JEE(Advanced) – 2017 TEST PAPER WITH SOLUTION

(HELD ON SUNDAY 21st MAY, 2017)

MATHEMATICS

SECTION-1 : (Maximum Marks : 28)

- This section contains **SEVEN** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four options is (are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
- For each question, marks will be awarded in <u>one of the following categories</u> :
 - *Full Marks* : +4 If only the bubble(s) corresponding to all the correct option(s) is (are) darkened.

Partial Marks : +1 For darkening a bubble corresponding **to each correct option**, Provided NO incorrect option is darkened.

Zero Marks : 0 If none of the bubbles is darkened.

Negative Marks : -2 In all other cases.

• for example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will get +4 marks; darkening only (A) and (D) will get +2 marks; and darkening (A) and (B) will get -2 marks, as a wrong option is also darkened

37. Which of the following is(are) NOT the square of a 3×3 matrix with real entries ?

(A)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 1 0	0				(B)	$\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$	0 -1	$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$
(C)										$\begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$

Ans. (A,B)

38. If a chord, which is not a tangent, of the parabola $y^2 = 16x$ has the equation 2x + y = p, and midpoint (h, k), then which of the following is(are) possible value(s) of p, h and k?

(A) $p = 5, h = 4, k = -3$	(B) $p = -1$, $h = 1$, $k = -3$
(C) $p = -2, h = 2, k = -4$	(D) $p = 2, h = 3, k = -4$

Ans. (D)

Sol. Equation of chord with mid point (h, k) :

k.y−16
$$\left(\frac{x+h}{2}\right)$$
 = k²−16h
⇒ 8x - ky + k² - 8h = 0
Comparing with 2x + y - p = 0, we get
k = -4; 2h - p = 4
only (D) satisfies above relation.

39. Let a, b, x and y be real numbers such that a - b = 1 and $y \neq 0$. If the complex number z = x + iy satisfies $Im\left(\frac{az+b}{z+1}\right) = y$, then which of the following is(are) possible value(s) of x ? (A) $1 \sqrt{1-y^2}$ (B) $1 + \sqrt{1+y^2}$ (C) $1 - \sqrt{1+y^2}$ (D) $1 + \sqrt{1-y^2}$

(A)
$$-1 - \sqrt{1 - y^2}$$
 (B) $1 + \sqrt{1 + y^2}$ (C) $1 - \sqrt{1 + y^2}$ (D) $-1 + \sqrt{1 - y}$

Ans. (A,D)

Sol.
$$\operatorname{Im}\left(\frac{az+b}{z+1}\right) = y \text{ and } z = x + iy$$

$$\therefore \quad \operatorname{Im}\left(\frac{a(x+iy)+b}{x+iy+1}\right) = y$$

$$\Rightarrow \quad \operatorname{Im}\left(\frac{(ax+b+iay)(x+1-iy)}{(x+1)^2+y^2}\right) = y$$

$$\Rightarrow \quad -y(ax+b) + ay(x+1) = y((x+1)^2+y^2)$$

$$\Rightarrow \quad (a-b)y = y((x+1)^2+y^2)$$

$$\therefore \quad y \neq 0 \text{ and } a - b = 1$$

$$\Rightarrow \quad (x+1)^2+y^2 = 1$$

$$\Rightarrow \quad x = -1 \pm \sqrt{1-y^2}$$

40. Let X and Y be two events such that $P(X) = \frac{1}{3}$, $P(X | Y) = \frac{1}{2}$ and $P(Y | X) = \frac{2}{5}$. Then

(A) $P(X'|Y) = \frac{1}{2}$ (B) $P(X \cap Y) = \frac{1}{5}$ (C) $P(X \cup Y) = \frac{2}{5}$ (D) $P(Y) = \frac{4}{15}$

Ans. (A,D)

