii) $\mathrm{H}_{3} \mathrm{O}^{+}$

Q7:
An ideal gas undergoes a cyclic process as shown in Figure.

$\Delta \mathrm{U}_{\mathrm{BC}}=-5 \mathrm{Kj} \mathrm{mol}^{-1}, \mathrm{q}_{\mathrm{AB}}=2 \mathrm{Kj} \mathrm{mol}^{-1}$
$\mathrm{W}_{\mathrm{AB}}=-5 \mathrm{Kj} \mathrm{mol}^{-1}, \mathrm{~W}_{\mathrm{CA}}=3 \mathrm{Kj} \mathrm{mol}^{-1}$
Heat absorbed by the system during process CA is:
Options

1. $-18 \mathrm{Kj} \mathrm{mol}^{-1}$
2. $-5 \mathrm{kj} \mathrm{mol}^{-1}$
3. $+5 \mathrm{KJ} \mathrm{mol}^{-1}$
4. $18 \mathrm{KJ} \mathrm{mol}^{-1}$

Q8:
In graphite and diamond, the percentage of $p$-characters of the hybrid orbitals in hybridisation are respectively:
Options

1. 67 and 75
2. 33 and 25
3. 50 and 75
4. 33 and 75

Q9:
The correct combination is:

## Options

1. $\left[\mathrm{NiCl}_{4}\right]^{2}$ - paramagnetic ; $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ - tetrahedral
2. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ - square-planar ; $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ paramagnetic
3. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ - diamagnetic ; $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$-square-planar
4. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]^{2-}$ - tetrahedral; $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right.$ - paramagnetic

## Q10:

The major product of the following reaction is:

1.

2.

3.

4.


Q11:
When an electric current is passed through acidified water, 112 mL of hydrogen gas at N.T.P. was collected at the cathode in 965 seconds. The current passed, in ampere, is:
Options

1. 0.1
2. 0.5
3. 1.0
4. 2.0

## Q12:

Which of the following is a Lewis acid?
Options

1. $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$
2. $\mathrm{PH}_{3}$
3. NaH
4. $\mathrm{NF}_{3}$

## Q13:

The correct match between and List-II is:

List - I
(A) Coloured impurity
(B) Mixture of O-nitrophenol and p-nitrophenol
(C) Crude Naphtha
(D) Mixture of

List - II
(P) Steam distillation
(Q) Fractional distillation
(R) Charcoal treatment
$(\mathrm{S})$ Distillation under reduced pressure

## Options

1. $(A)-(R),(B)-(P),(C)-(Q),(D)-(S)$
2. $(A)-(R),(B)-(S),(C)-(P),(D)-(Q)$
3. $(A)-(P),(B)-(S),(C)-(R),(D)-(Q)$
4. $(A)-(R),(B)-(P),(C)-(S),(D)-(Q)$

## Q14:

Xenon hexafluoride on partial hydrolysis produces compounds ' $X$ ' and ' $Y$ '. Compounds ' $X$ ' and ' $Y$ ' and the oxidation state of Xe are respectively:

## Options

1. $\mathrm{XeOF}_{4}(+6)$ and $\mathrm{XeO}_{2} \mathrm{~F}_{2}(+6)$
2. $\mathrm{XeOF}_{4}(+6)$ and $\mathrm{XeO}_{3}(+6)$
3. $\mathrm{XeO}_{2} \mathrm{~F}_{2}(+6)$ and $\mathrm{XeO}_{2}(+4)$
4. $\mathrm{XeO}_{2}(+4)$ and $\mathrm{XeO}_{3}(+6)$

## Q15:

$\mathrm{N}_{2} \mathrm{O}_{5}$ decomposes to $\mathrm{NO}_{2}$ and $\mathrm{O}_{2}$ and follows first order kinetics. After 50 minutes, the pressure inside the vessel increases from 50 mmHg to 87.5 mmHg . The pressure of the gaseous mixture after 100 minute at constant temperature will be:

## Options

1. $\quad 106.25 \mathrm{mmHg}$
2. $\quad 116.25 \mathrm{mmHg}$
3. 136.25 mmHg
4. $\quad 175.0 \mathrm{mmHg}$

Q16:
For $\mathrm{Na}^{+}, \mathrm{mg}^{2+}, \mathrm{F}^{-}$and $\mathrm{O}^{2-}$; the correct order of increasing ionic radii is:
Options

1. $\mathrm{Na}+<\mathrm{Mg}^{2+}<\mathrm{F}-<\mathrm{O}^{2-}$
2. $\mathrm{Mg}^{2}<\mathrm{N}^{\mathrm{a}}<\mathrm{F}^{-}<\mathrm{O}^{2-}$
3. $\mathrm{Mg}^{2}+<\mathrm{O}^{2}-<\mathrm{Na}^{+}<\mathrm{F}$
4. $\mathrm{O}^{2}-<\mathrm{F}^{-}<\mathrm{Na}^{+}<\mathrm{Mg}^{2+}$

Q17:
Which of the following will not exist in zwitter ionic form at $\mathrm{pH}=7$ ?

