JEE(Advanced) - 2017 TEST PAPER WITH SOLUTION
 (HELD ON SUNDAY $21{ }^{\text {st }}$ MAY, 2017)
 MATHEMATICS

SECTION-1 : (Maximum Marks : 28)

- This section contains SEVEN questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four options is (are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
- For each question, marks will be awarded in one of the following categories :

Full Marks : +4 If only the bubble(s) corresponding to all the correct option(s) is (are) darkened.
Partial Marks : +1 For darkening a bubble corresponding to each correct option, Provided NO incorrect option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks : -2 In all other cases.

- for example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will get +4 marks; darkening only (A) and (D) will get +2 marks; and darkening (A) and (B) will get -2 marks, as a wrong option is also darkened

37. Which of the following is(are) NOT the square of a 3×3 matrix with real entries ?
(A) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
(B) $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
(C) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$

Ans. (A,B)
38. If a chord, which is not a tangent, of the parabola $y^{2}=16 x$ has the equation $2 x+y=p$, and midpoint (h, k), then which of the following is(are) possible value(s) of p, h and k ?
(A) $\mathrm{p}=5, \mathrm{~h}=4, \mathrm{k}=-3$
(B) $\mathrm{p}=-1, \mathrm{~h}=1, \mathrm{k}=-3$
(C) $\mathrm{p}=-2, \mathrm{~h}=2, \mathrm{k}=-4$
(D) $\mathrm{p}=2, \mathrm{~h}=3, \mathrm{k}=-4$

Ans. (D)
Sol. Equation of chord with mid point (h, k) :
k.y $-16\left(\frac{x+h}{2}\right)=k^{2}-16 h$
$\Rightarrow \quad 8 \mathrm{x}-\mathrm{ky}+\mathrm{k}^{2}-8 \mathrm{~h}=0$
Comparing with $2 \mathrm{x}+\mathrm{y}-\mathrm{p}=0$, we get
$\mathrm{k}=-4 ; 2 \mathrm{~h}-\mathrm{p}=4$
only (D) satisfies above relation.
39. Let a, b, x and y be real numbers such that $a-b=1$ and $y \neq 0$. If the complex number $z=x+$ iy satisfies $\operatorname{Im}\left(\frac{a z+b}{z+1}\right)=y$, then which of the following is(are) possible value(s) of x ?
(A) $-1-\sqrt{1-\mathrm{y}^{2}}$
(B) $1+\sqrt{1+\mathrm{y}^{2}}$
(C) $1-\sqrt{1+\mathrm{y}^{2}}$
(D) $-1+\sqrt{1-\mathrm{y}^{2}}$

Ans. (A,D)
Sol. $\operatorname{Im}\left(\frac{a z+b}{z+1}\right)=y$ and $z=x+i y$

$$
\begin{array}{ll}
\therefore \quad & \quad \operatorname{Im}\left(\frac{a(x+i y)+b}{x+i y+1}\right)=y \\
\Rightarrow & \quad \operatorname{Im}\left(\frac{(a x+b+i a y)(x+1-i y)}{(x+1)^{2}+y^{2}}\right)=y \\
\Rightarrow \quad & -y(a x+b)+a y(x+1)=y\left((x+1)^{2}+y^{2}\right) \\
\Rightarrow \quad & (a-b) y=y\left((x+1)^{2}+y^{2}\right) \\
& \because \quad y \neq 0 \text { and } a-b=1 \\
\Rightarrow & (x+1)^{2}+y^{2}=1 \\
\Rightarrow & x=-1 \pm \sqrt{1-y^{2}}
\end{array}
$$

40. Let X and Y be two events such that $P(X)=\frac{1}{3}, P(X \mid Y)=\frac{1}{2}$ and $P(Y \mid X)=\frac{2}{5}$. Then
(A) $\mathrm{P}\left(\mathrm{X}^{\prime} \mid \mathrm{Y}\right)=\frac{1}{2}$
(B) $\mathrm{P}(\mathrm{X} \cap \mathrm{Y})=\frac{1}{5}$
(C) $\mathrm{P}(\mathrm{X} \cup \mathrm{Y})=\frac{2}{5}$
(D) $\mathrm{P}(\mathrm{Y})=\frac{4}{15}$