Sol.
$$P(x) = \frac{1}{3}; \frac{P(X \cap Y)}{P(Y)} = \frac{1}{2}; \frac{P(Y \cap X)}{P(X)} = \frac{2}{5}$$

from this information, we get

$$P(X \cap Y) = \frac{2}{15}; P(Y) = \frac{4}{15}$$

$$\therefore P(X \cup Y) = \frac{1}{3} + \frac{4}{15} - \frac{2}{15} = \frac{7}{15}$$

$$P(\overline{X}/Y) = \frac{P(\overline{X} \cap Y)}{P(Y)} = \frac{P(Y) - P(X \cap Y)}{P(Y)}$$

$$\Rightarrow P(\overline{X}/Y) = 1 - \frac{2/15}{4/15} = \frac{1}{2}$$

41. Let [x] be the greatest integer less than or equal to x. Then, at which of the following point(s) the function $f(x) = x\cos(\pi(x + [x]))$ is discontinuous ?

(A) x = -1 (B) x = 0 (C) x = 2 (D) x = 1

Ans. (A,C,D)

Sol. $f(x) = x \cos(\pi x + [x]\pi)$ $\Rightarrow f(x) = (-1)^{[x]} x \cos \pi x.$

Discontinuous at all integers except zero.

42. If 2x - y + 1 = 0 is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{16} = 1$, then which of the following CANNOT

be sides of a right angled triangle ?

(A) 2a, 4, 1 (B) 2a, 8, 1 (C) a, 4, 1 (D) a, 4, 2

Ans. (B,C,D)

Sol. The line y = mx + c is tangent to hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, if $c^2 = a^2m^2 - b^2$

$$\therefore (1)^2 = 4a^2 - 16 \implies a^2 = \frac{17}{4}$$
$$\implies a = \frac{\sqrt{17}}{2}$$

For option (A), sides are $\sqrt{17}$, 4,1 (\Rightarrow Right angled triangle)

For option (B), sides are $\sqrt{17}$, 8,1 (\Rightarrow Triangle is not possible)

For option (C), sides are $\frac{\sqrt{17}}{2}$, 4,1 (\Rightarrow Triangle is not possible)

For option (D), sides are $\frac{\sqrt{17}}{2}$, 4,2 (\Rightarrow Triangle exist but not right angled)

- **43.** Let $f : \mathbb{R} \to (0,1)$ be a continuous function. Then, which of the following function(s) has(have) the value zero at some point in the interval (0, 1)?
 - (A) $e^{x} \int_{0}^{x} f(t) \sin t dt$ (B) $x^{9} f(x)$ (C) $f(x) + \int_{0}^{\frac{\pi}{2}} f(t) \sin t dt$ (D) $x - \int_{0}^{\frac{\pi}{2} - x} f(t) \cos t dt$

Ans. (B,D)

Sol. For option (A),

Let
$$g(x) = e^x - \int_0^x f(t) \sin t \, dt$$

 $\therefore g'(x) = e^x - (f(x) \cdot \sin x) > 0 \, \forall x \in (0,1)$
 $\Rightarrow g(x)$ is strictly incrasing function.
Also, $g(0) = 1$
 $\Rightarrow g(x) > 1 \, \forall x \in (0,1)$
 \therefore option (A) is not possible.
For option (B), let
 $k(x) = x^9 - f(x)$
Now, $k(0) = -f(0) < 0$ (As $f \in (0,1)$)
Also, $k(1) = 1 - f(1) > 0$ (As $f \in (0,1)$)
 $\Rightarrow k(0) \cdot k(1) < 0$
So, option(B) is correct.
For option (C), let

$$T(x) = f(x) + \int_{0}^{\frac{\pi}{2}} f(t) \cdot \sin t \, dt$$

$$\Rightarrow T(x) > 0 \forall x \in (0,1) \text{ (As } f \in (0,1))$$

so, option(C) is not possible. For option (D),

Let
$$M(x) = x - \int_{0}^{\frac{\pi}{2}-x} f(t) \cot dt$$

:.
$$M(0) = 0 - \int_{0}^{\pi/2} f(t) . \cos t \, dt < 0$$

Also, M(1) =
$$1 - \int_{0}^{\frac{\pi}{2} - 1} f(t) \cdot \cos t dt > 0$$

⇒ M(0). M(1) < 0 ∴ option (D) is correct.