## Options

1. 


2.

3.

4.


Q18:
The IUPAC name of the following compound is:

## Options

1. 4, 4-diethyl-3-methylbut-2-ene
2. 4-ethyl-3-methylhex-2-ene
3. 3-ethyl-4-methylhex-4-ene
4. 4-methyl-3-ethylhex-4-ene

## Q19:

The minimum volume of water required to dissolve 0.1 g lead (II) chloride to get a saturated solution $\left(\mathrm{K}_{\text {sp }}\right.$ of $\mathrm{PbCl}_{2}=3.2 \times 10^{-8}$; atomic mass of $\mathrm{Pb}=207 \mathrm{u}$ ) is:
Options

1. 018 L
2. 0.36 L
3. 17.98 L
4. 1.798 L

## Q20:

Ejection of the photoelectron from metal in the photoelectric effect experiment can be stopped by applying 0.5 V when the radiation of 250 nm is used. The work function of the metal is:

## Options

1. 4.5 eV
2. 4 eV
3. 5.5 eV
4. 5 eV

## Q21:

Which of the following arrangements shows the schematic alignment of magnetic moments of antiferromagnetic substance?

## Options

1. 


2.

3.

4.


## Q22:

$\mathrm{H}-\mathrm{N}---\mathrm{N}---\quad \mathrm{N}$

In hydrogen azide (above) the bond orders of bonds (I) and (II) are:
(I)
(II)

Options

1. $<2<2$
2. $<2>2$
3. $>2>2$
4. $>2<2$

Q23:
The copolymer formed by addition polymerization of styrene and acrylonitrile in the presence of peroxide is:

## Options

1. 


2.

3.

4.


Q24:
Which of the following will most readily give the dehydrohalogenation product? Options
1.

2.

3.

4.


Q25:
In the molecular orbital diagram for the molecular ion, $\mathrm{N}_{2}{ }^{+}$, the number of electrons in the $\sigma_{2 p}$ molecular orbital is:
Options

1. 1
2. 3
3. 0
4. 2

Q26:
Which of the following is the correct structure of Adenosine?
Options
1.


Ribose
2.

3.

4.


Q27:
Identify the pair in which the geometry of the species is T-shape and square-pyramidal, respectively: Options

1. $\mathrm{IO}_{3}^{-}$and $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}$
2. $\mathrm{XeOF}_{2}$ and $\mathrm{XeOF}_{4}$
3. $\mathrm{CIF}_{3}$ and $\mathrm{IO}_{4}^{-}$
4. $\mathrm{ICI}_{2}^{-}$and $\mathrm{ICI}_{5}$

## Q28:

The decreasing order of bond angles in $\mathrm{BF}_{3}, \mathrm{NH}_{3}, \mathrm{PF}_{3}$ and $\mathrm{I}_{3}$ - is:
Options

1. $\mathrm{BF}_{3}>\mathrm{NH}_{3}>\mathrm{PF}_{3}>\mathrm{I}_{3}-$
2. $\mathrm{I}_{3}-\mathrm{BF}_{3}>\mathrm{NH}_{3}>\mathrm{PF}_{3}$
3. $\mathrm{I}_{3}>\mathrm{NH}_{3}>\mathrm{PF}_{3}>\mathrm{BF}_{3}$
4. $\mathrm{BF}_{3}>\mathrm{I}_{3}>\mathrm{PF}_{3}>\mathrm{NH}_{3}$

## Q29:

For which of the following reactions, $\Delta \mathrm{H}$ is equal to $\Delta \mathrm{U}$ ?

## Options

1. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
2. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
3. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
4. $2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

Q30:
The increasing order of nitration of the following compounds is:

(a)

(b)

(c)

(d)

## Options

1. (a) $<$ (b) $<$ (d) $<$ (c)
2. (a) $<$ (b) $<$ (c) $<$ (d)
3. (b) $<$ (a) $<$ (c) $<$ (d)
4. $($ b $)<($ a $)<($ d $)<$ (c)

## Chemistry Solutions

Sol 1: (2)
$\mathrm{NaBh}_{4}$ selectively reduce ketone.