Ans. (A,D)
Sol. $\mathrm{P}(\mathrm{x})=\frac{1}{3} ; \frac{\mathrm{P}(\mathrm{X} \cap \mathrm{Y})}{\mathrm{P}(\mathrm{Y})}=\frac{1}{2} ; \frac{\mathrm{P}(\mathrm{Y} \cap \mathrm{X})}{\mathrm{P}(\mathrm{X})}=\frac{2}{5}$
from this information, we get

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \cap \mathrm{Y})=\frac{2}{15} ; \mathrm{P}(\mathrm{Y})=\frac{4}{15} \\
\therefore \quad & \mathrm{P}(\mathrm{X} \cup \mathrm{Y})=\frac{1}{3}+\frac{4}{15}-\frac{2}{15}=\frac{7}{15} \\
& \mathrm{P}(\overline{\mathrm{X}} / \mathrm{Y})=\frac{\mathrm{P}(\overline{\mathrm{X}} \cap \mathrm{Y})}{\mathrm{P}(\mathrm{Y})}=\frac{\mathrm{P}(\mathrm{Y})-\mathrm{P}(\mathrm{X} \cap \mathrm{Y})}{\mathrm{P}(\mathrm{Y})} \\
\Rightarrow \quad & \mathrm{P}(\overline{\mathrm{X}} / \mathrm{Y})=1-\frac{2 / 15}{4 / 15}=\frac{1}{2}
\end{aligned}
$$

41. Let $[x]$ be the greatest integer less than or equal to x. Then, at which of the following point(s) the function $f(\mathrm{x})=\mathrm{x} \cos (\pi(\mathrm{x}+[\mathrm{x}]))$ is discontinuous ?
(A) $x=-1$
(B) $x=0$
(C) $\mathrm{x}=2$
(D) $x=1$

Ans. (A,C,D)
Sol. $f(\mathrm{x})=\mathrm{x} \cos (\pi \mathrm{x}+[\mathrm{x}] \pi)$
$\Rightarrow f(\mathrm{x})=(-1)^{[\mathrm{x}]} \mathrm{x} \cos \pi \mathrm{x}$.
Discontinuous at all integers except zero.
42. If $2 x-y+1=0$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$, then which of the following CANNOT be sides of a right angled triangle ?
(A) $2 \mathrm{a}, 4,1$
(B) $2 \mathrm{a}, 8,1$
(C) a, 4, 1
(D) a, 4, 2

Ans. (B,C,D)
Sol. The line $y=m x+c$ is tangent to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, if $c^{2}=a^{2} m^{2}-b^{2}$
$\therefore(1)^{2}=4 a^{2}-16 \Rightarrow a^{2}=\frac{17}{4}$
$\Rightarrow \mathrm{a}=\frac{\sqrt{17}}{2}$
For option (A), sides are $\sqrt{17}, 4,1 \quad(\Rightarrow$ Right angled triangle $)$
For option (B), sides are $\sqrt{17}, 8,1 \quad(\Rightarrow$ Triangle is not possible)
For option (C), sides are $\frac{\sqrt{17}}{2}, 4,1 \quad(\Rightarrow$ Triangle is not possible $)$
For option (D), sides are $\frac{\sqrt{17}}{2}, 4,2 \Leftrightarrow$ Triangle exist but not right angled)
43. Let $f: \mathbb{R} \rightarrow(0,1)$ be a continuous function. Then, which of the following function(s) has(have) the value zero at some point in the interval $(0,1)$?
(A) $\mathrm{e}^{\mathrm{x}}-\int_{0}^{\mathrm{x}} f(\mathrm{t}) \sin \mathrm{tdt}$
(B) $\mathrm{x}^{9}-f(\mathrm{x})$
(C) $f(\mathrm{x})+\int_{0}^{\frac{\pi}{2}} f(\mathrm{t}) \sin \mathrm{tdt}$
(D) $\mathrm{x}-\int_{0}^{\frac{\pi}{2}-\mathrm{x}} f(\mathrm{t}) \cos \mathrm{tdt}$

Ans. (B,D)

