SECTION 1 (Maximum Marks: 32)

- This section contains EIGHT questions
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , both inclusive
- For each question, darken the bubble corresponding to the correct integer in the ORS
- Marking scheme:
+4 If the bubble corresponding to the answer is darkened
0 In all other cases
*21. In dilute aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$, the complex diaquodioxalatoferrate(II) is oxidized by MnO_{4}^{-}. For this reaction, the ratio of the rate of change of $\left[\mathrm{H}^{+}\right]$to the rate of change of $\left[\mathrm{MnO}_{4}^{-}\right]$is
*22. The number of hydroxyl group(s) in \mathbf{Q} is

23. Among the following, the number of reaction(s) that produce(s) benzaldehyde is

24. In the complex acetylbromidodicarbonylbis(triethylphosphine)iron(II), the number of $\mathrm{Fe}-\mathrm{C}$ bond(s) is
25. Among the complex ions, $\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]^{+}, \quad\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{3-}, \quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}$, $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{-},\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{2+}$, the number of complex ion(s) that show(s) cis-trans isomerism is
*26. Three moles of $\mathrm{B}_{2} \mathrm{H}_{6}$ are completely reacted with methanol. The number of moles of boron containing product formed is
26. The molar conductivity of a solution of a weak acid $\mathrm{HX}(0.01 \mathrm{M})$ is 10 times smaller than the molar conductivity of a solution of a weak acid $\mathrm{HY}(0.10 \mathrm{M})$. If $\lambda_{\mathrm{x}^{-}}^{0} \approx \lambda_{\mathrm{Y}^{-}}^{0}$, the difference in their $\mathrm{p} \mathrm{K}_{\mathrm{a}}$ values, $\mathrm{pK}_{\mathrm{a}}(\mathrm{HX})-\mathrm{pK}_{\mathrm{a}}(\mathrm{HY})$, is (consider degree of ionization of both acids to be $\ll 1$)
27. A closed vessel with rigid walls contains 1 mol of ${ }_{92}^{238} \mathrm{U}$ and 1 mol of air at 298 K . Considering complete decay of ${ }_{92}^{238} \mathrm{U}$ to ${ }_{82}^{206} \mathrm{~Pb}$, the ratio of the final pressure to the initial pressure of the system at 298 K is

SECTION 2 (Maximum Marks: 32)

- This section contains EIGHT questions
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
- Marking scheme:
+4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened
0 If none of the bubbles is darkened
-2 In all other cases
*29. One mole of a monoatomic real gas satisfies the equation $p(V-b)=R T$ where b is a constant. The relationship of interatomic potential $\mathrm{V}(\mathrm{r})$ and interatomic distance r for the gas is given by
(A)

(B)

30. In the following reactions, the product \mathbf{S} is

(A)

(B)

(C)

(D)

31. The major product \mathbf{U} in the following reactions is

(A)

(B)

(C)

(D)

32. In the following reactions, the major product \mathbf{W} is

(A)

(B)

(C)

(D)

*33. The correct statement(s) regarding, (i) HClO , (ii) HClO_{2}, (iii) HClO_{3} and (iv) HClO_{4}, is (are)
(A) The number of $\mathrm{Cl}=\mathrm{O}$ bonds in (ii) and (iii) together is two
(B) The number of lone pairs of electrons on Cl in (ii) and (iii) together is three
(C) The hybridization of Cl in (iv) is sp^{3}
(D) Amongst (i) to (iv), the strongest acid is (i)
33. The pair(s) of ions where BOTH the ions are precipitated upon passing $\mathrm{H}_{2} \mathrm{~S}$ gas in presence of dilute HCl , is(are)
(A) $\mathrm{Ba}^{2+}, \mathrm{Zn}^{2+}$
(B) $\mathrm{Bi}^{3+}, \mathrm{Fe}^{3+}$
(C) $\mathrm{Cu}^{2+}, \mathrm{Pb}^{2+}$
(D) $\mathrm{Hg}^{2+}, \mathrm{Bi}^{3+}$
*35. Under hydrolytic conditions, the compounds used for preparation of linear polymer and for chain termination, respectively, are
(A) $\mathrm{CH}_{3} \mathrm{SiCl}_{3}$ and $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$
(B) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ and $\mathrm{CH}_{3} \mathrm{SiCl}_{3}$
(D) SiCl_{4} and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$
34. When O_{2} is adsorbed on a metallic surface, electron transfer occurs from the metal to O_{2}. The TRUE statement(s) regarding this adsorption is(are)
(A) O_{2} is physisorbed
(B) heat is released
(C) occupancy of $\pi_{2 p}^{*}$ of O_{2} is increased
(D) bond length of O_{2} is increased