Sol 2: (1)
$\mathrm{Nacl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{Agcl}+\mathrm{NaNO}_{3}$ (white ppt)
$\downarrow$
Insoluble in dil $\mathrm{HNO}_{3}$

So, $\mathrm{Cl}^{-}$is answer.

## Sol 3: (1)

Sol 4: (2)
$\mathrm{NaClO}_{3} \rightarrow \mathrm{Nacl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{Agcl}$
$2 \mathrm{NaClO}_{3} \rightarrow 2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
$\frac{0.16}{32}$ mole

$$
\begin{aligned}
& \mathrm{NaCl}=\frac{2}{3} \times \frac{0.16}{32} \times 143.5 \\
& =0.48 \mathrm{~g}
\end{aligned}
$$

## Sol 5: (2)

With increase in the volume, pressure will decrease and so no. of mole
So reaction will proceed in the forward direction when there is increase moles so option is (2)

Sol 6: (3)
DIABAL - H $\rightarrow$ selectively reduce enter to aldehyde

Sol 7: (3)

\[

\]

$D_{C A}^{U}=8$
$\mathrm{q}_{\mathrm{CA}}=8-3$
$\mathrm{q}_{\mathrm{CA}}=+5$

Sol 8: (1)
graphite $\rightarrow \mathrm{sp}^{2} \rightarrow \% \mathrm{~S} \rightarrow 33 \%, \% \mathrm{p}=67 \%$
diamond $\rightarrow \mathrm{Sp}^{3} \rightarrow \% \mathrm{~S} \rightarrow 25 \%, \% \mathrm{p}=75 \%$

Sol 9: (1)
(1) $\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]^{2} \rightarrow \mathrm{~d}^{8}(\mathrm{Ni})^{2+}$
$\mathrm{Cl}^{-}$is weak

| 11 | $1 L$ | 11 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

Field ligand $\rightarrow$ So due to unpraised $\bar{e},\left(\mathrm{Ni}(\mathrm{Cl})_{4}\right)^{2-}$ is paramagnetic
(2)
$\mathrm{Ni}(\mathrm{CO})_{4} \rightarrow$ Tetrachedral


## Sol 10: (1)





Sol 11: (3)
at NTP $1 \mathrm{~mol}=22.4 \mathrm{l}$
$112 \mathrm{ml} \mathrm{H}_{2} \Rightarrow \frac{112}{1000 \times 22.4}$
$\Rightarrow \frac{1}{200} \mathrm{~mol}$ of $\mathrm{H}_{2}$
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}$
$2 \mathrm{H}^{-}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
1 mol of $\mathrm{H}_{2}$ required 2 mole $\overline{\mathrm{e}}$
$1 / 200 \mathrm{~mol}$ of $\mathrm{H}_{2}$ require $2 / 200=1 / 100 \mathrm{~mol}$ of $\overline{\mathrm{e}}$
$\frac{1}{100} \mathrm{~mol}$ of $\overline{\mathrm{e}}=\frac{1}{100} \times 6.022 \times 10^{23} \overline{\mathrm{e}} \times 1.6 \times 10^{-19}$

Sol 12: (1)
Lewis acid $\rightarrow$ which has vacant orbital,

So $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$

## Sol 13: (1)

$\mathrm{O}-\mathrm{P} \Rightarrow$ diff in B.pt $\Rightarrow$ Steam distillation
Coloured impurity $\rightarrow$ Chromatography

Sol 14: (1)
$\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF}$
$\mathrm{XeF}_{6}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeO}_{2} \mathrm{~F}_{2}+4 \mathrm{HF}$

Sol 15: (1)
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
p $\quad-\quad-$
$p-2 x \quad 4 x \quad x$
$p t=p-2 x+4 x+x$
$p t=p+3 x$
$K=\frac{2.303}{t} \log \frac{p}{p-2 x}$
at $\mathrm{t}=0, \mathrm{pt}=\mathrm{p}=50 \mathrm{mmHg}$
at $\mathrm{t}=50 \mathrm{~mm}, \mathrm{pt}=87.5 \mathrm{mmHg}$
$p+3 x=87.5$
$\mathrm{p}=87.5-3 \mathrm{x}$
$50=87.5-3 x$
$12.5=\mathrm{x}$

So, $\mathrm{k}=\frac{2.303}{50} \log \frac{50}{25}$
$\mathrm{K}=\frac{2.303}{50} \log 2$
$p-2 x=50-2(12.5)=25$
at $t=100, \quad K=\frac{2.303}{100} \log \frac{50}{p-2 y}$
Since K will remain same
$\frac{2.303}{100} \log \frac{50}{p-2 y}=\frac{2.303}{50} \log 2$
$\log \frac{50}{P^{-2} y}=2 \log 2$
$\frac{50}{50-2 y}=4$
$50=50 \times 4-8 y$
$50=200-8 y$
$8 y=150$
$y=18.75$
$P t=p+3 y$
$=50+3(18.73)=106.25 \mathrm{mmHg}$

Sol 16: (2)
Axiom are greater in eye then colour, So, correct option (2)
(2) $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}$

Sol 17: (4)
(1)

(2)

(3)

(4)


This question says as which one will not form zwiter ion (4) will be right answer.