SECTION-2 : (Maximum Marks : 15)

- This section contains **FIVE** questions.
- The answer to each question is a **SINGLE DIGIT INTEGER** ranging from 0 to 9, both inclusive.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in <u>one of the following categories</u>:
 Full Marks : +3 If only the bubble corresponding to the correct answer is darkened.
 Zero Marks : 0 In all other cases.
- **44.** The sides of the right angled triangle are in arithmetic progression. If the triangle has area 24, then what is the length of its smallest side ?

Ans. 6

Sol.
$$a-d$$

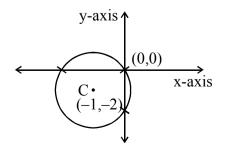
.

where
$$d > 0$$
, $a > 0$
 \Rightarrow length of smallest side = $a - d$
Now $(a + d)^2 = a^2 + (a - d)^2$
 $\Rightarrow a(a - 4d) = 0$
 $\therefore a = 4d$...(1)
(As $a = 0$ is rejected)
Also, $\frac{1}{2}a.(a - d) = 24$
 $\Rightarrow a(a - d) = 48$...(2)
 \therefore From (1) and (2), we get $a = 8$, $d = 2$
Hence, length of smallest side
 $\Rightarrow (a - d) = (8 - 2) = 6$

45. For how many values of p, the circle $x^2 + y^2 + 2x + 4y - p = 0$ and the coordinate axes have exactly three common points ?

Ans. 2

Sol. We shall consider 3 cases. Case I : When p = 0(i.e. circle passes through origin) Now, equation of circle becomes $x^{2} + y^{2} + 2x + 4y = 0$



Case II : When circle intersects x-axis at 2 distinct points and touches y-axis

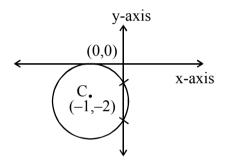
Now $(g^2 - c) > 0$ & $f^2 - c = 0$ $\Rightarrow 1 - (-p) > 0$ & 4 - (-p) = 0 $\Rightarrow p = -4$ $\Rightarrow p > -1$

 \therefore Not possible.

Case III : When circle intersects y-axis at 2 distinct points & touches x-axis.

Now, $g^2 - c = 0$ & $f^2 - c > 0$ $\Rightarrow 1 - (-p) = 0$ & 4 - (-p) > 0 $\Rightarrow p = -1$ $\Rightarrow p > -4$

 \therefore p = -1 is possible.



- \therefore Finally we conclude that p = 0, -1
- \Rightarrow Two possible values of p.
- 46. For a real number α , if the system

1	α	α^2	$\begin{bmatrix} x \end{bmatrix}$		$\left\lceil 1 \right\rceil$
α	1	α	У	=	-1
α^2	α	1	z		1

of linear equations, has infinitely many solutions, then $1 + \alpha + \alpha^2 =$

Ans. 1

Sol. $\Delta = 0 \Rightarrow 1(1 - \alpha^2) - \alpha(\alpha - \alpha^3) + \alpha^2(\alpha^2 - \alpha^2) = 0$ $(1 - \alpha^2) - \alpha^2 + \alpha^4 = 0$ $(\alpha^2 - 1)^2 = 0 \Rightarrow \alpha = \pm 1$ but at $\alpha = 1$ No solution so rejected at $\alpha = -1$ all three equation become x - y + z = 1 (coincident planes)

$$\therefore$$
 1 + α + α^2 = 1

47. Words of length 10 are formed using the letters A, B, C, D, E, F, G, H, I, J. Let x be the number of such words where no letter is repeated; and let y be the number of such words where exactly one

letter is repeated twice and no other letter is repeated. Then, $\frac{y}{9x}$ =

Ans. 5

Sol. x = 10!