Sol. For option (A),
Let $\mathrm{g}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}-\int_{0}^{\mathrm{x}} f(\mathrm{t}) \sin \mathrm{tdt}$
$\therefore \mathrm{g}^{\prime}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}-(f(\mathrm{x}) \cdot \sin \mathrm{x})>0 \forall \mathrm{x} \in(0,1)$
$\Rightarrow \mathrm{g}(\mathrm{x})$ is strictly incrasing function.
Also, $g(0)=1$
$\Rightarrow \mathrm{g}(\mathrm{x})>1 \forall \mathrm{x} \in(0,1)$
\therefore option (A) is not possible.
For option (B), let
$\mathrm{k}(\mathrm{x})=\mathrm{x}^{9}-f(\mathrm{x})$
Now, $\mathrm{k}(0)=-f(0)<0($ As $f \in(0,1))$
Also, $\mathrm{k}(1)=1-f(1)>0($ As $f \in(0,1))$
$\Rightarrow \mathrm{k}(0) . \mathrm{k}(1)<0$
So, option(B) is correct.
For option (C), let
$T(x)=f(x)+\int_{0}^{\frac{\pi}{2}} f(t) \cdot \sin t d t$
$\Rightarrow \mathrm{T}(\mathrm{x})>0 \forall \mathrm{x} \in(0,1)($ As $f \in(0,1))$
so, option(C) is not possible.
For option (D),
Let $\mathrm{M}(\mathrm{x})=\mathrm{x}-\int_{0}^{\frac{\pi}{2}-\mathrm{x}} f(\mathrm{t}) \cos \mathrm{tdt}$
$\therefore \mathrm{M}(0)=0-\int_{0}^{\pi / 2} f(\mathrm{t}) \cdot \cos \mathrm{tdt}<0$

Also, $\mathrm{M}(1)=1-\int_{0}^{\frac{\pi}{2}-1} f(\mathrm{t}) \cdot \cos \mathrm{tdt}>0$
$\Rightarrow \mathrm{M}(0) . \mathrm{M}(1)<0$
\therefore option (D) is correct.

SECTION-2 : (Maximum Marks : 15)

- This section contains FIVE questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , both inclusive.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in one of the following categories :

Full Marks : +3 If only the bubble corresponding to the correct answer is darkened. Zero Marks : 0 In all other cases.
44. The sides of the right angled triangle are in arithmetic progression. If the triangle has area 24, then what is the length of its smallest side ?

Ans. 6

Sol.

where $\mathrm{d}>0, \mathrm{a}>0$
\Rightarrow length of smallest side $=\mathrm{a}-\mathrm{d}$
Now $(a+d)^{2}=a^{2}+(a-d)^{2}$
$\Rightarrow \mathrm{a}(\mathrm{a}-4 \mathrm{~d})=0$
$\therefore \mathrm{a}=4 \mathrm{~d}$
(As a $=0$ is rejected)
Also, $\frac{1}{2} \mathrm{a} .(\mathrm{a}-\mathrm{d})=24$
$\Rightarrow \mathrm{a}(\mathrm{a}-\mathrm{d})=48$
\therefore From (1) and (2), we get a $=8, \mathrm{~d}=2$
Hence, length of smallest side
$\Rightarrow(a-d)=(8-2)=6$
45. For how many values of p, the circle $x^{2}+y^{2}+2 x+4 y-p=0$ and the coordinate axes have exactly three common points?
Ans. 2
Sol. We shall consider 3 cases.
Case I: When $\mathrm{p}=0$
(i.e. circle passes through origin)

Now, equation of circle becomes

$$
x^{2}+y^{2}+2 x+4 y=0
$$

Case II : When circle intersects x -axis at 2 distinct points and touches y -axis
Now $\left(g^{2}-c\right)>0 \quad \& \quad f^{2}-c=0$
$\Rightarrow 1-(-p)>0 \quad \& \quad 4-(-p)=0 \quad \Rightarrow \quad p=-4$
$\Rightarrow \mathrm{p}>-1$
\therefore Not possible.
Case III : When circle intersects y-axis at 2 distinct points \& touches x -axis.
Now, $g^{2}-\mathrm{c}=0 \quad \& \quad f^{2}-\mathrm{c}>0$
$\Rightarrow \quad 1-(-\mathrm{p})=0 \quad \& \quad 4-(-\mathrm{p})>0$
$\Rightarrow \mathrm{p}=-1 \quad \Rightarrow \mathrm{p}>-4$
$\therefore \mathrm{p}=-1$ is possible.

