Mathematics

(Chapter – 8) (Introduction to Trigonometry) (Class X)

Exercise 8.1

Question 1:

In $\triangle ABC$ right angled at B, AB = 24 cm, BC = 7 m. Determine

(i) sin A, $\cos A$

(ii) sin C, cos C

Answer 1:

Applying Pythagoras theorem for ΔABC , we obtain

$$AC^2 = AB^2 + BC^2$$

$$= (24 \text{ cm})^2 + (7 \text{ cm})^2$$

 $= 625 \text{ cm}^2$

: AC =
$$\sqrt{625}$$
 cm = 25 cm

(i) sin A =
$$\frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}} = \frac{7}{25}$$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{24}{25}$$

(ii)

$$\sin C = \frac{\text{Side opposite to } \angle C}{\text{Hypotenuse}} = \frac{\text{AB}}{\text{AC}} = \frac{24}{25}$$

$$\cos C = \frac{\text{Side adjacent to } \angle C}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}} = \frac{7}{25}$$

Question 2:

Answer 2:

Applying Pythagoras theorem for Δ PQR, we obtain PR² = PQ² + QR² (13 cm)² = (12 cm)² + QR² 169 cm² = 144 cm² + QR² 25 cm² = QR² QR = 5 cm

$$\tan P = \frac{\text{Side opposite to } \angle P}{\text{Side adjacent to } \angle P} = \frac{QR}{PQ}$$
$$= \frac{5}{12}$$
$$\cot R = \frac{\text{Side adjacent to } \angle R}{\text{Side opposite to } \angle R} = \frac{QR}{PQ}$$
$$= \frac{5}{12}$$
$$\tan P - \cot R = \frac{5}{12} - \frac{5}{12} = 0$$

Question 3:

If sin A = $\frac{3}{4}$ calculate cos A and tan A. Answer 3:

Let $\triangle ABC$ be a right-angled triangle, right-angled at point B.

Given that,

 $\sin A = \frac{3}{4}$ $\frac{BC}{AC} = \frac{3}{4}$

Let BC be 3k. Therefore, AC will be 4k, where k is a positive integer.

Applying Pythagoras theorem in $\Delta ABC,$ we obtain

$$AC^{2} = AB^{2} + BC^{2}$$

 $(4k)^{2} = AB^{2} + (3k)^{2}$
 $16k^{2} - 9k^{2} = AB^{2}$
 $7k^{2} = AB^{2}$

$$AB = \sqrt{7}k$$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}}$$

$$= \frac{AB}{AC} = \frac{\sqrt{7}k}{4k} = \frac{\sqrt{7}}{4}$$

$$\tan A = \frac{\text{Side opposite to } \angle A}{\text{Side adjacent to } \angle A}$$

$$= \frac{BC}{AB} = \frac{3k}{\sqrt{7}k} = \frac{3}{\sqrt{7}}$$

Question 4:

Given 15 cot A = 8. Find sin A and sec A

Answer 4:

Consider a right-angled triangle, right-angled at B.

 $\cot A = \frac{\text{Side adjacent to } \angle A}{\text{Side opposite to } \angle A}$ $= \frac{AB}{BC}$

It is given that,

$$\cot A = \frac{8}{15}$$
$$\frac{AB}{BC} = \frac{8}{15}$$

Let AB be 8k. Therefore, BC will be 15k, where k is a positive integer.

Applying Pythagoras theorem in $\triangle ABC$, we obtain

$$AC^2 = AB^2 + BC^2 = (8k)^2 + (15k)^2$$

 $= 64k^2 + 225k^2$

 $= 289k^2$

$$AC = 17k$$

$$sin A = \frac{Side \text{ opposite to } \angle A}{Hypotenuse} = \frac{BC}{AC}$$

$$= \frac{15k}{17k} = \frac{15}{17}$$

$$sec A = \frac{Hypotenuse}{Side adjacent to } \angle A$$

$$= \frac{AC}{AB} = \frac{17}{8}$$

Question 5:

Given sec $\theta = \frac{13}{12}$, calculate all other trigonometric ratios. Answer 5:

Consider a right-angle triangle ΔABC , right-angled at point B.

 $\sec\theta = \frac{\text{Hypotenuse}}{\text{Side adjacent to } \angle \theta}$ $\frac{13}{12} = \frac{\text{AC}}{\text{AB}}$

If AC is 13k, AB will be 12k, where k is a positive integer. Applying Pythagoras theorem in \triangle ABC, we obtain $(AC)^2 = (AB)^2 + (BC)^2$ $(13k)^2 = (12k)^2 + (BC)^2$ $169k^2 = 144k^2 + BC^2$ $25k^2 = BC^2$ BC = 5k

$$\sin \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{5k}{13k} = \frac{5}{13}$$
$$\cos \theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{12k}{13k} = \frac{12}{13}$$
$$\tan \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Side adjacent to } \angle \theta} = \frac{BC}{AB} = \frac{5k}{12k} = \frac{5}{12}$$
$$\cot \theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Side opposite to } \angle \theta} = \frac{AB}{BC} = \frac{12k}{5k} = \frac{12}{5}$$
$$\cos ec \ \theta = \frac{\text{Hypotenuse}}{\text{Side opposite to } \angle \theta} = \frac{AC}{BC} = \frac{13k}{5k} = \frac{13}{5}$$

Question 6:

If $\angle A$ and $\angle B$ are acute angles such that $\cos A = \cos B$, then show that $\angle A = \angle B$.