SECTION 3 (Maximum Marks: 16)

- This section contains TWO paragraphs
- Based on each paragraph, there will be TWO questions
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
- Marking scheme:
+4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened
0 In none of the bubbles is darkened
-2 In all other cases

PARAGRAPH 1

When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} \mathrm{C}$ was measured for the beaker and its contents (Expt. 1). Because the enthalpy of neutralization of a strong acid with a strong base is a constant $\left(-57.0 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, this experiment could be used to measure the calorimeter constant. In a second experiment (Expt. 2), 100 mL of 2.0 M acetic acid ($K_{a}=2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0 M NaOH (under identical conditions to Expt. 1) where a temperature rise of $5.6^{\circ} \mathrm{C}$ was measured.
(Consider heat capacity of all solutions as $4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ and density of all solutions as $1.0 \mathrm{~g} \mathrm{~mL}^{-1}$)
*37. Enthalpy of dissociation (in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$) of acetic acid obtained from the Expt. $\mathbf{2}$ is
(A) 1.0
(B) 10.0
(C) 24.5
(D) 51.4
*38. The pH of the solution after Expt. 2 is
(A) 2.8
(B) 4.7
(C) 5.0
(D) 7.0

PARAGRAPH 2

In the following reactions

$$
\begin{aligned}
& \mathrm{C}_{8} \mathrm{H}_{6} \xrightarrow[\mathrm{H}_{2}]{\mathrm{Pd}-\mathrm{BaSO}_{4}} \mathrm{C}_{8} \mathrm{H}_{8} \xrightarrow[\text { ii. } \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}]{\text { i. } \mathrm{B}_{2} \mathrm{H}_{6}} \mathrm{X} \\
& \\
& \begin{array}{l}
\mathrm{H}_{2} \mathrm{O} \\
\mathrm{HgSO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O} \xrightarrow[\text { i. } \mathrm{EtMgBr}, \mathrm{H}_{2} \mathrm{O}]{\text { ii. } \mathrm{H}^{+}, \text {heat }} \\
\mathrm{C}_{2}
\end{array}
\end{aligned}
$$

39. Compound \mathbf{X} is
(A)

(B)

(C)

(D)

40. The major compound \mathbf{Y} is
(A)

(B)

(C)

(D)

PAPER-2 [Code - 4] JEE (ADVANCED) 2015 ANSWERS

CHEMISTRY

21.	$\mathbf{8}$	22.	$\mathbf{4}$	23.	$\mathbf{4}$	24.	$\mathbf{3}$
25.	$\mathbf{5}$	26.	$\mathbf{6}$	27.	$\mathbf{3}$	28.	$\mathbf{9}$
29.	\mathbf{C}	30.	\mathbf{A}	31.	\mathbf{B}	32.	\mathbf{A}
33.	\mathbf{B}, \mathbf{C}	34.	\mathbf{C}, \mathbf{D}	35.	\mathbf{B}	36.	$\mathbf{B}, \mathbf{C}, \mathbf{D}$
37.	\mathbf{A}	38.	\mathbf{B}	39.	\mathbf{C}	40.	\mathbf{D}

SDLUTIONS

21. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}+\mathrm{MnO}_{4}^{2-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}+4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

So the ratio of rate of change of $\left[\mathrm{H}^{+}\right]$to that of rate of change of $\left[\mathrm{MnO}_{4}{ }^{-}\right]$is 8 .
22.

(Q)
23.

I

II

III

IV

24.

The number of $\mathrm{Fe}-\mathrm{C}$ bonds is 3 .
25. $\quad\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+} \longrightarrow$ will show cis - trans isomerism
$\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{3-} \longrightarrow$ will show cis - trans isomerism
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+} \longrightarrow$ will show cis - trans isomerism
$\left[\mathrm{Fe}(\mathrm{CN})_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]^{-} \longrightarrow$ will show cis - trans isomerism
$\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+} \longrightarrow$ will show cis - trans isomerism
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{2+} \longrightarrow$ will not show cis - trans isomerism (Although it will show geometrical isomerism)
26. $\quad \mathrm{B}_{2} \mathrm{H}_{6}+6 \mathrm{MeOH} \longrightarrow 2 \mathrm{~B}(\mathrm{OMe})_{3}+6 \mathrm{H}_{2}$

