JEE ADVANCED - 2013
 Paper - 2 MATHEMATICS

SECTION - 1 : (One or more option correct Type)

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.
41. For $\mathrm{a} \in \mathrm{R}$ (the set of all real numbers), $\mathrm{a} \neq-1, \lim _{n \rightarrow \infty} \frac{\left(1^{a}+2^{a}+\ldots+n^{a}\right)}{(n+1)^{a-1}[(n a+1)+(n a+2)+\ldots+(n a+n)]}=\frac{1}{60}$.

Then $\mathrm{a}=$
(A) 5
(B) 7
(C) $\frac{-15}{2}$
(D) $\frac{-17}{2}$

Sol. (B, D)
Required limit $=\frac{\int_{0}^{1} x^{a} d x}{\int_{0}^{1}(a+x) d x}=\frac{2}{(2 a+1)(a+1)}=\frac{2}{120}$
$\Rightarrow \mathrm{a}=7$ or $-\frac{17}{2}$.
*42. Circle(s) touching x-axis at a distance 3 from the origin and having an intercept of length $2 \sqrt{7}$ on y-axis is (are)
(A) $x^{2}+y^{2}-6 x+8 y+9=0$
(B) $x^{2}+y^{2}-6 x+7 y+9=0$
(C) $x^{2}+y^{2}-6 x-8 y+9=0$
(D) $x^{2}+y^{2}-6 x-7 y+9=0$

Sol. (A), (C)
Equation of circle can be written as
$(x-3)^{2}+y^{2}+\lambda(y)=0$
$\Rightarrow x^{2}+y^{2}-6 x+\lambda y+9=0$.
Now, (radius) ${ }^{2}=7+9=16$
$\Rightarrow 9+\frac{\lambda^{2}}{4}-9=16$
$\Rightarrow \lambda^{2}=64 \Rightarrow \lambda= \pm 8$.
\therefore Equation is $x^{2}+y^{2}-6 x \pm 8 y+9=0$.
43. Two lines $L_{1}: x=5, \frac{y}{3-\alpha}=\frac{z}{-2}$ and $L_{2}: x=\alpha, \frac{y}{-1}=\frac{z}{2-\alpha}$ are coplanar. Then α can take value(s)
(A) 1
(B) 2
(C) 3
(D) 4

Sol. (A, D)
$\frac{x-5}{0}=\frac{y-0}{3-\alpha}=\frac{z-0}{-2}$
$\frac{\mathrm{x}-\alpha}{0}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}}{2-\alpha}$
will be coplanar if shortest distance is zero
$\Rightarrow\left|\begin{array}{lll}5-\alpha & 0 & 0 \\ 0 & 3-\alpha & -2 \\ 0 & -1 & 2-\alpha\end{array}\right|=0$
$(5-\alpha)\left(\alpha^{2}-5 \alpha+4\right)=0, \alpha=1,4,5$
so $\alpha=1,4$
Alternate Solution:
As $x=5$ and $x=\alpha$ are parallel planes so the remaining two planes must be coplanar.
So, $\frac{3-\alpha}{-1}=\frac{-2}{2-\alpha} \Rightarrow \alpha^{2}-5 \alpha+4=0 \Rightarrow \alpha=1,4$.
*44. In a triangle PQR, P is the largest angle and $\cos \mathrm{P}=\frac{1}{3}$. Further the incircle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)
(A) 16
(B) 18
(C) 24
(D) 22

Sol. (B), (D)
Let
$\mathrm{s}-\mathrm{a}=2 \mathrm{k}-2, \mathrm{~s}-\mathrm{b}=2 \mathrm{k}, \mathrm{s}-\mathrm{c}=2 \mathrm{k}+2, \mathrm{k} \in \mathrm{I}, \mathrm{k}>1$
Adding we get,
$\mathrm{s}=6 \mathrm{k}$
So, $a=4 k+2, b=4 k, c=4 k-2$
Now, $\cos \mathrm{P}=\frac{1}{3}$