Answer 6:

Let us consider a triangle ABC in which CD \perp AB.

It is given that $\cos A = \cos B$

 $\Rightarrow \frac{AD}{AC} = \frac{BD}{BC} \qquad (1)$

We have to prove $\angle A = \angle B$. To prove this, let us extend AC to P such that BC = CP.

From equation (1), we obtain

 $\frac{AD}{BD} = \frac{AC}{BC}$ $\Rightarrow \frac{AD}{BD} = \frac{AC}{CP}$

(By construction, we have BC = CP) ... (2)

By using the converse of B.P.T,

CD||BP

 $\Rightarrow \angle ACD = \angle CPB$ (Corresponding angles) ... (3) And,

 \angle BCD = \angle CBP (Alternate interior angles) ... (4)

By construction, we have BC = CP.

 $\therefore \angle CBP = \angle CPB$ (Angle opposite to equal sides of a triangle) ... (5)

From equations (3), (4), and (5), we obtain

 $\angle ACD = \angle BCD \dots (6)$

In \triangle CAD and \triangle CBD,

 $\angle ACD = \angle BCD$ [Using equation (6)]

 $\angle CDA = \angle CDB$ [Both 90°]

Therefore, the remaining angles should be equal.

∴ ∠CAD = ∠CBD

 $\Rightarrow \angle A = \angle B$

Alternatively, Let us consider a triangle ABC in which CD \perp AB.

It is given that, $\cos A = \cos B$

$$\Rightarrow \frac{AD}{AC} = \frac{BD}{BC}$$

$$\Rightarrow \frac{AD}{BD} = \frac{AC}{BC}$$

Let $\frac{AD}{BD} = \frac{AC}{BC} = k$

$$\Rightarrow AD = k \text{ BD ... (1)}$$

And, $AC = k \text{ BC ... (2)}$
Using Pythagoras theorem for triangles CAD and CBD, we
 $CD^2 = AC^2 - AD^2 ... (3)$
And, $CD^2 = BC^2 - BD^2 ... (4)$
From equations (3) and (4), we obtain
 $AC^2 - AD^2 = BC^2 - BD^2$
 $\Rightarrow (k BC)^2 - (k BD)^2 = BC^2 - BD^2$
 $\Rightarrow k^2 (BC^2 - BD^2) = BC^2 - BD^2$
 $\Rightarrow k^2 = 1$
 $\Rightarrow k^2 = 1$
Putting this value in equation (2), we obtain
 $AC = BC$
 $\Rightarrow \angle A = \angle B$ (Angles opposite to equal sides of a triangle)

obtain

Question 7:

If
$$\cot \theta = \frac{7}{8}$$
, evaluate
(i) $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$ (ii) $\cot^2 \theta$

Answer 7:

Let us consider a right triangle ABC, right-angled at point B.

$$\cot \theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Side opposite to } \angle \theta} = \frac{\text{BC}}{\text{AB}}$$
$$= \frac{7}{8}$$

If BC is 7k, then AB will be 8k, where k is a positive integer. Applying Pythagoras theorem in Δ ABC, we obtain

AC² = AB² + BC²
= (8k)² + (7k)²
= 64k² + 49k²
= 113k²
AC =
$$\sqrt{113k}$$

sin $\theta = \frac{\text{Side opposite to } \angle \theta}{\text{Hypotenuse}} = \frac{\text{AB}}{\text{AC}}$
 $= \frac{8k}{\sqrt{113k}} = \frac{8}{\sqrt{113}}$
cos $\theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}}$
 $= \frac{7k}{\sqrt{113k}} = \frac{7}{\sqrt{113}}$
(i) $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)} = \frac{(1-\sin^2\theta)}{(1-\cos^2\theta)}$
 $= \frac{1-(\frac{8}{\sqrt{113}})^2}{1-(\frac{7}{\sqrt{113}})^2} = \frac{1-\frac{64}{113}}{1-\frac{49}{113}}$
 $= \frac{\frac{49}{113}}{\frac{64}{113}} = \frac{49}{64}$
(ii) cot² θ = (cot θ)² = $(\frac{7}{8})^2 = \frac{49}{64}$

Question 8:

If 3 cot A = 4, Check whether $\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$ or not. Answer 8:

It is given that $3\cot A = 4$

Or, $\cot A = \frac{4}{3}$ Consider a right triangle ABC, right-angled at point B.

 $\cot A = \frac{\text{Side adjacent to } \angle A}{\text{Side opposite to } \angle A}$

 $\frac{AB}{BC} = \frac{4}{3}$

If AB is 4k, then BC will be 3k, where k is a positive integer. In \triangle ABC,

$$(AC)^{2} = (AB)^{2} + (BC)^{2}$$

$$= (4k)^{2} + (3k)^{2}$$

$$= 16k^{2} + 9k^{2}$$

$$= 25k^{2}$$

$$AC = 5k$$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC}$$

$$= \frac{4k}{5k} = \frac{4}{5}$$

$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC}$$

$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}}$$
$$= \frac{3k}{5k} = \frac{3}{5}$$
$$\tan A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AB}}$$
$$= \frac{3k}{4k} = \frac{3}{4}$$

$$\frac{1-\tan^2 A}{1+\tan^2 A} = \frac{1-\left(\frac{3}{4}\right)^2}{1+\left(\frac{3}{4}\right)^2} = \frac{1-\frac{9}{16}}{1+\frac{9}{16}}$$
$$= \frac{\frac{7}{16}}{\frac{25}{16}} = \frac{7}{25}$$
$$\cos^2 A - \sin^2 A = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2$$
$$= \frac{16}{25} - \frac{9}{25} = \frac{7}{25}$$
$$\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$$

