IEE Advanced 2014 Solution Paper-2 Chemistry (Code-7)

21. The product formed in the reaction of SOCl_{2} with white phosphorous is
(A) PCl_{3}
(B) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
(C) SCl_{2}
(D) POCl_{3}

Solution: (A)
The reaction goes as follows:

$$
\mathrm{P}_{4}(\mathrm{~s})+8 \mathrm{SOCl}_{2}(l) \longrightarrow 4 \mathrm{PCl}_{3}(l)+4 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{~S}_{2} \mathrm{Cl}_{2}(\mathrm{~g})
$$

22. The major product in the following reaction is
[Figure]

(B)

Solution: (D)

Solution: (A)
The reactions are as follows:
$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{KIO}_{4} \rightarrow \mathrm{KIO}_{3}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
$40 \mathrm{NH}_{2} \mathrm{OH}+10 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 7 \mathrm{H}_{2} \mathrm{O}+20 \mathrm{~N}_{2} \mathrm{O}_{3}$
Thus it acts as: Reducing Agent in the first reaction and Oxidising Agent in the second reaction.

Solution: (D)
The first reaction goes as follows:

$$
\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeO}_{3}+6 \mathrm{HF}
$$

This is followed by the following reaction:

$$
\mathrm{XeO}_{3}+\mathrm{OH}^{-} \longrightarrow \underset{\text { hydrogenxenate ion }}{\mathrm{HXeO}_{4}^{-}}
$$

This ion when followed by further reaction gives:

$$
2 \mathrm{HXeO}_{4}^{-}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{XeO}_{4}^{6-}+\mathrm{Xe}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Thus three gases including water, xenon and oxygen are produced.
25. The acidic hydrolysis of ether (X) shown below is fastest when
[Figure]

[X]
(A) one phenyl group is replaced by a methyl group.
(B) one phenyl group is replaced by a para-methoxyphenyl group.
(C) two phenyl groups are replaced by two para-methoxyphenyl groups.
(D) no structural change is made to X.

Solution: (C)

 eleaxton denoting.

26. Isomers of hexane, based on their branching, can be divided into three distinct classes as shown in the figure.
[Figure]

The correct order of their boiling point is
(A) I $>$ II $>$ III
(B) III $>$ II $>$ I
(C) II $>$ III $>$ I
(D) III $>$ I $>$ II
For the idantifination as:a

27
Solution: (B)
This is due to the fact that branching of the chain makes the molecule more compact and thereby decreases the surface area. Therefore, the intermolecular attractive forces which depend upon the surface area, also become small in magnitude on account of branching. Consequently, the boiling points of the branched chain alkanes are less than the straightchain isomers.
27. For the identification of β-naphthol using dye test, it is necessary to use
(A) dichloromethane solution of β-naphthol.
(B) acidic solution of B-п
(C) neutral solution of β-naphthol.
(D) alkaline solution of β-naphthol
28. Assuming $2 s-2 p$ mixing is NOT operative the

Solution: (B)
β-Naphthol or 2- Naphtholis identified by using a due test using an acidic solution.

Solution: (B)
B_{2} exists in the gas phase as a paramagnetic radical.

Solution: (B)

Let the rate of reaction be given by:

$$
r \propto[M]^{n}
$$

Let the initial concentration and rate be given by: x, r_{1}.
Then the final concentration and rate would be given by: $2 x, r_{2}$
So, we get:

$$
\frac{r_{2}}{r_{1}}=\frac{(2 x)^{n}}{(x)^{n}}=(2)^{n}
$$

But, we know that:

$$
\frac{r_{2}}{r_{1}}=8
$$

So, we get: $n=3$.

Solution: (B)
As the reaction is an endothermic reaction, this results into a decrease in entropy of the surroundings and since a orderely arrangement of liquid changes to gas, the entropy of the system increases.

31. Solution: (A)

The reaction goes as follows:

32. Solution: (A)

Paragraph For Questions 33 and 34

An aqueous solution of metal ion M1 reacts separately with reagents \mathbf{Q} and \mathbf{R} in excess to give tetrahedral and square planar complexes, respectively. An aqueous solution of another metal ion M2 always forms tetrahedral complexes with these reagents. Aqueous solution of M2 on reaction with reagent S gives white precipitate which dissolves in excess of S . The reactions are summarized in the scheme given below:

SCHEME:

$$
\begin{aligned}
& \text { Tetrahedral } \frac{\mathbf{Q}}{\text { excess }} \text { MI } \frac{\mathbf{R}}{\text { excess }} \text { Square planar } \\
& \text { Tetrahedral } \frac{\mathbf{Q}}{\text { excess }} \text { MR } \frac{\mathbf{R}}{\text { excess }} \text { Tetrahedral } \\
& \text { S, stoichiometric amount } \\
& \text { White precipitate } \frac{\mathbf{S}}{\text { excess }} \text { precipitate dissolves }
\end{aligned}
$$

33. M1, Q and \mathbf{R}, respectively are
(A) $\mathrm{Zn}^{2+}, \mathrm{KCN}$ and HCl
B) $\mathrm{Ni}^{2+}, \mathrm{HCl}$ and KCN
(C) $\mathrm{Cd}^{2+}, \mathrm{KCN}$ and HCl
(D) $\mathrm{Co}^{2+}, \mathrm{HCl}$ and KCN
34. Reagent \mathbf{S} is
(A) $\mathrm{K}\left[\mathrm{Fe}(\mathrm{CN})_{\mathrm{C}}\right]$
(B) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
(C) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
(D) KOH