$\Rightarrow \frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}=\frac{1}{3} \Rightarrow 3\left[(4 \mathrm{k})^{2}+(4 \mathrm{k}-2)^{2}-(4 \mathrm{k}+2)^{2}\right]=2 \times 4 \mathrm{k}(4 \mathrm{k}-2)$
$\Rightarrow 3\left[16 \mathrm{k}^{2}-4(4 \mathrm{k}) \times 2\right]=8 \mathrm{k}(4 \mathrm{k}-2)$
$\Rightarrow 48 \mathrm{k}^{2}-96 \mathrm{k}=32 \mathrm{k}^{2}-16 \mathrm{k}$
$\Rightarrow 16 \mathrm{k}^{2}=80 \mathrm{k} \Rightarrow \mathrm{k}=5$
So, sides are $22,20,18$
*45. Let $\mathrm{w}=\frac{\sqrt{3}+i}{2}$ and $\mathrm{P}=\left\{\mathrm{w}^{\mathrm{n}}: \mathrm{n}=1,2,3, \ldots ..\right\}$. Further $\mathrm{H}_{1}=\left\{z \in C: \operatorname{Re} z>\frac{1}{2}\right\}$ and $\mathrm{H}_{2}=$ $\left\{z \in C: \operatorname{Re} z<\frac{-1}{2}\right\}$, where C is the set of all complex numbers. If $\mathrm{z}_{1} \in \mathrm{P} \cap \mathrm{H}_{1}, \mathrm{z}_{2} \in \mathrm{P} \cap \mathrm{H}_{2}$ and O represents the origin, then $\angle \mathrm{z}_{1} \mathrm{Oz}_{2}=$
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{6}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{5 \pi}{6}$

Sol. (C), (D)
$w=\frac{\sqrt{3}+\mathrm{i}}{2}=\mathrm{e}^{\frac{\mathrm{i} \pi}{6}}$, so $\mathrm{w}^{\mathrm{n}}=\mathrm{e}^{\mathrm{i}\left(\frac{\mathrm{n} \pi}{6}\right)}$
Now, for $z_{1}, \cos \frac{n \pi}{6}>\frac{1}{2}$ and for $z_{2}, \cos \frac{n \pi}{6}<-\frac{1}{2}$

Possible position of z_{1} are A_{1}, A_{2}, A_{3} whereas of z_{2} are B_{1}, B_{2}, B_{3} (as shown in the figure)
So, possible value of $\angle \mathrm{z}_{1} \mathrm{Oz}_{2}$ according to the given options is $\frac{2 \pi}{3}$ or $\frac{5 \pi}{6}$.
*46. If $3^{x}=4^{x-1}$, then $x=$
(A) $\frac{2 \log _{3} 2}{2 \log _{3} 2-1}$
(B) $\frac{2}{2-\log _{2} 3}$
(C) $\frac{1}{1-\log _{4} 3}$
(D) $\frac{2 \log _{2} 3}{2 \log _{2} 3-1}$

Sol. (A, B, C)
$\log _{2} 3^{x}=(x-1) \log _{2} 4=2(x-1)$
$\Rightarrow x \log _{2} 3=2 x-2$
$\Rightarrow \mathrm{x}=\frac{2}{2-\log _{2} 3}$
Rearranging, we get
$\mathrm{x}=\frac{2}{2-\frac{1}{\log _{3} 2}}=\frac{2 \log _{3} 2}{2 \log _{3} 2-1}$
Rearranging again,
$x=\frac{\log _{3} 4}{\log _{3} 4-1}=\frac{\frac{1}{\log _{4} 3}}{\frac{1}{\log _{4} 3}-1}=\frac{1}{1-\log _{4} 3}$.
47. Let ω be a complex cube root of unity with $\omega \neq 1$ and $\mathrm{P}=\left[\mathrm{p}_{\mathrm{ij}}\right]$ be a $\mathrm{n} \times \mathrm{n}$ matrix with $\mathrm{p}_{\mathrm{ij}}=\omega^{\mathrm{i}+\mathrm{j}}$. Then $\mathrm{P}^{2} \neq 0$, when $\mathrm{n}=$
(A) 57
(B) 55
(C) 58
(D) 56