$\therefore \quad$ Finally we conclude that $\mathrm{p}=0,-1$
\Rightarrow Two possible values of p.
46. For a real number α, if the system

$$
\left[\begin{array}{ccc}
1 & \alpha & \alpha^{2} \\
\alpha & 1 & \alpha \\
\alpha^{2} & \alpha & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

of linear equations, has infinitely many solutions, then $1+\alpha+\alpha^{2}=$
Ans. 1
Sol. $\Delta=0 \Rightarrow 1\left(1-\alpha^{2}\right)-\alpha\left(\alpha-\alpha^{3}\right)+\alpha^{2}\left(\alpha^{2}-\alpha^{2}\right)=0$

$$
\begin{aligned}
& \left(1-\alpha^{2}\right)-\alpha^{2}+\alpha^{4}=0 \\
& \left(\alpha^{2}-1\right)^{2}=0 \Rightarrow \alpha= \pm 1
\end{aligned}
$$

but at $\alpha=1 \quad$ No solution so rejected at $\alpha=-1 \quad$ all three equation become

$$
\begin{aligned}
& \mathrm{x}-\mathrm{y}+\mathrm{z}=1 \text { (coincident planes) } \\
\therefore \quad & 1+\alpha+\alpha^{2}=1
\end{aligned}
$$

47. Words of length 10 are formed using the letters A, B, C, D, E, F, G, H, I, J. Let x be the number of such words where no letter is repeated; and let y be the number of such words where exactly one letter is repeated twice and no other letter is repeated. Then, $\frac{y}{9 x}=$

Ans. 5
Sol. $\mathrm{x}=10$!

$$
\begin{aligned}
& y={ }^{10} \mathrm{C}_{1}{ }^{9} \mathrm{C}_{8} \frac{10!}{2!} \\
& \frac{\mathrm{y}}{9 \mathrm{x}}=\frac{5.9 \cdot 10!}{9.10!}=5
\end{aligned}
$$

48. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a differentiable function such that $\mathrm{f}(0)=0$, $\mathrm{f}\left(\frac{\pi}{2}\right)=3$ and $\mathrm{f}^{\prime}(0)=1$. If

$$
g(x)=\int_{x}^{\frac{\pi}{2}}\left[f^{\prime}(t) \operatorname{cosec} t-\cot t \operatorname{cosec} t f(t)\right] d t
$$

for $x \in\left(0, \frac{\pi}{2}\right]$, then $\lim _{x \rightarrow 0} g(x)=$

Ans. 2

Sol. $\quad g(x)=\int_{x}^{\pi / 2}\left(f^{\prime}(t) \operatorname{cosec} t-f(t) \operatorname{cosec} t \cot t\right) d t$

$$
\begin{aligned}
& =\int_{x}^{\pi / 2}(f(\mathrm{t}) \operatorname{cosect})^{\prime} \mathrm{dt} \\
& =f\left(\frac{\pi}{2}\right) \operatorname{cosec}\left(\frac{\pi}{2}\right)-\frac{f(\mathrm{x})}{\sin \mathrm{x}}=3-\frac{f(\mathrm{x})}{\sin \mathrm{x}} \\
& \therefore \quad \lim _{\mathrm{x} \rightarrow 0} \mathrm{~g}(\mathrm{x})=3-\lim _{\mathrm{x} \rightarrow 0} \frac{f(\mathrm{x})}{\sin \mathrm{x}} ; \text { as } f^{\prime}(0)=1 \\
& \Rightarrow \quad \lim _{x \rightarrow 0} \mathrm{~g}(\mathrm{x})=3-1=2
\end{aligned}
$$

SECTION-3 : (Maximum Marks : 18)

- This section contains SIX questions of matching type.
- This section contains TWO tables (each having 3 columns and 4 rows)
- Based on each table, there are THREE questions
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is correct
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories :

Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks : -1 In all other cases
Column 1,2 and 3 contain conics, equation of tangents to the conics and points of contact, respectively.