Question 9:

In \triangle ABC, right angled at B. If $\tan A = \frac{1}{\sqrt{3}}$ find the value of (i) sin A cos C + cos A sin C (ii) cos A cos C - sin A sin C **Answer 9:**

$$\tan A = \frac{1}{\sqrt{3}}$$
$$\frac{BC}{AB} = \frac{1}{\sqrt{3}}$$

If BC is k, then AB will be $\sqrt{3}k$, where k is a positive integer. In Δ ABC,

 $AC^2 = AB^2 + BC^2$

$$= \left(\sqrt{3}k\right)^2 + \left(k\right)^2$$

=
$$3k^2 + k^2 = 4k^2$$

 $\therefore AC = 2k$
 $\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{k}{2k} = \frac{1}{2}$
 $\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$
 $\sin C = \frac{\text{Side opposite to } \angle C}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$
 $\cos C = \frac{\text{Side adjacent to } \angle C}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{k}{2k} = \frac{1}{2}$
(i) $\sin A \cos C + \cos A \sin C$
 $= (\frac{1}{2})(\frac{1}{2}) + (\frac{\sqrt{3}}{2})(\frac{\sqrt{3}}{2}) = \frac{1}{4} + \frac{3}{4}$
 $= \frac{4}{4} = 1$
(ii) $\cos A \cos C - \sin A \sin C$

$$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$$

Question 10:

In ΔPQR , right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Answer 10:

Given that, PR + QR = 25 PQ = 5Let PR be x. Therefore, QR = 25 - x

Applying Pythagoras theorem in $\Delta PQR,$ we obtain

 $PR^{2} = PQ^{2} + QR^{2}$ $x^{2} = (5)^{2} + (25 - x)^{2}$ $x^{2} = 25 + 625 + x^{2} - 50x$ 50x = 650 x = 13Therefore, PR = 13 cm QR = (25 - 13) cm = 12 cm $\sin P = \frac{\text{Side opposite to } \angle P}{\text{Hypotenuse}} = \frac{QR}{PR} = \frac{12}{13}$ $\cos P = \frac{\text{Side adjacent to } \angle P}{\text{Hypotenuse}} = \frac{PQ}{PR} = \frac{5}{13}$ $\tan P = \frac{\text{Side opposite to } \angle P}{\text{Side adjacent to } \angle P} = \frac{QR}{PQ} = \frac{12}{5}$

Question 11:

State whether the following are true or false. Justify your answer.

(i) The value of tan A is always less than 1.

(ii) sec A = $\frac{12}{5}$ for some value of angle A. (iii) cos A is the abbreviation used for the cosecant of angle A.

(iv) $\cot A$ is the product of $\cot A$

(v) $\sin \theta = \frac{4}{3}$, for some angle θ Answer 11:

(i) Consider a \triangle ABC, right-angled at B.

 $\tan A = \frac{\text{Side opposite to } \angle A}{\text{Side adjacent to } \angle A}$

$$=\frac{12}{5}$$

But $\frac{12}{5} > 1$.:tan A > 1

So, $\tan A < 1$ is not always true.

Hence, the given statement is false.

 $\mathsf{BC}=10.9k$

It can be observed that for given two sides AC = 12k and AB = 5k,

BC should be such that,

AC - AB < BC < AC + AB12k - 5k < BC < 12k + 5k

7k < BC < 17 k

However, BC = 10.9k. Clearly, such a triangle is possible and hence, such value of sec A is possible.

Hence, the given statement is true.

(iii) Abbreviation used for cosecant of angle A is cosec A. And cos A is the abbreviation used for cosine of angle A.

Hence, the given statement is false.

(iv) cot A is not the product of cot and A. It is the cotangent of $\angle A$.

Hence, the given statement is false.

(v) $\sin \theta = \frac{4}{3}$

We know that in a right-angled triangle,

 $\sin \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Hypotenuse}}$

In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of sin θ is not possible.

Hence, the given statement is false

Mathematics

(Chapter – 8) (Introduction to Trigonometry) (Class X)

Exercise 8.2

Question 1:

Evaluate the following

- (i) sin60° cos30° + sin30° cos 60°
- (ii) 2tan²45° + cos²30° sin²60°

(iii)
$$\frac{\cos 45^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}}$$

(iv)
$$\frac{\sin 30^\circ + \tan 45^\circ - \csc 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}$$

(v)
$$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$

Answer 1:

(i) sin60° cos30° + sin30° cos 60°

$$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$$
$$= \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1$$

(ii) $2\tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$

$$= 2(1)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2} - \left(\frac{\sqrt{3}}{2}\right)^{2}$$
$$= 2 + \frac{3}{4} - \frac{3}{4} = 2$$