Sol. (B, C, D)
$\mathrm{P}=\left[\begin{array}{lllll}\omega^{2} & \omega^{3} & \omega^{4} & \ldots . . & \omega^{\mathrm{n}+2} \\ \omega^{3} & \omega^{4} & \omega^{5} & \ldots . . & \omega^{\mathrm{n}+3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \omega^{\mathrm{n}+2} & \omega^{\mathrm{n}+3} & \ldots . . & \ldots . . & \omega^{2 \mathrm{n}+4}\end{array}\right]$
$\mathrm{P}^{2}=\left[\begin{array}{lllc}\omega^{4}+\omega^{6} \ldots . . & \omega^{5}+\omega^{7}+\omega^{9} & \ldots \ldots & \ldots \ldots \\ \omega^{5}+\omega^{7}+\omega^{9} \ldots . . & \ldots . . & \ldots \ldots & \ldots \ldots \\ \vdots & \vdots & \vdots & \ldots \ldots \\ \omega^{\mathrm{n}+4}+\omega^{\mathrm{n}+6} \ldots . . & \ldots \ldots & \ldots \ldots & \omega^{2 \mathrm{n}+4}+\omega^{2 \mathrm{n}+6} \ldots . .\end{array}\right]$

$$
\mathrm{P}^{2}=\text { Null matrix if } \mathrm{n} \text { is a multiple of } 3
$$

48. The function $f(x)=2|x|+|x+2|-\|x+2|-2| x\|$ has a local minimum or a local maximum at $x=$
(A) -2
(B) $\frac{-2}{3}$
(C) 2
(D) $\frac{2}{3}$

Sol. (A), (B)
As, $\frac{\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})-|\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})|}{2}=\operatorname{Min}(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}))$
$\Rightarrow \frac{2|x|+|x+2|-||x+2|-2| x| |}{2}=\operatorname{Min}(|2 x|,|x+2|)$

According to the figure shown, points of local minima/maxima are $\mathrm{x}=-2, \frac{-2}{3}, 0$.

SECTION - 2 : (Paragraph Type)

This section contains 6 multiple choice questions relating to three paragraphs with two questions on each paragraph. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Questions 49 and 50

Let $\mathrm{f}:[0,1] \rightarrow \mathrm{R}$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, $\mathrm{f}(0)=$ $f(1)=0$ and satisfies $f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]$.
49. Which of the following is true for $0<x<1$?
(A) $0<f(x)<\infty$
(B) $-\frac{1}{2}<\mathrm{f}(\mathrm{x})<\frac{1}{2}$
(C) $-\frac{1}{4}<\mathrm{f}(\mathrm{x})<1$
(D) $-\infty<\mathrm{f}(\mathrm{x})<0$