 $y = {}^{10}C_1 {}^9C_8 \frac{10!}{2!}$

$$\frac{y}{9x} = \frac{5.9.10!}{9.10!} = 5$$

48. Let $f : R \to R$ be a differentiable function such that f(0) = 0, $f\left(\frac{\pi}{2}\right) = 3$ and f'(0) = 1. If

$$g(x) = \int_{x}^{\frac{\pi}{2}} [f'(t) \operatorname{cosec} t - \operatorname{cot} t \operatorname{cosec} t f(t)] dt$$

for
$$x \in \left(0, \frac{\pi}{2}\right]$$
, then $\lim_{x \to 0} g(x) =$

Ans. 2

Sol.
$$g(x) = \int_{x}^{\pi/2} (f'(t)cosect - f(t)cosect \cot t)dt$$

$$= \int_{x}^{\pi/2} (f(t)\operatorname{cosect})' dt$$

= $f\left(\frac{\pi}{2}\right) \operatorname{cosec}\left(\frac{\pi}{2}\right) - \frac{f(x)}{\sin x} = 3 - \frac{f(x)}{\sin x}$
 $\therefore \quad \lim_{x \to 0} g(x) = 3 - \lim_{x \to 0} \frac{f(x)}{\sin x}; \text{ as } f'(0) = 1$
 $\Rightarrow \quad \lim_{x \to 0} g(x) = 3 - 1 = 2$

SECTION-3 : (Maximum Marks : 18)

- This section contains **SIX** questions of matching type.
- This section contains **TWO** tables (each having 3 columns and 4 rows)
- Based on each table, there are **THREE** questions
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is correct
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in <u>one of the following categories</u> :

Full Marks : +3 If only the bubble corresponding to the correct option is darkened.

Zero Marks : 0 If none of the bubbles is darkened.

Negative Marks : -1 In all other cases

Column 1,2 and 3 contain conics, equation of tangents to the conics and points of contact, respectively.

Column 1	Column 2	Column 3			
(I) $x^2 + y^2 = a^2$	(i) $my = m^2x + a$	(P) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$			
(II) $x^2 + a^2y^2 = a^2$	(ii) $y = mx + a\sqrt{m^2 + 1}$	(Q) $\left(\frac{-\mathrm{ma}}{\sqrt{\mathrm{m}^2+1}}, \frac{\mathrm{a}}{\sqrt{\mathrm{m}^2+1}}\right)$			
(III) $y^2 = 4ax$	(iii) $y = mx + \sqrt{a^2 m^2 - 1}$	(R) $\left(\frac{-a^2m}{\sqrt{a^2m^2+1}}, \frac{1}{\sqrt{a^2m^2+1}}\right)$			
$(IV) x^2 - a^2 y^2 = a^2$	$(iv) y = mx + \sqrt{a^2m^2 + 1}$	(S) $\left(\frac{-a^2m}{\sqrt{a^2m^2-1}}, \frac{-1}{\sqrt{a^2m^2-1}}\right)$			

49. The tangent to a suitable conic (Column 1) at $\left(\sqrt{3}, \frac{1}{2}\right)$ is found to be $\sqrt{3}x + 2y = 4$, then which of the following options is the only **CORRECT** combination ? (A) (II) (iii) (B) (IV) (iv) (S) (C) (IV) (iii) (S) (D) (IV) (iv) (B)

(A) (II) (iii) (R) (B) (IV) (iv) (S) (C) (IV) (iii) (S) (D) (II) (iv) (R) (D) (D)

Ans. (D)

Sol.
$$P\left(\sqrt{3}, \frac{1}{2}\right)$$
; tangent $\sqrt{3}x + 2y = 4$
 $\Rightarrow \left(\sqrt{3}\right)x + 4\left(\frac{1}{2}\right)y = 4$ comparing with (II)
 $\Rightarrow a = 2 \quad \because \quad y = mx + \sqrt{a^2m^2 + 1}$ is tangent for $m = -\frac{\sqrt{3}}{2}$ i.e (ii)
 \therefore point of contact for $a = 2$, $m = -\frac{\sqrt{3}}{2}$ is R