(iii)
$$\frac{\cos 45^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}}$$

1

$$=\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}+2} = \frac{\frac{1}{\sqrt{2}}}{\frac{2+2\sqrt{3}}{\sqrt{3}}}$$
$$=\frac{\sqrt{3}}{\sqrt{2}\left(2+2\sqrt{3}\right)} = \frac{\sqrt{3}}{2\sqrt{2}+2\sqrt{6}}$$
$$=\frac{\sqrt{3}\left(2\sqrt{6}-2\sqrt{2}\right)}{\left(2\sqrt{6}+2\sqrt{2}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}$$
$$=\frac{2\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{\left(2\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}} = \frac{2\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{24-8} = \frac{2\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{16}$$
$$=\frac{\sqrt{18}-\sqrt{6}}{8} = \frac{3\sqrt{2}-\sqrt{6}}{8}$$

(iv)
$$\frac{\sin 30^\circ + \tan 45^\circ - \csc 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}$$

$$=\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}=\frac{\frac{3}{2}-\frac{2}{\sqrt{3}}}{\frac{3}{2}+\frac{2}{\sqrt{3}}}$$

$$=\frac{\frac{3\sqrt{3}-4}{2\sqrt{3}}}{\frac{3\sqrt{3}+4}{2\sqrt{3}}}=\frac{\left(3\sqrt{3}-4\right)}{\left(3\sqrt{3}+4\right)}$$

$$=\frac{(3\sqrt{3}-4)(3\sqrt{3}-4)}{(3\sqrt{3}+4)(3\sqrt{3}-4)}=\frac{(3\sqrt{3}-4)^2}{(3\sqrt{3})^2-(4)^2}$$

$$=\frac{27+16-24\sqrt{3}}{27-16}=\frac{43-24\sqrt{3}}{11}$$

(v)	$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{2200}$
	$\sin^{*} 30^{\circ} + \cos^{*} 30^{\circ}$
5	$\left(\frac{1}{2}\right)^2 + 4\left(\frac{2}{\sqrt{3}}\right)^2 - (1)^2$
	$\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2$
=-	$\frac{5\left(\frac{1}{4}\right) + \left(\frac{16}{3}\right) - 1}{1 - 3}$
	$\frac{1}{4} + \frac{3}{4}$
	15 + 64 - 12
= -	$\frac{12}{4} = \frac{67}{12}$
	4

Question 2:

Choose the correct option and justify your choice.

(i)	$\frac{2\tan 30^\circ}{1+\tan^2 30^\circ} =$			
(A).	sin60°	(B). cos60°	(C). tan60°	(D). sin30°
(ii)	$\frac{1 - \tan^2 45^\circ}{1 + \tan^2 45^\circ} =$			
(A).	tan90°	(B). 1	(C). sin45°	(D). 0
(iii)	sin2A = 2sinA is t	rue when A =		
(A).	0°	(B). 30°	(C). 45°	(D). 60°

(iv)
$$\frac{2 \tan 30^{\circ}}{1 - \tan^2 30^{\circ}} =$$

(A). $\cos 60^{\circ}$ (B). $\sin 60^{\circ}$
Answer 2:
(i) $\frac{2 \tan 30^{\circ}}{1 + \tan^2 30^{\circ}}$
 $= \frac{2\left(\frac{1}{\sqrt{3}}\right)}{1 + \left(\frac{1}{\sqrt{3}}\right)^2} = \frac{\frac{2}{\sqrt{3}}}{1 + \frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}$
 $= \frac{6}{4\sqrt{3}} = \frac{\sqrt{3}}{2}$

(C). tan60°

(D). sin30°

Out of the given alternatives, only $\sin 60^\circ = \frac{\sqrt{3}}{2}$ Hence, (A) is correct.

1000

(ii)
$$\frac{1-\tan^2 45^\circ}{1+\tan^2 45^\circ} = \frac{1-(1)^2}{1+(1)^2} = \frac{1-1}{1+1} = \frac{0}{2} = 0$$

Hence, (D) is correct.

(iii)Out of the given alternatives, only $A = 0^{\circ}$ is correct. As sin 2A = sin 0° = 0 2 sinA = 2sin 0° = 2(0) = 0 Hence, (A) is correct.

(iv)
$$\frac{2 \tan 30^{\circ}}{1 - \tan^2 30^{\circ}}$$

= $\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1 - \left(\frac{1}{\sqrt{3}}\right)^2} = \frac{\frac{2}{\sqrt{3}}}{1 - \frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}} = \sqrt{3}$

Out of the given alternatives, only tan 60° = $\sqrt{3}$ Hence, (C) is correct.

Question 3:

If $\tan(A+B) = \sqrt{3}$ and $\tan(A-B) = \frac{1}{\sqrt{3}}$ $0^{\circ} < A + B \le 90^{\circ}$, A > B find A and B. **Answer 3:** $\tan(A+B) = \sqrt{3}$ $\tan(A+B) = \tan 60$ $\Rightarrow A + B = 60$ (1) $\tan(A-B) = \frac{1}{\sqrt{3}}$ $\Rightarrow \tan(A-B) = \tan 30$ $\Rightarrow A - B = 30$ (2) On adding both equations, we obtain 2A = 90 $\Rightarrow A = 45$ From equation (1), we obtain 45 + B = 60 B = 15Therefore, $\angle A = 45^{\circ}$ and $\angle B = 15^{\circ}$

Question 4:

State whether the following are true or false. Justify your answer.