Sol. (D)
Let $g(x)=e^{-x} f(x)$
and $\mathrm{g}^{\prime \prime}(\mathrm{x})>1>0$
So, $g(x)$ is concave upward and $g(0)=g(1)=0$
Hence, $\mathrm{g}(\mathrm{x})<0 \forall \mathrm{x} \in(0,1)$
$\Rightarrow \mathrm{e}^{-\mathrm{x}} \mathrm{f}(\mathrm{x})<0$
$\mathrm{f}(\mathrm{x})<0 \forall \mathrm{x} \in(0,1)$
Alternate Solution
$f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}$
$\Rightarrow\left(\mathrm{f}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}-\frac{\mathrm{x}^{2}}{2}\right)^{\prime \prime} \geq 0$
Let $g(x)=f(x) e^{-x}-\frac{x^{2}}{2}$
$\mathrm{g}(0)=0, \mathrm{~g}(1)=-\frac{1}{2}$
Since g is concave up so it will always lie below the chord joining the extremities which is $y=-\frac{x}{2}$
$\Rightarrow \mathrm{f}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}-\frac{\mathrm{x}^{2}}{2}<-\frac{\mathrm{x}}{2}$
$\Rightarrow \mathrm{f}(\mathrm{x})<\frac{\left(\mathrm{x}^{2}-\mathrm{x}\right) \mathrm{e}^{\mathrm{x}}}{2}<0 \quad \forall \mathrm{x} \in(0,1)$
50. If the function $\mathrm{e}^{-\mathrm{x}} \mathrm{f}(\mathrm{x})$ assumes its minimum in the interval $[0,1]$ at $\mathrm{x}=\frac{1}{4}$, which of the following is true ?
(A) $f^{\prime}(x)<f(x), \frac{1}{4}<x<\frac{3}{4}$
(B) $f^{\prime}(x)>f(x), 0<x<\frac{1}{4}$
(C) $f^{\prime}(x)<f(x), 0<x<\frac{1}{4}$
(D) $f^{\prime}(x)<f(x), \frac{3}{4}<x<1$

Sol. C

Let, $g(x)=e^{-x} f(x)$
As $\mathrm{g}^{\prime \prime}(\mathrm{x})>0$ so $\mathrm{g}^{\prime}(\mathrm{x})$ is increasing.
So, for $x<1 / 4, g^{\prime}(x)<g^{\prime}(1 / 4)=0$
$\Rightarrow\left(\mathrm{f}^{\prime}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right) \mathrm{e}^{-\mathrm{x}}<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<\mathrm{f}(\mathrm{x})$ in $(0,1 / 4)$.

Paragraph for Questions 51 and 52

Let PQ be a focal chord of the parabola $y^{2}=4 a x$. The tangents to the parabola at P and Q meet at a point lying on the line $\mathrm{y}=2 \mathrm{x}+\mathrm{a}, \mathrm{a}>0$.
*51. Length of chord PQ is
(A) 7 a
(B) 5 a
(C) 2 a
(D) 3 a

Sol. (B)
Let $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right), \mathrm{Q}\left(\frac{\mathrm{a}}{\mathrm{t}^{2}},-\frac{2 \mathrm{a}}{\mathrm{t}}\right)$ as PQ is focal chord
Point of intersection of tangents at P and Q
$\left(-a, a\left(t-\frac{1}{t}\right)\right)$
as point of intersection lies on $y=2 x+a$
$\Rightarrow \mathrm{a}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)=-2 \mathrm{a}+\mathrm{a}$
$\mathrm{t}-\frac{1}{\mathrm{t}}=-1 \Rightarrow\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{2}=5$
length of focal chord $=a\left(t+\frac{1}{t}\right)^{2}=5 a$
*52. If chord PQ subtends an angle θ at the vertex of $y^{2}=4 \mathrm{ax}$, then $\tan \theta=$
(A) $\frac{2}{3} \sqrt{7}$
(B) $\frac{-2}{3} \sqrt{7}$
(C) $\frac{2}{3} \sqrt{5}$
(D) $\frac{-2}{3} \sqrt{5}$

Sol. (D)
Angle made by chord PQ at vertex $(0,0)$ is given by
$\tan \theta=\left(\frac{\frac{2}{t}+2 t}{1-4}\right)=\frac{2\left(\frac{1}{t}+t\right)}{-3}=\frac{-2}{3} \sqrt{5}$
Paragraph for Questions 53 and 54
Let $S=S_{1} \cap S_{2} \cap S_{3}$, where

$$
S_{1}=\{\mathrm{z} \in \mathrm{C}:|\mathrm{z}|<4\}, \mathrm{S}_{2}=\left\{z \in C: \operatorname{Im}\left[\frac{z-1+\sqrt{3} i}{1-\sqrt{3} i}\right]>0\right\} \text { and } \mathrm{S}_{3}=\{\mathrm{z} \in \mathrm{C}: \operatorname{Re} Z>0\}
$$