1 mole of $\mathrm{B}_{2} \mathrm{H}_{6}$ reacts with 6 mole of MeOH to give 2 moles of $\mathrm{B}(\mathrm{OMe})_{3}$. 3 mole of $\mathrm{B}_{2} \mathrm{H}_{6}$ will react with 18 mole of MeOH to give 6 moles of $\mathrm{B}(\mathrm{OMe})_{3}$
27. $\mathrm{HX} \rightleftharpoons \mathrm{H}^{+}+\mathrm{X}^{-}$
$\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$
$\mathrm{HY} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Y}^{-}$
$\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{Y}^{-}\right]}{[\mathrm{HY}]}$
Λ_{m} for $\mathrm{HX}=\Lambda_{\mathrm{m}_{\mathrm{I}}}$
Λ_{m} for $\mathrm{HY}=\Lambda_{\mathrm{m}_{2}}$
$\Lambda_{\mathrm{m}_{1}}=\frac{1}{10} \Lambda_{\mathrm{m}_{2}}$
$\mathrm{Ka}=\mathrm{C}^{2}$
$\mathrm{Ka}_{1}=\mathrm{C}_{1} \times\left(\frac{\Lambda_{\mathrm{m}_{1}}}{\Lambda_{\mathrm{m}_{1}}^{0}}\right)^{2}$
$\mathrm{Ka}_{2}=\mathrm{C}_{2} \times\left(\frac{\Lambda_{\mathrm{m}_{2}}}{\Lambda_{\mathrm{m}_{2}}^{0}}\right)^{2}$
$\frac{\mathrm{Ka}_{1}}{\mathrm{Ka}_{2}}=\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \times\left(\frac{\Lambda_{\mathrm{m}_{1}}}{\Lambda_{\mathrm{m}_{2}}}\right)^{2}=\frac{0.01}{0.1} \times\left(\frac{1}{10}\right)^{2}=0.001$
$\mathrm{pKa}_{1}-\mathrm{pKa}_{2}=3$
28. In conversion of ${ }_{92}^{238} \mathrm{U}$ to ${ }_{82}^{206} \mathrm{~Pb}, 8 \alpha$ - particles and 6β particles are ejected.

The number of gaseous moles initially $=1 \mathrm{~mol}$
The number of gaseous moles finally $=1+8 \mathrm{~mol}$; (1 mol from air and 8 mol of ${ }_{2} \mathrm{He}^{4}$)
So the ratio $=9 / 1=9$
29. At large inter-ionic distances (because a $\rightarrow 0$) the P.E. would remain constant.

However, when $r \rightarrow 0$; repulsion would suddenly increase.
30.

(S)
31.

32.

33.

34. $\mathrm{Cu}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Bi}^{3+}$ give ppt with $\mathrm{H}_{2} \mathrm{~S}$ in presence of dilute HCl .
35.

36. * Adsorption of O_{2} on metal surface is exothermic.

* During electron transfer from metal to O_{2} electron occupies $\pi^{*}{ }_{2 \mathrm{p}}$ orbital of O_{2}.
* Due to electron transfer to O_{2} the bond order of O_{2} decreases hence bond length increases.

37.

$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{n}=100 \times 1=100 \mathrm{~m}$ mole $=0.1 \mathrm{~mole}$
Energy evolved due to neutralization of HCl and $\mathrm{NaOH}=0.1 \times 57=5.7 \mathrm{~kJ}=5700$ Joule
Energy used to increase temperature of solution $=200 \times 4.2 \times 5.7=4788$ Joule
Energy used to increase temperature of calorimeter $=5700-4788=912$ Joule
$\mathrm{ms} . \Delta \mathrm{t}=912$
$\mathrm{m} . \mathrm{s} \times 5.7=912$
$\mathrm{ms}=160$ Joule $/{ }^{\circ} \mathrm{C}$ [Calorimeter constant]
Energy evolved by neutralization of $\mathrm{CH}_{3} \mathrm{COOH}$ and NaOH
$=200 \times 4.2 \times 5.6+160 \times 5.6=5600$ Joule
So energy used in dissociation of 0.1 mole $\mathrm{CH}_{3} \mathrm{COOH}=5700-5600=100$ Joule Enthalpy of dissociation $=1 \mathrm{~kJ} / \mathrm{mole}$
38. $\quad \mathrm{CH}_{3} \mathrm{COOH}=\frac{1 \times 100}{200}=\frac{1}{2}$
$\mathrm{CH}_{3} \mathrm{CONa}=\frac{1 \times 100}{200}=\frac{1}{2}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]}$
$\mathrm{pH}=5-\log 2+\log \frac{1 / 2}{1 / 2}$
$\mathrm{pH}=4.7$
39. $\quad \mathrm{C}_{8} \mathrm{H}_{6} \longrightarrow=$ double bond equivalent $=8+1-\frac{6}{2}=6$