- (i) $\sin(A + B) = \sin A + \sin B$
- (ii) The value of sin θ increases as θ increases
- (iii) The value of $\cos \theta$ increases as θ increases
- (iv) $\sin\theta = \cos\theta$ for all values of θ
- (v) $\cot A$ is not defined for $A = 0^{\circ}$

Answer 4:

(i) sin (A + B) = sin A + sin B Let A = 30° and B = 60° sin (A + B) = sin (30° + 60°) = sin 90° = 1 And sin A + sin B = sin 30° + sin 60°

$$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$$

Clearly, sin $(A + B) \neq sin A + sin B$

Hence, the given statement is false.

(ii) The value of sin θ increases as θ increases in the interval of 0° < θ < 90° as sin

$$0^{\circ} = 0$$

$$\sin 30^{\circ} = \frac{1}{2} = 0.5$$

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} = 0.707$$

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2} = 0.866$$

$$\sin 90^{\circ} = 1$$

Hence, the given statement is true.

(iii) $\cos 0^\circ = 1$

$$\cos 30^{\circ} = \frac{1}{2} = 0.866$$
$$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = 0.707$$
$$\cos 60^{\circ} = \frac{1}{2} = 0.5$$

 $\cos 90^\circ = 0$

It can be observed that the value of $\cos \theta$ does not increase in the interval of $0^{\circ} < \theta < 90^{\circ}$. Hence, the given statement is false.

(iv) $\sin \theta = \cos \theta$ for all values of θ .

This is true when $\theta = 45^{\circ}$

As
$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$

 $\cos 45^\circ = \frac{1}{\sqrt{2}}$

It is not true for all other values of $\boldsymbol{\theta}.$

As $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$ Hence, the given statement is false. (v) $\cot A$ is not defined for $A = 0^{\circ}$

As
$$\cot A = \frac{\cos A}{\sin A'}$$

$$\cot 0^\circ = \frac{\cos 0^\circ}{\sin 0^\circ} = \frac{1}{0} = \text{undefined}$$

Hence, the given statement is true.

Mathematics

(Chapter – 8) (Introduction to Trigonometry) (Class X)

Exercise 8.3

Question 1:

Evaluate

sin18° (I) cos 72°

tan 26° (II) cot 64°

- (III) cos 48° sin 42°
- (IV) cosec 31° sec 59°

Answer 1:

(I)
$$\frac{\sin 18^{\circ}}{\cos 72^{\circ}} = \frac{\sin (90^{\circ} - 72^{\circ})}{\cos 72^{\circ}} = \frac{\cos 72^{\circ}}{\cos 72^{\circ}} = 1$$

(II)
$$\frac{\tan 26^\circ}{\cot 64^\circ} = \frac{\tan (90^\circ - 64^\circ)}{\cot 64^\circ} = \frac{\cot 64^\circ}{\cot 64^\circ} = 1$$

(III) $\cos 48^\circ - \sin 42^\circ = \cos (90^\circ - 42^\circ) - \sin 42^\circ$ $= \sin 42^{\circ} - \sin 42^{\circ}$ = 0 (iv) cosec 31° - sec 59° = cosec (90° - 59°) - sec 59° = sec 59° - sec 59° = 0

Question 2:

Show that (I) tan 48° tan 23° tan 42° tan 67° = 1 (II) cos 38° cos 52° - sin 38° sin 52° = 0 Answer 2: (I) tan 48° tan 23° tan 42° tan 67°

= tan (90° - 42°) tan (90° - 67°) tan 42° tan 67°

```
= cot 42° cot 67° tan 42° tan 67°
= (cot 42° tan 42°) (cot 67° tan 67°)
= (1) (1)
= 1
(II) cos 38° cos 52° - sin 38° sin 52°
= cos (90° - 52°) cos (90° - 38°) - sin 38° sin 52°
= sin 52° sin 38° - sin 38° sin 52°
= 0
```

Question 3:

If tan $2A = \cot (A - 18^{\circ})$, where 2A is an acute angle, find the value of A.

Answer 3:

Given that, $\tan 2A = \cot (A - 18^{\circ})$ $\cot (90^{\circ} - 2A) = \cot (A - 18^{\circ})$ $90^{\circ} - 2A = A - 18^{\circ}$ $108^{\circ} = 3A$ $A = 36^{\circ}$

Question 4:

If tan A = cot B, prove that $A + B = 90^{\circ}$

Answer 4:

Given that, $\tan A = \cot B$ $\tan A = \tan (90^\circ - B)$ $A = 90^\circ - B$ $A + B = 90^\circ$

Question 5:

If sec $4A = cosec (A - 20^\circ)$, where 4A is an acute angle, find the value of A.

Answer 5:

Given that, sec $4A = cosec (A - 20^{\circ})$ $cosec (90^{\circ} - 4A) = cosec (A - 20^{\circ})$ $90^{\circ} - 4A = A - 20^{\circ}$ $110^{\circ} = 5A$ $A = 22^{\circ}$

Question 6:

If A, Band C are interior angles of a triangle ABC then show that

$$\sin\left(\frac{B+C}{2}\right) = \cos\frac{A}{2}$$

Answer 6:

We know that for a triangle ABC,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle B + \angle C = 180^\circ - \angle A$$
$$\frac{\angle B + \angle C}{2} = 90^\circ - \frac{\angle A}{2}$$
$$\sin\left(\frac{B+C}{2}\right) = \sin\left(90^\circ - \frac{A}{2}\right)$$
$$= \cos\left(\frac{A}{2}\right)$$

Question 7:

Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45° .