*53. Area of $\mathrm{S}=$
(A) $\frac{10 \pi}{3}$
(B) $\frac{20 \pi}{3}$
(C) $\frac{16 \pi}{3}$
(D) $\frac{32 \pi}{3}$

Sol. (B)
Area of region $S_{1} \cap S_{2} \cap S_{3}=$ shaded area $=\frac{\pi \times 4^{2}}{4}+\frac{4^{2} \times \pi}{6}$
$=4^{2} \pi\left\{\frac{1}{4}+\frac{1}{6}\right\}$
$=\frac{20 \pi}{3}$

*54. $\min _{z \in S}|1-3 i-z|=$
(A) $\frac{2-\sqrt{3}}{2}$
(B) $\frac{2+\sqrt{3}}{2}$
(C) $\frac{3-\sqrt{3}}{2}$
(D) $\frac{3+\sqrt{3}}{2}$

Sol. (C)
Distance of $(1,-3)$ from $y+\sqrt{3} x=0$
$>\left|\frac{-3+\sqrt{3} \times 1}{2}\right|$
$>\frac{3-\sqrt{3}}{2}$

Paragraph for Questions 55 and 56

A box B_{1} contains 1 white ball, 3 red balls and 2 black balls. Another box B_{2} contains 2 white balls, 3 red balls and 4 black balls. A third box B_{3} contains 3 white balls, 4 red balls and 5 black balls.
55. If 1 ball is drawn from each of the boxes B_{1}, B_{2} and B_{3}, the probability that all 3 drawn balls are of the same colour is
(A) $\frac{82}{648}$
(B) $\frac{90}{648}$
(C) $\frac{558}{648}$
(D) $\frac{566}{648}$

Sol. (A)
$P($ required $)=P($ all are white $)+P($ all are red $)+P($ all are black $)$
$=\frac{1}{6} \times \frac{2}{9} \times \frac{3}{12}+\frac{3}{6} \times \frac{3}{9} \times \frac{4}{12}+\frac{2}{6} \times \frac{4}{9} \times \frac{5}{12}$
$=\frac{6}{648}+\frac{36}{648}+\frac{40}{648}=\frac{82}{648}$.
56. If 2 balls are drawn (without replacement) from a randomly selected box and one of the balls is white and the other ball is red, the probability that these 2 balls are drawn from box B_{2} is
(A) $\frac{116}{181}$
(B) $\frac{126}{181}$
(C) $\frac{65}{181}$
(D) $\frac{55}{181}$

Sol. (D)
Let A : one ball is white and other is red
E_{1} : both balls are from box B_{1}
E_{2} : both balls are from box B_{2}
E_{3} : both balls are from box B_{3}
Here, $P($ required $)=P\left(\frac{E_{2}}{A}\right)$

$$
\begin{aligned}
& =\frac{P\left(\frac{A}{E_{2}}\right) \cdot P\left(E_{2}\right)}{P\left(\frac{A}{E_{1}}\right) \cdot P\left(E_{1}\right)+P\left(\frac{A}{E_{2}}\right) \cdot P\left(E_{2}\right)+P\left(\frac{A}{E_{3}}\right) \cdot P\left(E_{3}\right)} \\
& =\frac{\frac{{ }^{2} C_{1} \times{ }^{3} C_{1}}{{ }^{9} C_{2}} \times \frac{1}{3}}{\frac{{ }^{1} C_{1} \times{ }^{3} C_{1}}{{ }^{6} C_{2}} \times \frac{1}{3}+\frac{{ }^{2} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}}{{ }^{9} \mathrm{C}_{2}} \times \frac{1}{3}+\frac{{ }^{3} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}}{{ }^{12} \mathrm{C}_{2}} \times \frac{1}{3}}=\frac{\frac{1}{6}}{\frac{1}{5}+\frac{1}{6}+\frac{2}{11}}=\frac{55}{181} .
\end{aligned}
$$