Sol 18: (2)
Basic Nomenclature.


Sol 19: (1)
Ksp of $\mathrm{PbCl}_{2}$ is $3.2 \times 10^{-8}$
$\mathrm{PbCl}_{2}$ is $3.2 \times 10^{-8}$
$\operatorname{Pbcl}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$

$$
\mathrm{t}=0 \quad 1 \quad 0
$$

0. 

At equilibrium $1-\mathrm{S} \quad \mathrm{S} \quad 2 \mathrm{~S}$.
$\mathrm{K}_{\mathrm{sp}}=[\mathrm{S}][2 \mathrm{~S}]^{2}$
$3.2 \times 10^{-8}=4 \mathrm{~s}^{3}$
$S^{3}=0.8 \times 10^{-8}$
$S^{3}=8 \times 10^{-9}$
$S=2 \times 10^{-3}$
Solubility $=\frac{W}{V}$
$\therefore \quad$ Solubility of $\mathrm{PbCl}_{2}$ in $\mathrm{gL}^{-1}=2 \times 10^{-3} \times 278$
$=556 \times 10^{-3} \mathrm{gL}^{-1}$
$0.556 \mathrm{gL}^{-1}$
$\frac{0.556}{0.1}=\frac{1}{\mathrm{x}}$
$\mathrm{x}=\frac{0.1}{0.556}$
$=0.18 \mathrm{~L}$

Sol 20: (1)
$\mathrm{F}=\frac{\mathrm{hc}}{\lambda}$
$=\frac{6.626 \times 10^{-34} \times 3 \times 10^{-8}}{250 \times 10^{-9}}$
$=\frac{18.878 \times 10^{-26}}{250 \times 10^{-9}}$
$=\frac{0.0755 \times 10^{-17}}{1.6 \times 10^{-19}}$
$=4.375 \mathrm{eV}$

Sol 21: (4)
Basic knowledge of Antiferromagnetic

## $\oplus(1) \oplus(1+(1)$

Sol 22: (2)
Hydrogen azide: $\mathrm{HN}_{3}$

$$
\begin{aligned}
& \therefore{ }^{\mathrm{N}}=\mathrm{N}=\stackrel{\circ}{\mathrm{N}} \text { - } \mathrm{H} \\
& \therefore \mathrm{~N} \equiv \mathrm{~N} \text { — } \mathrm{N} \text { ㅇ } \mathrm{H} \\
& \therefore \text { NㅇㅇN }
\end{aligned}
$$

Both works correct

Sol 23: (4)

$\left(\mathrm{C}_{6} \mathrm{H}_{8}\right)_{\mathrm{n}}-\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right)_{\mathrm{m}}$

Sol 24: (3)
Most probable is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$





Sol 25: (1)
$\mathbf{N}_{\mathbf{2}}^{+} \quad: \quad 9 \mathrm{e}^{-}$


Sol 26: (3)


Ribose


Sol 27: (2)


Sol 28: (2)

$\mathrm{I}_{\mathbf{3}}^{-}: \mathbf{1 8 0}^{\circ}$

Sol 29: (4)
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{ngRT}$.
[If $\Delta \mathrm{ng}=0$ then $\Delta \mathrm{H}=\Delta \mathrm{U}$ ]

Sol 30: (3)
Activating Substituents:


## JEE Main: 2018 (Online CBT)

## Answer Key (15/04/2018)

## Chemistry

| Q. No. | Answer | Q. No. | Answer | Q. No. | Answer |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 11 | 3 | 21 | 4 |
| 2 | 1 | 12 | 1 | 22 | 2 |
| 3 | 1 | 13 | 1 | 23 | 4 |
| 4 | 2 | 14 | 1 | 24 | 3 |
| 5 | 2 | 15 | 1 | 25 | 1 |
| 6 | 3 | 16 | 2 | 26 | 3 |
| 7 | 3 | 17 | 4 | 27 | 2 |
| 8 | 1 | 18 | 2 | 28 | 2 |
| 10 | 1 | 19 | 1 | 29 | 4 |
| 9 | 1 | 20 | 1 | 30 | 3 |