Column 1	Column 2	Column 3
(I) $x^{2}+y^{2}=a^{2}$	(i) $m y=m^{2} x+a$	(P) $\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$
(II) $x^{2}+a^{2} y^{2}=a^{2}$	(ii) $y=m x+a \sqrt{m^{2}+1}$	(Q) $\left(\frac{-m a}{\sqrt{m^{2}+1}}, \frac{a}{\sqrt{m^{2}+1}}\right)$
(III) $y^{2}=4 a x$	(iii) $y=m x+\sqrt{a^{2} m^{2}-1}$	(R) $\left(\frac{-a^{2} m}{\sqrt{a^{2} m^{2}+1}}, \frac{1}{\sqrt{a^{2} m^{2}+1}}\right)$
(IV) $x^{2}-a^{2} y^{2}=a^{2}$	(iv) $y=m x+\sqrt{a^{2} m^{2}+1}$	(S) $\left(\frac{-a^{2} m}{\sqrt{a^{2} m^{2}-1}}, \frac{-1}{\sqrt{a^{2} m^{2}-1}}\right)$

49. The tangent to a suitable conic (Column 1) at $\left(\sqrt{3}, \frac{1}{2}\right)$ is found to be $\sqrt{3} \mathrm{x}+2 \mathrm{y}=4$, then which of the following options is the only CORRECT combination?
(A) (II) (iii) (R)
(B) (IV) (iv) (S)
(C) (IV) (iii) (S)
(D) (II) (iv) (R)

Ans. (D)
Sol. $\mathrm{P}\left(\sqrt{3}, \frac{1}{2}\right) ;$ tangent $\sqrt{3} \mathrm{x}+2 \mathrm{y}=4$
$\Rightarrow(\sqrt{3}) \mathrm{x}+4\left(\frac{1}{2}\right) \mathrm{y}=4$ comparing with (II)
$\Rightarrow \mathrm{a}=2 \therefore \mathrm{y}=\mathrm{mx}+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+1}$ is tangent for $\mathrm{m}=-\frac{\sqrt{3}}{2}$ i.e (ii)
\therefore point of contact for $\mathrm{a}=2, \mathrm{~m}=-\frac{\sqrt{3}}{2}$ is R
50. If a tangent to a suitable conic (Column 1) is found to be $y=x+8$ and its point of contact is $(8,16)$, then which of the following options is the only CORRECT combination ?
(A) (III) (i) (P)
(B) (III) (ii) (Q)
(C) (II) (iv) (R)
(D) (I) (ii) (Q)

Ans. (A)
Sol. $\mathrm{y}=\mathrm{x}+8$ is tangent $\Rightarrow \mathrm{m}=1 ; \mathrm{P}(8,16)$
Comparing tangent with (i) of column $2, \mathrm{~m}=1$ satisfied and $\mathrm{a}=8$ obtained which matches for point of contact (P) of column 3 and (III) of column I.
51. For $\mathrm{a}=\sqrt{2}$, if a tangent is drawn to a suitable conic (Column 1) at the point of contact $(-1,1)$, then which of the following options is the only CORRECT combination for obtaining its equation ?
(A) (II) (ii) (Q)
(B) (III) (i) (P)
(C) (I) (i) (P)
(D) (I) (ii) (Q)

Ans. (D)
Sol. For $\mathrm{a}=\sqrt{2}$ and point $(-1,1)$ only I of column-1 satisfies. Hence equaiton of tangent is $-\mathrm{x}+\mathrm{y}=2$ or y $=\mathrm{x}+2 \Rightarrow \mathrm{~m}=1$ which matches with (ii) of column 2 and also with Q of column 3

Let $f(\mathrm{x})=\mathrm{x}+\log _{\mathrm{e}} \mathrm{x}-\mathrm{x} \log _{\mathrm{e}} \mathrm{x}, \mathrm{x} \in(0, \infty)$.

* Column 1 contains information about zeros of $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
* Column 2 contains information about the limiting behavior of $f(\mathrm{x}), f^{\prime}(\mathrm{x})$ and $f^{\prime \prime}(\mathrm{x})$ at infinity.
* Column 3 contains information about increasing/decreasing nature of $f(\mathrm{x})$ and $f^{\prime}(\mathrm{x})$.