33. Solution: (B)

We know that NiCl_{4}^{2-} is tetrahedral and NiCN_{4}^{2-} is square planar.
Thus it satisfies the given relation and thus the choice is B.
34. Solution (B)
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$ forms white salts the precipitate of which dissolves in excess.
X and Y are two volatile liquids with molar weights of $10 \mathrm{~g} \mathrm{~mol}^{-1}$ and $40 \mathrm{~g} \mathrm{~mol}{ }^{-1}$ respectively. Two cotton plugs, one soaked in \mathbf{X} and the other soaked in Y , are simultaneously placed at the ends of a tube of length $L=24 \mathrm{~cm}$, as shown in the figure. The tube is filled with an inert gas at 1 atmosphere pressure and a temperature of 300 K . Vapours of X and Y react to form a product which is first observed at a distance $d \mathrm{~cm}$ from the plug soaked in X. Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and the two vapours.

35. The value of d in cm (shown in the figure), as estimated from Graham's law, is
(A) 8
(B) 12
$\begin{array}{ll}\text { (C) } 16 & \text { (D) } 20\end{array}$
36. The experimental value of d is found to be smaller than the estimate obtained using Graham's law. This is due to
(A) larger mean free path for X as compared to that of Y
(C) larger mean free path for Y as compared to that of X
(C) increased collision frequency of Y with the inert gas with the inert gas.
increased collision frequency of X with the inert
with the inert gas. with the inert gas.
35. Solution: (C)

$$
\frac{r_{x}}{r_{y}}=\sqrt{\frac{M_{x}}{M_{y}}}=\sqrt{\frac{40}{10}}=\frac{2}{1}
$$

Now since the rate of diffusion is proportional to distance covered, so we have:

$$
\frac{d}{24-d}=\frac{2}{1}
$$

Hence, we have:

$$
3 d=24 \times 2 \Rightarrow d=16
$$

36. Solution (B)

The reason being the molecular mass would influence the mean free path of the gas.
37. Different possible thermal decomposition pathways for peroxyesters are shown below. Match each pathway from List I with an appropriate structure from List II and select the correct answer using the code given below the lists.

List-I
R. Pathway P
Q. Pathway Q
R. Pathway R
S. Pathway S

Codes:

	P	Q	R	S
(A)	1	3	4	2
(B)	2	4	3	1
(C)	4	1	2	3
(D)	3	2	1	4

2. $\mathrm{C}_{\mathrm{i}} \mathrm{H}_{5} \mathrm{O}_{\mathrm{O}}^{\mathrm{O}} \mathrm{CH}_{3}$

24

$4 \mathrm{Cin}^{-\mathrm{O}} \mathrm{CH}_{\mathrm{C}_{2} \mathrm{CH}_{3}}^{\mathrm{CH}}$

$$
\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}
$$

Solution: (B)
The reaction is as follows:

$$
\mathrm{R}=\mathrm{CH}_{3}, \mathrm{Ar}
$$

Solution: (C)

(R)

(S)

39. Solution: (B)

We have Pas: $\left.\quad\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]_{2} \mathrm{Cl}$.
Now the central atom shows an oxidation number of +3 .
Therefore it shows paramagnetic behaviors and therefore exhibits cis-trans isomerism.
The structure is given by:

For Q , we have:
Q

$$
\begin{align*}
& {\left[\mathrm{T}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Ce}\right]\left(\mathrm{NC}_{3}\right)_{2}} \\
& \Rightarrow x-1=2 \tag{i}\\
& \Rightarrow x=3
\end{align*}
$$

But $H_{2} \mathrm{O}$ and $\mathrm{Cl} l_{2}$ are reek ligands \therefore Paramagnetic.

$$
\left[\begin{array}{ccc}
\mathrm{H}_{2} \mathrm{O} & \\
\mathrm{H}_{2} \mathrm{O} & -\mathrm{T}_{1} & \mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{O} & \mathrm{ll}_{2} & \mathrm{H}_{2} \mathrm{O}
\end{array}\right]
$$

For R we have:

$$
\begin{aligned}
& R \rightarrow 4\llcorner \\
& {\left[\mathrm{Pt}(\mathrm{Cn})\left(\mathrm{NH}_{3}\right)(2] \mathrm{NO}_{3}\right.}
\end{aligned}
$$

$\Rightarrow A_{0}\left(e_{0}\right)$ and NH_{3} are strong, se it is going to show diamagnetism and exhibits ionisation is cmerism

$$
\begin{aligned}
& \text { for } \mathrm{S} ; \quad S \rightarrow 2 \\
& {\left[\mathrm{C}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right] \mathrm{NO}_{3}}
\end{aligned}
$$

Diamagnetic \& exhilits cis-trans isomerism

40. Solution: (C)

$d-d \Rightarrow$ fositive overlaf (d-d g bond)

$\beta-d$ positive averlof
(fo-d π lond)

B-d negative overlof $(\beta-d \pi \text { bond })^{\prime}$

d-d negative (d-d oranti londing)