SECTION - 3 : (Matching list Type)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
*57. Match List I with List II and select the correct answer using the code given below the lists :

	List - I	List - II	
P.	$\left(\frac{1}{y^{2}}\left(\frac{\cos \left(\tan ^{-1} y\right)+y \sin \left(\tan ^{-1} y\right)}{\cot \left(\sin ^{-1} y\right)+\tan \left(\sin ^{-1} y\right)}\right)+y^{4}\right)^{1 / 2}$ takes value	1.	$\frac{1}{2} \sqrt{\frac{5}{3}}$
Q.	If $\cos x+\cos y+\cos z=0=\sin x+\sin y+\sin z$ then possible value of $\cos \frac{x-y}{2}$ is	2.	$\sqrt{2}$
R.	If $\cos \left(\frac{\pi}{4}-x\right) \cos 2 \mathrm{x}+\sin \mathrm{x} \sin 2 \mathrm{x} \sec \mathrm{x}=\cos \mathrm{x} \sin 2 \mathrm{x} \sec \mathrm{x}$ $+\cos \left(\frac{\pi}{4}+x\right) \cos 2 \mathrm{x}$ then possible value of secx is	3.	$\frac{1}{2}$
S.	If $\cot \left(\sin ^{-1} \sqrt{1-x^{2}}\right)=\sin \left(\tan ^{-1}(x \sqrt{6})\right), \mathrm{x} \neq 0$, then possible value of x is	4.	1

Codes:

	P	Q	R	S
(A)	4	3	1	2
(B)	4	3	2	1
(C)	3	4	2	1
(D)	3	4	1	2

Sol. (B)

$$
\begin{align*}
& P \rightarrow \frac{\cos \left(\tan ^{-1} y\right)+y \sin \left(\tan ^{-1} y\right)}{\cot \left(\sin ^{-1} y\right)+\tan \left(\sin ^{-1} y\right)} \\
& =\frac{\frac{1}{\sqrt{1+y^{2}}}+\frac{y^{2}}{\sqrt{1+y^{2}}}}{\frac{\sqrt{1-y^{2}}}{y}+\frac{y}{\sqrt{1-y^{2}}}=\frac{\sqrt{1+y^{2}}}{\frac{1}{y \sqrt{1-y^{2}}}}=y \sqrt{1-y^{4}}} \\
& \Rightarrow \frac{1}{y^{2}}\left(\frac{\cos \left(\tan ^{-1} y\right)+y \sin \left(\tan ^{-1} y\right)}{\cot \left(\sin ^{-1} y\right)+\tan \left(\sin ^{-1} y\right)}\right)^{2}+y^{4} \\
& =\frac{1}{y^{2}}\left(y^{2}\left(1-y^{4}\right)\right)+y^{4}=1-y^{4}+y^{4}=1 \\
& Q \rightarrow \cos x+\cos y+\cos z=0 \\
& \quad \begin{array}{l}
\sin x+\sin y+\sin z=0 \\
\cos x+\cos y=-\cos z \\
\sin x+\sin y=-\sin z
\end{array}
\end{align*}
$$

$(1)^{2}+(2)^{2}$
$1+1+2(\cos \mathrm{x} \cos \mathrm{y}+\sin \mathrm{x} \sin \mathrm{y})=1$
$2+2 \cos (x-y)=1$
$2 \cos (x-y)=-1$
$\cos (\mathrm{x}-\mathrm{y})=-\frac{1}{2}$