Column 1	Column 2		Column 3	
(I) $f(\mathrm{x})=0$ for some $\mathrm{x} \in\left(1, \mathrm{e}^{2}\right)$	(i)	$\lim _{x \rightarrow \infty} f(\mathrm{x})=0$	(P) f is increasing in $(0,1)$	
(II) $f^{\prime}(\mathrm{x})=0$ for some $\mathrm{x} \in(1, \mathrm{e})$	(ii)	$\lim _{x \rightarrow \infty} f(\mathrm{x})=-\infty$	(Q) f is decreasing in (e, e $\left.\mathrm{e}^{2}\right)$	
(III) $f^{\prime}(\mathrm{x})=0$ for some $\mathrm{x} \in(0,1)$	(iii)	$\lim _{x \rightarrow \infty} f^{\prime}(\mathrm{x})=-\infty$	(R) f^{\prime} is increasing in $(0,1)$	
(IV) $f^{\prime \prime}(\mathrm{x})=0$ for some $\mathrm{x} \in(1, \mathrm{e})$	(iv)	$\lim _{x \rightarrow \infty} f^{\prime \prime}(\mathrm{x})=0$	(S)	
f^{\prime} is decreasing in $\left(\mathrm{e}, \mathrm{e}^{2}\right)$				

52. Which of the following options is the only CORRECT combination?
(A) (IV)
(i) (S)
(B) (I) (ii) (R)
(C) (III) (iv) (P)
(D) (II) (iii) (S)

Ans. (D)
53. Which of the following options is the only CORRECT combination?
(A) (III) (iii) (R)
(B) (I) (i) (P)
(C) (IV) (iv) (S)
(D) (II) (ii) (Q)

Ans. (D)
54. Which of the following options is the only INCORRECT combination ?
(A) (II) (iii) (P)
(B) (II) (iv) (Q)
(C) (I) (iii) (P)
(D) (III) (i) (R)

Ans. (D)

Sol. 52. to 54.

$f(x)=x+\ell n x-x \ell n x, x>0$
$f^{\prime}(x)=\not \subset+\frac{1}{x}-\ell n x \neq$
$f^{\prime \prime}(\mathrm{x})=-\frac{1}{\mathrm{x}^{2}}-\frac{1}{\mathrm{x}}=\frac{-(\mathrm{x}+1)}{\mathrm{x}^{2}}$
(I) $f(1) f\left(\mathrm{e}^{2}\right)<0 \quad$ so true
(II) $f^{\prime}(1) f^{\prime}(\mathrm{e})<0 \quad$ so true
(III) Graph of $f^{\prime}(\mathrm{x})$ so (III) is false
(IV) Is false

As $\lim _{\mathrm{x} \rightarrow \infty} f(\mathrm{x})=\lim _{\mathrm{x} \rightarrow \infty} \mathrm{x}\left[1+\frac{\ell \mathrm{n} \mathrm{x}}{\mathrm{x}}-\ell \mathrm{n} \mathrm{x}\right]=-\infty$
\therefore (i) is false (ii) is true

$\lim _{x \rightarrow \infty} f^{\prime}(x)=-\infty$ so (iii) is true
$\lim _{x \rightarrow \infty} f^{\prime \prime}(x)=0$ so (iv) is true.
(P) $f^{\prime}(x)$ is positive in $(0,1)$ so true
(Q) $f^{\prime}(\mathrm{x})<0$ for in $\left(\mathrm{e}, \mathrm{e}^{2}\right)$ so true

As $f^{\prime}(\mathrm{x})<0 \forall \mathrm{x}>0$ therefor R is false, S is true.

Alternate :

$f(\mathrm{x})=\mathrm{x}+\ell \mathrm{nx}-\mathrm{x} \ell \mathrm{n} \mathrm{x}$
$f^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}}-\ln \mathrm{x}=0$ at $\mathrm{x}=\mathrm{x}_{0}$ where $\mathrm{x}_{0} \in(1, \mathrm{e})$
$f^{\prime \prime}(\mathrm{x})=-\frac{1}{\mathrm{x}^{2}}-\frac{1}{\mathrm{x}}<0 \forall \mathrm{x}>0 \Rightarrow f(\mathrm{x})$ concave down