- 50. If a tangent to a suitable conic (Column 1) is found to be y = x + 8 and its point of contact is (8,16), then which of the following options is the only CORRECT combination ?
 (A) (III) (i) (P)
 (B) (III) (ii) (O)
 (C) (II) (iv) (R)
 (D) (I) (ii) (O)
- Ans. (A)
- Sol. y = x + 8 is tangent ⇒ m = 1; P(8, 16) Comparing tangent with (i) of column 2, m = 1 satisfied and a = 8 obtained which matches for point of contact (P) of column 3 and (III) of column I.
- **51.** For $a = \sqrt{2}$, if a tangent is drawn to a suitable conic (Column 1) at the point of contact (-1,1), then which of the following options is the only **CORRECT** combination for obtaining its equation ? (A) (II) (ii) (Q) (B) (III) (i) (P) (C) (I) (i) (P) (D) (I) (ii) (Q)
- Ans. (D)
- Sol. For $a = \sqrt{2}$ and point (-1,1) only I of column-1 satisfies. Hence equaiton of tangent is -x + y = 2 or $y = x + 2 \Rightarrow m = 1$ which matches with (ii) of column 2 and also with Q of column 3

Let $f(x) = x + \log_e x - x \log_e x$, $x \in (0,\infty)$.

- * Column 1 contains information about zeros of f(x), f'(x) and f''(x).
- * Column 2 contains information about the limiting behavior of f(x), f'(x) and f''(x) at infinity.
- * Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column 1	Column 2	Column 3			
(I) $f(x) = 0$ for some $x \in (1,e^2)$	(i) $\lim_{x\to\infty} f(x) = 0$	(P) f is increasing in (0,1)			
(II) $f'(x) = 0$ for some $x \in (1,e)$	(ii) $\lim_{x\to\infty} f(x) = -\infty$	(Q) f is decreasing in (e,e ²)			
(III) $f'(x) = 0$ for some $x \in (0,1)$	(iii) $\lim_{x\to\infty} f'(x) = -\infty$	(R) f' is increasing in (0,1)			
(IV) $f''(x) = 0$ for some $x \in (1,e)$	(iv) $\lim_{x\to\infty} f''(x) = 0$	(S) f' is decreasing in (e,e^2)			

52. Which of the following options is the only **CORRECT** combination ?

(A) (IV) (i) (S) (B) (I) (ii) (R) (C) (III) (iv) (P) (D) (II) (iii) (S) **Ans. (D)**

53. Which of the following options is the only CORRECT combination ?

(A) (III) (iii) (R)
(B) (I) (i) (P)
(C) (IV) (iv) (S)
(D) (II) (ii) (Q)

54. Which of the following options is the only INCORRECT combination ?

(A) (II) (iii) (P)
(B) (II) (iv) (Q)
(C) (I) (iii) (P)
(D) (III) (i) (R)

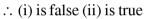
Ans. (D)

Sol. 52. to 54.

$$f(x) = x + \ln x - x \ln x, x > 0$$
$$f'(x) = \sqrt{1 + \frac{1}{x}} - \ln x \sqrt{1}$$
$$f''(x) = -\frac{1}{x^2} - \frac{1}{x} = \frac{-(x+1)}{x^2}$$

- (I) $f(1) f(e^2) < 0$ so true
- (II) f'(1) f'(e) < 0 so true
- (III) Graph of f'(x) so (III) is false
- (IV) Is false

As
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x \left[1 + \frac{\ell n x}{x} - \ell n x \right] = -\infty$$



e²

 $\lim_{x\to\infty} f'(x) = -\infty \text{ so (iii) is true}$

 $\lim_{x \to \infty} f''(x) = 0$ so (iv) is true.

- (P) f'(x) is positive in (0,1) so true
- (Q) f'(x) < 0 for in (e,e^2) so true

As $f'(x) < 0 \forall x > 0$ therefor R is false, S is true.

Alternate :

$$f(\mathbf{x}) = \mathbf{x} + \ell \mathbf{n}\mathbf{x} - \mathbf{x}\ell \mathbf{n}\mathbf{x}$$

$$f'(x) = \frac{1}{x} - \ell nx = 0$$
 at $x = x_0$ where $x_0 \in (1,e)$

$$f''(x) = -\frac{1}{x^2} - \frac{1}{x} < 0 \quad \forall x > 0 \Rightarrow f(x) \text{ concave down}$$