$$
2 \cos ^{2}\left(\frac{x-y}{2}\right)-1=-\frac{1}{2}
$$

$$
2 \cos ^{2}\left(\frac{x-y}{2}\right)=\frac{1}{2}
$$

$$
\begin{aligned}
& \cos ^{2}\left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)=\frac{1}{4} \\
& \cos \left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)=\frac{1}{2} \\
& R \rightarrow \cos \left(\frac{\pi}{4}-x\right) \cos 2 x+\sin x \sin 2 x \sec x \\
& =\cos x \sin 2 x \sec x+\cos \left(\frac{\pi}{4}+x\right) \cos 2 x \\
& {\left[\cos \left(\frac{\pi}{4}-x\right)-\cos \left(\frac{\pi}{4}+x\right)\right] \cos 2 x=(\cos x \sin 2 x-\sin x \sin 2 x) \sec x} \\
& \frac{2}{\sqrt{2}} \sin x \cos 2 x=(\cos x-\sin x) \sin 2 x \sec x \\
& \sqrt{2} \sin \mathrm{x} \cos 2 \mathrm{x}=(\cos \mathrm{x}-\sin \mathrm{x}) 2 \sin \mathrm{x} \\
& \frac{1}{\sqrt{2}}=\frac{1}{\cos x+\sin x} \Rightarrow x=\frac{\pi}{4} \\
& \sec x=\sec \frac{\pi}{4}=\sqrt{2} \\
& S \rightarrow \cot \left(\sin ^{-1} \sqrt{1-x^{2}}\right) \\
& \cot \alpha=\frac{x}{\sqrt{1-x^{2}}} \\
& \tan ^{-1}(x \sqrt{6})=\phi \\
& \sin \phi=\frac{x \sqrt{6}}{\sqrt{6 x^{2}+1}} \\
& \Rightarrow \frac{x}{\sqrt{1-x^{2}}}=\frac{x \sqrt{6}}{\sqrt{6 x^{2}+1}} \\
& 6 x^{2}+1=6-6 x^{2} \\
& 12 \mathrm{x}^{2}=5 \\
& x=\sqrt{\frac{5}{12}}=\frac{1}{2} \sqrt{\frac{5}{3}}
\end{aligned}
$$

*58. A line $L: y=m x+3$ meets y-axis at $E(0,3)$ and the arc of the parabola $y^{2}=16 x, 0 \leq y \leq 6$ at the point $\mathrm{F}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. The tangent to the parabola at $\mathrm{F}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ intersects the y -axis at $\mathrm{G}\left(0, \mathrm{y}_{1}\right)$. The slope m of the line L is chosen such that the area of the triangle EFG has a local maximum.
Match List I with List II and select the correct answer using the code given below the lists :

List - I		List - II	
P.	$\mathrm{m}=$	1.	$\frac{1}{2}$
Q.	Maximum area of $\triangle \mathrm{EFG}$ is	2.	4
R.	$\mathrm{y}_{0}=$	3.	2
S.	$\mathrm{y}_{1}=$	4.	1

Codes :

	P	Q	R	S
(A)	4	1	2	3
(B)	3	4	1	2
(C)	1	3	2	4
(D)	1	3	4	2

Sol. (A)
$A(t)=2 t^{2}(3-4 t)$
For max. $A(t), t=\frac{1}{2}$
$\Rightarrow \mathrm{m}=1$
$\left.\Rightarrow A(t)\right|_{\max .}=\frac{1}{2}$ sq. units

$\mathrm{y}_{0}=4$ and $\mathrm{y}_{1}=2$
59. Match List I with List II and select the correct answer using the code given below the lists :

List - I	List - II		
P.	Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} is 2. Then the volume of the parallelepiped determined by vectors $2(\vec{a} \times \vec{b}), 3(\vec{b} \times \vec{c})$ and $(\vec{c} \times \vec{a})$ is	1.	100
Q.	Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} is 5. Then the volume of the parallelepiped determined by vectors $3(\vec{a}+\vec{b}),(\vec{b}+\vec{c})$ and $2(\vec{c}+\vec{a})$ is	2.	30
R.	Area of a triangle with adjacent sides determined by vectors \vec{a} and \vec{b} is 20. Then the area of the triangle with adjacent sides determined by vectors $(2 \vec{a}+3 \vec{b})$	3.	24
and $(\vec{a}-\vec{b})$ is	Area of a parallelogram with adjacent sides determined by vectors \vec{a} and \vec{b} is 30. Then the area of the parallelogram with adjacent sides determined by vectors $(\vec{a}+\vec{b})$ and \vec{a} is	4.	60