Answer 7:

sin 67° + cos 75° = sin (90° - 23°) + cos (90° - 15°) = cos 23° + sin 15°

Mathematics

(Chapter – 8) (Introduction to Trigonometry) (Class X)

Exercise 8.4

Question 1:

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Answer 1:

We know that,

$$\cos ec^{2}A = 1 + \cot^{2} A$$
$$\frac{1}{\cos ec^{2}A} = \frac{1}{1 + \cot^{2} A}$$
$$\sin^{2} A = \frac{1}{1 + \cot^{2} A}$$
$$\sin A = \pm \frac{1}{\sqrt{1 + \cot^{2} A}}$$
Therefore, $\sin A = \frac{1}{\sqrt{1 + \cot^{2} A}}$ We know that, $\tan A = \frac{\sin A}{\cos A}$ We know that, $\tan A = \frac{\sin A}{\cos A}$ However, $\cot A = \frac{\cos A}{\sin A}$ Therefore, $\tan A = \frac{1}{\cot A}$ Also, $\sec^{2} A = 1 + \tan^{2} A$
$$= 1 + \frac{1}{\cot^{2} A}$$
$$= \frac{\cot^{2} A + 1}{\cot^{2} A}$$
sec $A = \frac{\sqrt{\cot^{2} A + 1}}{\cot^{2} A}$

Question 2:

Write all the other trigonometric ratios of $\angle A$ in terms of sec A.

Answer 2:

We know that,

$$\cos A = \frac{1}{\sec A}$$
Also, $\sin^2 A + \cos^2 A = 1$

$$\sin^2 A = 1 - \cos^2 A$$

$$\sin A = \sqrt{1 - \left(\frac{1}{\sec A}\right)^2}$$

$$= \sqrt{\frac{\sec^2 A - 1}{\sec^2 A}} = \frac{\sqrt{\sec^2 A - 1}}{\sec A}$$

$$\tan^2 A + 1 = \sec^2 A$$

$$\tan^2 A = \sec^2 A - 1$$

$$\tan A = \sqrt{\sec^2 A - 1}$$

$$\tan A = \sqrt{\sec^2 A - 1}$$

$$\tan A = \sqrt{\sec^2 A - 1}$$

$$\tan A = \frac{1}{\sqrt{\sec^2 A - 1}}$$

$$\sin A = \frac{1}{\sqrt{\sec^2 A - 1}}$$

Question 3:

Evaluate

(i)
$$\frac{\sin^2 63^\circ + \sin^2 27^\circ}{\cos^2 17^\circ + \cos^2 73^\circ}$$

(ii) sin25° cos65° + cos25° sin65°

Answer 3:

(i)
$$\frac{\sin^2 63^\circ + \sin^2 27^\circ}{\cos^2 17^\circ + \cos^2 73^\circ} = \frac{\left[\sin(90^\circ - 27^\circ)\right]^2 + \sin^2 27^\circ}{\left[\cos(90^\circ - 73^\circ)\right]^2 + \cos^2 73^\circ}$$
$$= \frac{\left[\cos 27^\circ\right]^2 + \sin^2 27^\circ}{\left[\sin 73^\circ\right]^2 + \cos^2 73^\circ}$$

$$= \frac{\cos^{2} 27^{\circ} + \sin^{2} 27^{\circ}}{\sin^{2} 73^{\circ} + \cos^{2} 73^{\circ}}$$

= $\frac{1}{1}$
(ii) sin25° cos65° + cos25° sin65°
= $(\sin 25^{\circ}) \{ \cos(90^{\circ} - 25^{\circ}) \} + \cos 25^{\circ} \{ \sin(90^{\circ} - 25^{\circ}) \}$
= $(\sin 25^{\circ}) (\sin 25^{\circ}) + (\cos 25^{\circ}) (\cos 25^{\circ})$
= $\sin^{2}25^{\circ} + \cos^{2}25^{\circ}$
= 1 (As sin²A + cos²A = 1)

Question 4:

Choose the correct option. Justify your choice.

(i) $9 \sec^2 A - 9 \tan^2 A =$ (A) 1(B) 9(C) 8(ii) $(1 + \tan \theta + \sec \theta) (1 + \cot \theta - \csc \theta)$ (A) 0(B)1(C) 2(D) -1(iii) $(\sec A + \tan A) (1 - \sin A) =$ (A) secA(B) sinA(C) cosecA(D) cosA

(iv) $\frac{1 + \tan^2 A}{1 + \cot^2 A}$

(A) $\sec^2 A$ (B) -1 (C) $\cot^2 A$ (D) $\tan^2 A$

Answer 4:

(i) 9 sec²A - 9 tan²A
= 9 (sec²A - tan²A)
= 9 (1) [As sec² A - tan² A = 1]

= 9

Hence, alternative (B) is correct.

(ii)
$$(1 + \tan \theta + \sec \theta) (1 + \cot \theta - \csc \theta)$$

$$= \left(1 + \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta}\right) \left(1 + \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta}\right)$$

$$= \left(\frac{\cos \theta + \sin \theta + 1}{\cos \theta}\right) \left(\frac{\sin \theta + \cos \theta - 1}{\sin \theta}\right)$$

$$= \frac{(\sin \theta + \cos \theta)^2 - (1)^2}{\sin \theta \cos \theta}$$

$$= \frac{\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta - 1}{\sin \theta \cos \theta}$$

$$= \frac{1 + 2\sin \theta \cos \theta - 1}{\sin \theta \cos \theta}$$

$$= \frac{2\sin \theta \cos \theta}{\sin \theta \cos \theta} = 2$$

Hence, alternative (C) is correct.