Codes:

	P	Q	R	S
(A)	4	2	3	1
(B)	2	3	1	4
(C)	3	4	1	2
(D)	1	4	3	2

Sol. (C)
$\mathrm{P} \rightarrow[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=2$
$\left[\begin{array}{lll}2 \vec{a} \times \vec{b} & 3 \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=6\left[\begin{array}{ll}\vec{a} \vec{b} & \vec{c}\end{array}\right]^{2}=6 \times 4=24$
$\mathrm{Q} \rightarrow[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=5$
$6[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=12[\vec{a} \vec{b} \vec{c}]=60$
$\mathrm{R} \rightarrow \frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=20$
$\frac{1}{2}|(2 \vec{a}+3 \vec{b}) \times(\vec{a}-\vec{b})|$

$$
\begin{aligned}
& \frac{1}{2}|-2(\vec{a} \times \vec{b})-3(\vec{a} \times \vec{b})| \\
& \frac{5}{2} \times 40=100 \\
S \rightarrow & |\vec{a} \times \vec{b}|=30 \\
& \Rightarrow|(\vec{a}+\vec{b}) \times \vec{a}|=|\vec{b} \times \vec{a}|=30
\end{aligned}
$$

60. Consider the lines $\mathrm{L}_{1}: \frac{x-1}{2}=\frac{y}{-1}=\frac{z+3}{1}, \mathrm{~L}_{2}: \frac{x-4}{1}=\frac{y+3}{1}=\frac{z+3}{2}$ and the planes $\mathrm{P}_{1}: 7 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=3, \mathrm{P}_{2}$ $: 3 x+5 y-6 z=4$. Let $a x+b y+c z=d$ be the equation of the plane passing through the point of intersection of lines L_{1} and L_{2}, and perpendicular to planes P_{1} and P_{2}.
Match List I with List II and select the correct answer using the code given below the lists :

List - I		List - II	
P.	$\mathrm{a}=$	1.	13
Q.	$\mathrm{b}=$	2.	-3
R.	$\mathrm{c}=$	3.	1
S.	$\mathrm{d}=$	4.	-2

Codes:

	P	Q	R	S
(A)	3	2	4	1
(B)	1	3	4	2
(C)	3	2	1	4
(D)	2	4	1	3

Sol. (A)
Plane perpendicular to P_{1} and P_{2} has Direction Ratios of normal
$\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 7 & 1 & 2 \\ 3 & 5 & -6\end{array}\right|=-16 \hat{i}+48 \hat{j}+32 \hat{k}$
For point of intersection of lines
$\left(2 \lambda_{1}+1,-\lambda_{1}, \lambda_{1}-3\right) \equiv\left(\lambda_{2}+4, \lambda_{2}-3,2 \lambda_{2}-3\right)$
$\Rightarrow 2 \lambda_{1}+1=\lambda_{2}+4$ or $2 \lambda_{1}-\lambda_{2}=3$
$-\lambda_{1}=\lambda_{2}-3$ or $\lambda_{1}+\lambda_{2}=3$
$\Rightarrow \lambda_{1}=2, \lambda_{2}=1$
\therefore Point is $(5,-2,-1)$
From (1) and (2), required plane is
$-1(x-5)+3(y+2)+2(z+1)=0$
or $-x+3 y+2 z=-13$
$x-3 y-2 z=13$
$\Rightarrow \mathrm{a}=1, \mathrm{~b}=-3, \mathrm{c}=-2, \mathrm{~d}=13$.