(iii) (secA + tanA) (1 - sinA)
=
$$\left(\frac{1}{\cos A} + \frac{\sin A}{\cos A}\right)(1 - \sin A)$$

= $\left(\frac{1 + \sin A}{\cos A}\right)(1 - \sin A)$
= $\frac{1 - \sin^2 A}{\cos A} = \frac{\cos^2 A}{\cos A}$

= cosA

Hence, alternative (D) is correct.

(iv)
$$\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{1+\frac{\sin^2 A}{\cos^2 A}}{1+\frac{\cos^2 A}{\sin^2 A}} = \frac{\frac{\cos^2 A + \sin^2 A}{\cos^2 A}}{\frac{\sin^2 A + \cos^2 A}{\sin^2 A}} = \frac{\frac{1}{\cos^2 A}}{\frac{1}{\sin^2 A}}$$
$$= \frac{\frac{\sin^2 A}{\cos^2 A}}{\cos^2 A} = \tan^2 A$$

Hence, alternative (D) is correct.

Question 5:

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

Answer 5:

(i)
$$(\csce - \cot\theta)^2 = \frac{1 - \cos\theta}{1 + \cos\theta}$$

L.H.S.= $(\csce - \cot\theta)^2$
 $= \left(\frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta}\right)^2$
 $= \frac{(1 - \cos\theta)^2}{(\sin\theta)^2} = \frac{(1 - \cos\theta)^2}{\sin^2\theta}$
 $= \frac{(1 - \cos\theta)^2}{1 - \cos^2\theta} = \frac{(1 - \cos\theta)^2}{(1 - \cos\theta)(1 + \cos\theta)} = \frac{1 - \cos\theta}{1 + \cos\theta}$
=R.H.S.
(ii) $\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A} = 2 \sec A$
L.H.S. $= \frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A}$
 $= \frac{\cos^2 A + (1 + \sin A)^2}{(1 + \sin A)(\cos A)}$
 $= \frac{\cos^2 A + (1 + \sin^2 A + 2\sin A)}{(1 + \sin A)(\cos A)}$
 $= \frac{\sin^2 A + \cos^2 A + 1 + 2\sin A}{(1 + \sin A)(\cos A)}$
 $= \frac{1 + 1 + 2\sin A}{(1 + \sin A)(\cos A)} = \frac{2 + 2\sin A}{(1 + \sin A)(\cos A)}$
 $= \frac{2(1 + \sin A)}{(1 + \sin A)(\cos A)} = \frac{2}{\cos A} = 2 \sec A$
=R.H.S.
 $\tan\theta$ $\cot \theta$

. .

(iii) $\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = 1 + \sec\theta\csc\theta$

$$L.H.S. = \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta}$$

$$= \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}}$$

$$= \frac{\frac{\sin \theta}{\sin \theta - \cos \theta}}{\frac{\sin \theta - \cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{\cos \theta - \sin \theta}$$

$$= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2 \theta}{\sin \theta (\sin \theta - \cos \theta)}$$

$$= \frac{1}{(\sin \theta - \cos \theta)} \left[\frac{\sin^2 \theta}{\cos \theta} - \frac{\cos^2 \theta}{\sin \theta} \right]$$

$$= \left(\frac{1}{\sin \theta - \cos \theta} \right) \left[\frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta \cos \theta} \right]$$

$$= \left(\frac{1}{\sin \theta - \cos \theta} \right) \left[\frac{(\sin \theta - \cos \theta)(\sin^2 \theta + \cos^2 \theta + \sin \theta \cos \theta)}{\sin \theta \cos \theta} \right]$$

$$= \frac{(1 + \sin \theta \cos \theta)}{(\sin \theta - \cos \theta)}$$

= $\sec\theta \ \csc\theta + 1 = R.H.S.$

(iv)
$$\frac{1+\sec A}{\sec A} = \frac{\sin^2 A}{1-\cos A}$$

L.H.S.
$$= \frac{1+\sec A}{\sec A} = \frac{1+\frac{1}{\cos A}}{\frac{1}{\cos A}}$$
$$= \frac{\frac{\cos A+1}{\cos A}}{\frac{1}{\cos A}} = (\cos A+1)$$
$$= \frac{\frac{(1-\cos A)(1+\cos A)}{(1-\cos A)}}{(1-\cos A)}$$
$$= \frac{1-\cos^2 A}{1-\cos A} = \frac{\sin^2 A}{1-\cos A} = \text{R.H.S}$$

(v)
$$\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \csc A + \cot A$$
Using the identity $\csc 2^{2A} = 1 + \cot^{2A}$
L.H.S =
$$\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1}$$

$$= \frac{\frac{\cos A}{\sin A} - \frac{\sin A}{\sin A} + \frac{1}{\sin A}}{\frac{\cos A}{\sin A} + \frac{\sin A}{\sin A} + \frac{1}{\sin A}}$$

$$= \frac{\cot A - 1 + \csc A}{\cot A + 1 - \csc A}$$

$$= \frac{\{(\cot A) - (1 - \csc A)\}\{(\cot A) - (1 - \csc A)\}}{\{(\cot A) + (1 - \csc A)\}\{(\cot A) - (1 - \csc A)\}}$$

$$= \frac{(\cot A - 1 + \csc A)^{2}}{(\cot A)^{2} - (1 - \csc A)^{2}}$$

$$= \frac{\cot^{2} A + 1 + \csc^{2} A - 2 \cot A - 2 \csc A + 2 \cot A \csc A}{\cot^{2} A - (1 + \csc^{2} A - 2 \csc A)}$$

$$= \frac{2 \csc^{2} A + 2 \cot A \csc A - 2 \cot A - 2 \csc A}{\cot^{2} A - 1 - \csc^{2} A + 2 \csc A}$$

$$= \frac{2 \csc A (\csc A + \cot A) - 2 (\cot A + \csc A)}{\cot^{2} A - (1 - \csc^{2} A - 1 - 2 \csc A)}$$

$$= \frac{(\csc A + \cot A)(2 \csc A - 2)}{-1 - 1 + 2 \csc A}$$

 $= \operatorname{cosec} A + \operatorname{cot} A$

= R.H.S

(vi)
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

L.H.S.
$$= \sqrt{\frac{1+\sin A}{1-\sin A}}$$
$$= \sqrt{\frac{(1+\sin A)(1+\sin A)}{(1-\sin A)(1+\sin A)}}$$
$$= \frac{(1+\sin A)}{\sqrt{1-\sin^2 A}} = \frac{1+\sin A}{\sqrt{\cos^2 A}}$$
$$= \frac{1+\sin A}{\cos A} = \sec A + \tan A$$
$$= R.H.S.$$
(vii)
$$\frac{\sin \theta - 2\sin^3 \theta}{2\cos \theta - \cos \theta} = \tan \theta$$
L.H.S.
$$= \frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta}$$
$$= \frac{\sin \theta (1-2\sin^2 \theta)}{\cos \theta (2\cos^2 \theta - 1)}$$
$$= \frac{\sin \theta \times (1-2\sin^2 \theta)}{\cos \theta \times \{2(1-\sin^2 \theta) - 1\}}$$
$$= \frac{\sin \theta \times (1-2\sin^2 \theta)}{\cos \theta \times (1-2\sin^2 \theta)}$$
$$= \tan \theta = R.H.S$$

(viii) $(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$

L.H.S =
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2$$

= $\sin^2 A + \csc^2 A + 2\sin A \csc A + \cos^2 A + \sec^2 A + 2\cos A \sec A$
= $(\sin^2 A + \cos^2 A) + (\csc^2 A + \sec^2 A) + 2\sin A \left(\frac{1}{\sin A}\right) + 2\cos A \left(\frac{1}{\cos A}\right)$
= $(1) + (1 + \cot^2 A + 1 + \tan^2 A) + (2) + (2)$
= $7 + \tan^2 A + \cot^2 A$
= R.H.S

(ix)
$$(\operatorname{cosec} A - \sin A)(\operatorname{sec} A - \cos A) = \frac{1}{\tan A + \cot A}$$

L.H.S = $(\operatorname{cosec} A - \sin A)(\operatorname{sec} A - \cos A)$
= $\left(\frac{1}{\sin A} - \sin A\right)\left(\frac{1}{\cos A} - \cos A\right)$
= $\left(\frac{1 - \sin^2 A}{\sin A}\right)\left(\frac{1 - \cos^2 A}{\cos A}\right)$
= $\frac{(\cos^2 A)(\sin^2 A)}{\sin A \cos A}$
= $\sin A \cos A$
R.H.S = $\frac{1}{\tan A + \cot A}$
= $\frac{1}{\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}} = \frac{1}{\frac{\sin^2 A + \cos^2 A}{\sin A \cos A}}$
= $\frac{\sin A \cos A}{\sin^2 A + \cos^2 A} = \sin A \cos A$

Hence, L.H.S = R.H.S

(x)
$$\left(\frac{1+\tan^2 A}{1+\cot^2 A}\right) = \left(\frac{1-\tan A}{1-\cot A}\right)^2 = \tan^2 A$$
$$\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{1+\frac{\sin^2 A}{\cos^2 A}}{1+\frac{\cos^2 A}{\sin^2 A}} = \frac{\frac{\cos^2 A + \sin^2 A}{\cos^2 A}}{\frac{\sin^2 A + \cos^2 A}{\sin^2 A}}$$
$$= \frac{\frac{1}{\cos^2 A}}{\frac{1}{\sin^2 A}} = \frac{\sin^2 A}{\cos^2 A}$$
$$= \tan^2 A$$

$$\left(\frac{1-\tan A}{1-\cot A}\right)^{2} = \frac{1+\tan^{2} A - 2 \tan A}{1+\cot^{2} A - 2 \cot A}$$
$$= \frac{\sec^{2} A - 2 \tan A}{\cos e^{2} A - 2 \cot A}$$
$$= \frac{\frac{1}{\cos^{2} A} - \frac{2 \sin A}{\cos A}}{\frac{1}{\sin^{2} A} - \frac{2 \cos A}{\sin A}} = \frac{\frac{1-2 \sin A \cos A}{\cos^{2} A}}{\frac{1-2 \sin A \cos A}{\sin^{2} A}}$$
$$= \frac{\sin^{2} A}{\cos^{2} A} = \tan^{2} A$$